ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ"

Transcript

1 ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Άλγεβρα Β Λυκείου Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ

2 ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. y y 4 y 6y y 4 y 4 y 6 y 7. : y 6, : y 6 : y 0.,. y 6 y 6 y 6 y 0 y 6 0 y 0 y 6,. y. y 6 y, y 6, y 4. 4y y 5 y ) 7 y 7 y y 6 65y y 76 7 y 4 5y y ( y) 4 ( ) ( y) ( ) y 6. y 4 0 y 5y y 4 y y y y 8

3 7. y y 4 4( 5 y) ( y) ( y) 8. y 5 y y y 4 ) y 5y 4 9( ) 0( y ) 9 ) 6(4 9) 5( y 4) y 0 y 0 6y 649 4y 98y 0. 54y 5 y 0 54y 50y y 5 y ( y) 4( y) 5 ( ) ( y) 9 y) (54 y) ( 4 y) ( y) y ( ) ( y) y ) 6y. y y 4 y y 4 6 y y 4 ( y) ( y) ( y) 4( y) ( y) ( y) ( y) ( ) ( y ) ( y) ( y ) ( y) 8 ( y) ( y) 8 y y 4 y 4 y ( ) y 4

4 y y y 6 4 y 5 4. ) 4 y y 4 6 y 5 ) 8 5y y 9 y 4 y 5 6y y y y 6 ) y 6 y y y 4 4. ( ) ( ) y 79 y, (, 8) microchips 0 microchips microchips

5 a y 7 0. y a y y 4.. y y 0. y 4 y 8 ) y 4 y 0 y y y.. y 4 4. : y. y y 5.. y ( ) y 6.. ( ) y ( ) ( ) ( ) y 7.. y ( ) y 8. ( ) ( ) y 9. y ( ) y y y 5 y 0. 4y 5 4

6 y 7.. y 5 0, y0 y. 5 ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ y. 0, y0 5 y 4 y o ( ) 4y.. (5) 8y 8k 4. y D Dy D 4D Dy D 5. y D 4D 4D D D 0 y y. y y 6. y D 4D 4DD DD D 0 y y 7. DD, Dy D D 0 D 4DDy Dy yz y ) y z 6 ) y 9 y z 9 0 5y yz 0 4yz 8 8y9z 4 ) y5z 7 y5z 7 4z 69y4z yz ) 56yz y z 8 yz 5 y 5z 6 5

7 9. 5y6z 7 yz 4 yz y z 4 5z 0 y z 4 yz yz 0 4yz 4yz 6y4z 6y4z 40. yz y z 4 4y z yz 0 y z 5 4y 9z 8 4. yz 0 yz 0 yz 0 4yz 0 y z 0 6y6z 0 0 yz y z 0 y z 0 4. y 0 y y z 9 y z y z y yz 5 ) y z 4 y z 7 y z 8 z y 4 4. y z y z 4 4 z yz y 5 y z 4 y z yz 5 5yz 6

8 44. 4 y 6 y 9 y z 5 y z y y y 4 4y zy y z y y y z y 7 y y 7 y y y y 7 y 4 y y 5 y y y y y y y y 5 yy 5 y y 75 y 06 y y 7 y y y y y 0 y 9 y 4y5 0 y y y 5 y 5 y 5 7

9 5. y 7 5( y) y 9 5 y y ( y) 5 5. C: y y, 0. y y. 8

10 . ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. f( ) g ( ) 4 k ( ) 9. f( ) f ( ) 6 f( ) 8 4. f( ) g ( ) k ( ) 4 4. f : A, f( ) f. 5. :, A, 4,, 0, g g ( ) g. 6. f( ) 5 g ( ) h ( ) 4 k ( ) f( ) g ( ) 8. f( ) 4 g ( ) 5 5, , 0 9

11 , 0.,., ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ,. 8,. 6,,. 4.,. f( ) g ( ) f( ) 0 g ( ) h ( ) k ( ) 5. f( ) g ( ) 6. f ( ) f ( ) 7. ( ) f f( ) 6 f ( ) 0 f ( ) 4 8. f( ) g ( ) 9. f ( ) f ( ) 4 0. f ( ) f ( ) f( ) 4 8 0

12 . f( ) 7 g ( ). f( ) g ( ) 4 ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ h ( ) 5 k ( ) 6 t ( ) 00 s ( ). f :0,4 f( ). 5 g ( ), 0 k ( ), 0 4. f :, f( ) g : g ( ) h : h ( ) 5. f( ) 4 g ( ) f ( ) f ( ) f ( ) 5 f ( ) f ( ) 8 0 f ( ) 5 4 f ( ) 5 5, 8.., 9. f( ) 5 g ( ) 5

13 0. f f( ) 6 a. f( ),.. fmin, fma 7 f f( ) 5 4 a. 6. f( ) g ( ) f( ) f( ) y y 6. f ( ) 0 f( ) 5 4 f ( ) 5 f ( ) f( ) f ( ) 4 8 f( ) 0, f4( ) f( ) ) g ( ) 6 4 k ( ) h ( ) 9. f( ) 4 g ( ) h ( ) 5 p ( )

14 40. f( ) f ( ) f( ) g ( ) ,9 f( ) 9 a 4. f( ) g ( ) f( ) f ( ) 00 5 f( ) f( ) 4 f ( ) 46. f g, h g ( ) f( ) f( ) h ( ) f( ) f( ) g h A f 47. f o f () f, g f, g * h ( ) kf( ) g ( ) ; 49. f( ) ( 6). f f. f ( ) ( ) f( ) 0,-4)

15 ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 4 5. f( ) 0,,. 5. f( ) a y y -8. f K f f. 5. f ( ), A f( ) Af f ( ) Af 0 ( 4 Af f 54. f( ) f ( ) 4 f ( ) 55. f( ) f ( ) f ( ) 56. f ( ) f ( ) f ( ) f ( ) f( ) 45f 4

16 ) rad

17 ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ( ) A 6 7 6

18 B 0. 7, rad 0 0 y y y y y A B

19 9. ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ

20 ,. 47.,,

21 5. )

22 y y

23 - =

24 )

25 ) ( 7 ) ( 6 ) 6 ( 69 ) 669 ( ) 4

26 f( ) f( ) f( ). 00. f f( ) f( ) f( ). 0. f f ( ) (4 ) (7 ) (5 ) ( ) 7 7 ( ) ( ) ( ) ( ) ( )

27 7 47 ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ˆ, ˆ ˆ

28 )

29 f : f f f f 4 g T T 5 f f f f f f 6 7 f f 5 f 4 f 5 f f f f 4 8

30 8 g f g h 4 f ) f 9. g. f 4 0. h()= f,, 0. ma f C f y' y M 0, f 5 t f 0 4, t 0,4, 9

31 6 f,,, 0 ma f 4 min f f 0,. 7 f =

32 )= )= )- - )= )- )= ) - )= - ) = ) )=0 - -)=

33 5. )= )= - 0, 0, 4 0, )=-, ).

34 )

35

36 84. - )= ) ) - - ) )

37 = =0 - =

38 =0. - cm. 7

39 4. ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ) P()=5 ) A()= ) B()= ) Q()= 5-5 ) P()= 5-7 ) A()= Q() Q() +Q() 4 4. P ( ) 5 Q ( ) 6 P ( ) Q ( ) A ( ) P ( ) Q ( ) P(0) Q(0) Q() -Q() Q() )- 9. P( ) ( a )( ) Q ( ) ( ) ( 7) ( ) : P(Q() -Q(). 8

40 ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 4 Q Q()=(k +8) 4 + (k +k) ) R k)-k 7 P()=(k -4k) +(k -k) +(k -5k+6)+4k+8 8. P ( ) ( ) ( ) ( ) 9 P()=(k -4k) +(k -5k+6) +(k +)+ 0 +8) - +(k-5) P()= 4 ) + +8; 9

41 . P( ) ( ) 4 P( P()= P( ) ( ) ( ) ( ) P( P( ) 5. Q ( ) ( 8) ( 5) 6 P(Q( P P( ) ( ) P(P( 0 (+5)P()= P( ( ) P( )

42 K()= M ( +)P()= )= : (-) : ( 5 -) : ( ++) : ( -+5) : (-4) : (+) + -5: (-) : (-) + --7: (+5) : (+5) - +5-: (-) ( ) P( ) a (a ) a -P(). 4- P(): (-)(+). 44. P( P() P( ) P( ( )( ). 4

43 45. P(- P(): ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ g ( ) f f f : f 48 4 a 4 : a. a 4a 4 a : a 5 a 5 : 4 a a a a 4 4 a 6aa a4a a : 49 y : y P P 0. 5 a : - P P( ) a a P(- P( P( ) a a P(- P(- 55. P( ) a 4 - P()

44 58. P( ) a P( 6. ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 59. P( ) a P( ( ) P( ) a a P( ) : ( --) ( - - -). 65 P()= : ( - 5+6). 69. P( P(--P() ( )( 4) 70. P( ( )( ) 4. P(-P() ) ; 4

45 (-)(+). ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ (-)(+). 76 P()= -(+) +(-4 +) Q()= )- -). P a, i) ii) iii) iv) v) vi) 4 vii) 5 viii) 0 4 i) ) 0 i) =0 ii) =0 iii) =0 8 i) -8+7=0 ii) +4-7+=0 iii) =0 iv) =0 v) =0 vi) =0 vii) =0 44

46 8 i) =0 ii) =0 iii) =0 iv) =0 v) =0 vi) ( ++) -0( +-)-5=0 vii) 6 -(+)(+4)= - 8 i) + --=0 ii) =0 iii) =0 iv) =0 v) =0 vi) (-) +5(-)-= ( )( ) 6 50 ( ) = P()= )

47 i) iii) v) vii) 8 ii) 5 iv) vi) i) 96 4 f g h f g P() = ) - 46

48 i) iii) 0 k i) =0 ii) =0 iii) ( -5+7) -( -5+6)=. 05 P()= + - Q()= , N ( ) 5 50: ( ). 0 i) ii) 47

49 iii) v) vi) : 4,

50 ) ) 4 8 )

51 = i) ii) iii) iv) v) 4 5 vi)

52 f y )

53 5.., g()=(. - ). f a 6 f f 4. f 5. f( ) 5 : 6. f 4 g 4 f g f 4 g 4 f e g e f 5 g 5 f g h 7. f( ), g( ), h( ) 5

54 ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ f( ), g( ), h ( ) f( ) 4, g( ) 4 f( ) f( ), g( ), h ( ) e e e 0 9. = = =5 +4 ) = = = ) ) 4 0 5

55 ) ) = -6 + ) + -5 = -5 - = = =0-5 +4= = =0-7 -8= ( ) 54

56 e e y 4 y4 7. y 4 y 9 y y 56 y y y y 5 y 55

57 6. y y 0 y 5 y y y 8.. y 0 9. y y 9 y 4 y 9 y y : > e e e e 5 4. e e e e e e e e 6 56

58 f 5 5 g ( ) f y f( ) f( y) g( ) g y. 46. f( ) a a g ( ) a a g g g g g g 48. : e l og l og 5 l og l og 9 l og l og l og4 64 l og4 0, ln e ln e l n ln e 5. 5 l og 6 log8 log log log8 log log 5 log 6 log 5 8 log Alog log6 log 4. 57

59 54. 6log log 4log 6 4 log 5 log log a, a log a a, yz z y z y a, log a z log a a log 0.0 log5 0,698 log 50 log ( log 5) log 5 7 log log 8 log 64 log 8 9 log 65 log log 000 ( log 0) 60. log log log 7 log log 7 log log8 4 log log log 4 log log log log5 log 4 log 5 log8 log log 5 6. l og0 l og 5 log log, log8 log 0,5 l og 4 6. log 5 log 7 log 8 log5 log log log 0 log 6. 4 log,,, 5 a log,,, ln(00 e ) ln 4 log log5 ) ln0 ln 58

60 ) log 6 log4 log4 ) log 6 log6 ) log 48 4log ln 9 ln 4 ln 5 ln 6 ln log log log log log 66. loga, loglog 67. log y a log log y log log y 68. loglog4log45...log a log a log. 70. yz,, log log y log 4 y 5 log 7 y y z 4 yz 7. f( ) log a f( a) f( ) f a log loglog log... log. 74. f( ) log g ( ) log f( ) ln f( ) ln ln f f( ) ln 59

61 76. g ( ) log f( ) log f( ) log h ( ) log log log log log log log 5 log log log log 6 log 7 log 5 ln log 4 log 9 log ln 79. log( ) log 5 log log 8 log 4 log log log log 5 log 7 4 log log log ln( ) ln( 8) ln( 8) ln( 4) log( ) log0 log( 6) log 900 ln( ) ln( ) ln(8 ) ln ln 9 ln 9 8. log log 0 log log log log 7 log 5log 00 5 log log log 4 ( )ln 4 4 ln ln44 ln 60

62 log 9 7 log 7 log 0 log 0 5 log log5 log log log log log log 6 log 4 log log 4 4 log log 4 log log log log log log log 0 log 5log log ) log log log log 4 4 log log log log 7 log log 0 00 log log log 0 e ln

63 log log log 5 log log log log 5 log log 97. ln 0 ln ln log ) log log ) log 5( 7) log 5( ) log 9 log 5 5 ln( ) ln 6 0 log log 0 ln( 0) ln( ) ln log log 8 log log78 log log log log 99. log log y y y 65 log log y 0. log log y 0 log log y y log log y 0 log log y log4 y log log y log log y log y log y 0 log y y 45 log log y 6

64 0. : y log y log log log y log y 00 log y y z yz 8 4 y 8 9 y 0. y 5 log5 ylog log log y 4 y 40 log y log y y y y 4 y 5 ln yln ln 6 y log log y 0 log y log log 50 log( y) log y y log y log y 06. log, log, log( 4) 07 ln( ) log log 8 0 0, f( ) log f log 5 0. f( ) log f log 6

65 a. f( ) 5. a f f( ) f( ) 6.. f 6. f( ) log 6. f. f() f(4). f f( ) log f f( ) log log fmin. 5. f( ) f. f( ) f( ) log log a 7. f( ) log. f. f() f(4). f (6).. 4 log (log ) * 8. f f( ) a. log f f( ) f( ). e 9. f( ) ln. e 5 f(). f( ) ln f( ) 0 64

66 a 0. f f( ), a. f ln e e g ln ln e f g. f g. f( ) log log 0... f. f y y. f( ) 0.. a log5 log5. a S a a... a00 i) S ii) S f : f( ) f. f( ) 0. f( ) C f f( ) log M 6, log 6. a. f. f( ). log y f ( ) y. a 6. f( ) log 5 log a a f ( ) 0 f ( ). 65

67 f ( ) 0 -, )., f ( ) 0,.,. 6 ln y log y 7. y ln log y. log log 5 log y. e e 8. f, g f( ), g ( ) f g g ( y) gf ( ) ( y) f( gy ) ( ) f( y) f( ) f( y) g( ) g( y) f ( ) g ( ) f( ) f ( ) g ( ) g( ) g( ) f( ) e e.7... e. 9. log z log y log log log 0 y z 0 0. log yz 66

68 ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. f( ), 6,9. ( f( 5) f()) y f( 5) f( ). f() f(0) y f( ) y 0 B,4., 4y. y. y. y y 5 y 0 y y y 8 A y 4.. y y 8 y 6 o o y y. y 5. : y : y., 8y y, yo o yo. f( ) 6. C f 0, o 67

69 y f( ) y f 0 7. C f f( ) 4 a y y -6. f f a a 6 8. f( ) a f. 8 f f( ). f (,) (, ). 9. f( ) g ( ) f( ),0. 4. f( ) 5. f 0, f f,0.. f( ): 4 aa,6a - f( ) f( ) f(0) f( ) f f( ) g ( ) h ( ) k ( ) 68

70 4. f( ). ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 5 7 ( ) (7 ) 5. f( ). 4 (6 ) 5 5 f f. 4 f ( ). f f ( ) (5 ) 9 6 f. f. f (0, ) , 69

71 . 0,.. f( ). f. 0 f, 6 f( ) a P ( ) a ( a a ) a a 7. P ( ) P( 8. N ( ) P Q ( ) P( ) ( ) ( ) ( ) P( P( ) 5. Q ( ) ( 8) ( 5) 6 P(Q( 70

72 4 0. P ( ) 4 4. ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ P( Q( ( ) Q ( ) P ( ). P ( ) P ( ) P ( ) P ( ) ( ). ( ) P.. P() 6.. P ( ) k ( ). P 7 P( ) --5. P(-- P( P ( ) P( ) a ( ) 6. P( P( P( ) P ( ) 8 (5 ) 8 6. P( P( ) 0 P( 5. P( ) 5 Q ( ) (5 ) 6. P(Q(). P ( ) Q ( ) 4 6. P( P(. 7

73 7. P( ) 5 a P( -9 P( ) P ( ) 6 6. P ( ) 0 9. f ( ) a 7 4a - 6). f f g ( ) ( ) P. P( ) P ( ) a a a a. 4. Qa ( ). Qa ( ) P. ( ) f( ) 5 : 7

74 45. f( ) a f f f( ) f() a 48. f( ) A, f a 49. f ( ). f f f A, P ( ) 8 4 P( P ( ) 7 0 y y y 7

75 5. P ( ) y. y 5. log 6 log6 log6 log4 log4 log 48 4log 4 ln(00 e ) ln 4 ln0 ln l l l 6 og og 4 og 6 l og0 l og 5 l og 4 5. ( log 5) log 5 7 log P ( ) log log5 log 4 P( 55. log( 6) log 900 ln( ) ln( ) ln(8 ) ( )ln 4 4 ln ln44 ln log 9 log 5 5 e ln ln( 0) ln( ) ln 56. ln( ) ln 6 0 ln ln 0 log a log( ) 57.. log 0a 0 log log log 0. a 58. log log log y log y 0 log y 5y log y 74

76 e 59. f( ) ln. e 5 f(). f( ) ln f( ) f( ) lne e g ( ) ln lne f g. f( ) g( ) f( ) g( ). 6. ( ) f, 6. log, log 4, log 8. log log a 6. 00a a. log log5 5 9 a. log log log. log 64. f( ) log. f. f f( ). f( ) f( ). f ( 0) 0. 75

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Έκφραση - Έκθεση Α και Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Έκφραση - Έκθεση Α και Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Έκφραση - Έκθεση Α και Β Λυκείου Επιμέλεια: ΣΤΕΛΙΟΣ ΚΑΛΑΠΟΤΛΗΣ ΑΡΕΤΗ ΣΙΑΠΑΝΤΑ e-mail: info@iliaskos.gr www.iliaskos.gr 1 2 1. 2.

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θεωρητικής Κατεύθυνσης Αρχαία Ελληνικά - Άγνωστο Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θεωρητικής Κατεύθυνσης Αρχαία Ελληνικά - Άγνωστο Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θεωρητικής Κατεύθυνσης Αρχαία Ελληνικά - Άγνωστο Γ Λυκείου Επιμέλεια: ΑΓΓΕΛΙΚΗ ΚΑΡΑΓΙΑΝΝΗ ΕΛΕΝΗ ΜΑΥΡΙΔΟΥ ΧΡΙΣΤΙΝΑ ΠΕΤΡΑ ΦΙΛΙΠΠΟΣ ΠΑΠΑΧΑΡΑΛΑΜΠΙΔΗΣ

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr 4 - - 75 - true true - false

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Β Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr ,,, - 1 2 = = 3 4

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θεωρητικής Κατεύθυνσης Αρχαία Ελληνικά - Γνωστό Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θεωρητικής Κατεύθυνσης Αρχαία Ελληνικά - Γνωστό Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θεωρητικής Κατεύθυνσης Αρχαία Ελληνικά - Γνωστό Γ Λυκείου Επιμέλεια: ΧΡΙΣΤΙΝΑ ΠΕΤΡΑ ΦΙΛΙΠΠΟΣ ΠΑΠΑΧΑΡΑΛΑΜΠΙΔΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θεωρητικής Κατεύθυνσης Νεοελληνική Λογοτεχνία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΑΓΓΕΛΙΚΗ ΚΑΡΑΓΙΑΝΝΗ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θεωρητικής Κατεύθυνσης Νεοελληνική Λογοτεχνία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΑΓΓΕΛΙΚΗ ΚΑΡΑΓΙΑΝΝΗ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θεωρητικής Κατεύθυνσης Νεοελληνική Λογοτεχνία Γ Λυκείου Επιμέλεια: ΑΓΓΕΛΙΚΗ ΚΑΡΑΓΙΑΝΝΗ e-mail: info@iliaskos.gr www.iliaskos.gr -... 2... 5...

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Βιολογία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΚΩΣΤΑΣ ΓΚΑΤΖΕΛΑΚΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Βιολογία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΚΩΣΤΑΣ ΓΚΑΤΖΕΛΑΚΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Βιολογία Γ Λυκείου Επιμέλεια: ΚΩΣΤΑΣ ΓΚΑΤΖΕΛΑΚΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1 2010 2011 µ..., µ..,... 2011. 1:, 19-21

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Συναρτήσεις ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Συναρτήσεις ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Συναρτήσεις ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr ..1! A y! B! A y!

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής Κατεύθυνσης Χημεία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΚΑΛΟΓΝΩΜΗΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής Κατεύθυνσης Χημεία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΚΑΛΟΓΝΩΜΗΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Κατεύθυνσης Χημεία Γ Λυκείου ΚΑΛΟΓΝΩΜΗΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskosgr wwwiliaskosgr 0 2 7 1s 2s ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 2p 3s 14 2 2 6

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια - Συνέχεια ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια - Συνέχεια ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια Συνέχεια ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ mail: info@iliaskosgr wwwiliaskosgr f] g,! R f] g,, f] g

Διαβάστε περισσότερα

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΡΟΦΙΜΩΝ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΚΟΙΝΟΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΥΠΟΔΟΜΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΕΦΑΡΜΟΓΗΣ ΠΑΑ ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΪΚΟ ΓΕΩΡΓΙΚΟ ΤΑΜΕΙΟ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ Θ Ε Τ Ι Κ Ω Ν Σ Π Ο Υ Δ Ω Ν, Ο Ι Κ Ο Ν Ο Μ Ι Α Σ & Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Γ ΛΥΚΕΙΟΥ

Διαβάστε περισσότερα

1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ

1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ 7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ΜΕΘΟΔΟΛΟΓΙΑ : ΟΡΙΟ ΣΤΟ ΠΟΛΥΩΝΥΜΙΚΗΣ ΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Κρατάμε τους μεγιστοβάθμιους όρους Άσκηση σελ σχ βιβλίο Α Ομάδας Να βρείτε τα όρια : i iv vii v vi v ii i ii iv v vi 9

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

ί α α I. Β α μ α π α μ α μ π φα α υ α υ αμ α ία ( α. μ3) : ία & α μα μα - αμ υ α ) α α Θ π μα α 79 (55) * 107

ί α α I. Β α μ α π α μ α μ π φα α υ α υ αμ α ία ( α. μ3) : ία & α μα μα - αμ υ α ) α α Θ π μα α 79 (55) * 107 / 3 ELECσδOWAσσ 10616000 10% I 1960 3 3 400 1220 1073000 2 εogδeah 1974 3 2 1 1 1966 1739/87 / 1 3 1966 I & 3 : 63 20 43 144 30 114 247 122 125 367 177 20 5 24 5 19 79 55 * 55 107 107 30 15 15 62 32 30

Διαβάστε περισσότερα

ΕΛΤΙΟ ΤΥΠΟΥ. ΕΙΚΤΗΣ ΤΙΜΩΝ ΥΛΙΚΩΝ ΚΑΤΑΣΚΕΥΗΣ ΝΕΩΝ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ: εκέµβριος 2015 (2010=100,0)

ΕΛΤΙΟ ΤΥΠΟΥ. ΕΙΚΤΗΣ ΤΙΜΩΝ ΥΛΙΚΩΝ ΚΑΤΑΣΚΕΥΗΣ ΝΕΩΝ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ: εκέµβριος 2015 (2010=100,0) ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, 22 Ιανουαρίου 2016 ΕΛΤΙΟ ΤΥΠΟΥ ΕΙΚΤΗΣ ΤΙΜΩΝ ΥΛΙΚΩΝ ΚΑΤΑΣΚΕΥΗΣ ΝΕΩΝ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ: εκέµβριος 2015 (2010=100,0) Ο Γενικός είκτης Τιµών Υλικών Κατασκευής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Φαρμακευτική Τεχνολογία Ι

Φαρμακευτική Τεχνολογία Ι Φαρμακευτική Τεχνολογία Ι Προμορφοποίηση φαρμάκων Κ. Αυγουστάκης Σχολή Επιστημών Υγείας Τμήμα Φαρμακευτικής Σκοπός της ενότητας Σκοπός της παρούσας ενότητας είναι η κατανόηση της σημασίας του σταδίου της

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

i. Οι αντίθετες γωνίες έχουν το ίδιο ημίτονο Σ Λ iii. Ένα πολυώνυμο P(x) διαιρείται με το x-ρ αν και μόνο αν Ρ(ρ)=0 Σ Λ

i. Οι αντίθετες γωνίες έχουν το ίδιο ημίτονο Σ Λ iii. Ένα πολυώνυμο P(x) διαιρείται με το x-ρ αν και μόνο αν Ρ(ρ)=0 Σ Λ 1 0 ΓΕΛ ΚΑΡΔΙΤΣΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ ΙΟΥΝΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΕΝ.ΠΑΙΔΕΙΑΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.. ΘΕΜΑ Α Α 1. Να αποδείξετε ότι ημ ω+συν ω=1 Μον 10 Α. Να σημειώσετε το

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 17833 α) Πρέπει : 8 x 0 x 8 & 8 x 8 8 x 0 x 8,άρα 8,8. f β) x 8,8 : x 8,8 & f x 8 x 8 x 8 x 8 x 8 x 8 x f x γ) Γνησίως φθίνουσα είναι η III γραφική παράσταση. Έχει μέγιστο στο -8 το f 8 16 0 4. Έχει ελάχιστο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής Κατεύθυνσης Βιολογία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΔΟΛΙΝΤΑ ΤΕΣΤΑ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής Κατεύθυνσης Βιολογία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΔΟΛΙΝΤΑ ΤΕΣΤΑ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Κατεύθυνσης Βιολογία Γ Λυκείου Επιμέλεια: ΘΕΟΔΟΛΙΝΤΑ ΤΕΣΤΑ e-mail: info@iliaskos.gr www.iliaskos.gr 1 DNA Griffith (1928) : DNA 2 (Diplococcus

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΡΓΟΛΑΒΙΚΗΣ ΚΑΤΟΙΚΙΑΣ ΩΣ ΕΠΕΝΔΥΣΗ

ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΡΓΟΛΑΒΙΚΗΣ ΚΑΤΟΙΚΙΑΣ ΩΣ ΕΠΕΝΔΥΣΗ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΡΓΟΛΑΒΙΚΗΣ ΚΑΤΟΙΚΙΑΣ ΩΣ ΕΠΕΝΔΥΣΗ ΒΑΡΒΑΡΑ Α. ΤΖΕΛΕΠΗ ΑΡΧΙΤΕΚΤΩΝ ΜΗΧΑΝΙΚΟΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΑΡΙΣΤΟΤΕΛΕΙΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΟΝΙΚΗΣ ΥΠΟΒΛΗΘΕΙΣΑ ΓΙΑ ΤΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΔΙΠΛΩΜΑ ΣΤΗ ΔΙΟΙΚΗΣΗ

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

( ) 1995.» 3 ( ). 10 ( ). 1975 1980 ( ) 1986, ( ) (1) 3,, ( ),,,,».,,,

( ) 1995.» 3 ( ). 10 ( ). 1975 1980 ( ) 1986, ( ) (1) 3,, ( ),,,,».,,, 1983 1995 23/83 51/83 39/84 79/86 94/86 135/88 51/89 138/91 67( ) / 92 100( ) / 92 2( ) / 93 70(1)/99 109(1)/99 119(1)/99 16(1)/01 20(1)/01 150(1)/02 102 ( ) /95 33/64 35/75 72/77 59/81.. 79/86... 2/86

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Ευάγγελος Τόλης. www.askisopolis.gr

Άλγεβρα Β Λυκείου. Ευάγγελος Τόλης. www.askisopolis.gr Άλγεβρα Β Λυκείου Ευάγγελος Τόλης www.askisopolis.gr ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ..ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ.....ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ.. 9 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ... ΣΥΝΑΡΤΗΣΕΙΣ..ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ..ΜΕΤΑΤΟΠΙΣΗ

Διαβάστε περισσότερα

Για κάθε διδακτική ενότητα ακολουθείται η λεγόμενη τετραμερής πορεία, χωρίζεται δηλαδή η διδασκαλία σε τέσσερα κύρια στάδια.

Για κάθε διδακτική ενότητα ακολουθείται η λεγόμενη τετραμερής πορεία, χωρίζεται δηλαδή η διδασκαλία σε τέσσερα κύρια στάδια. Πορεία διδασκαλίας λέγεται η διαδρομή που πρέπει να ακολουθηθεί κατά τη διδασκαλία, ώστε να επέλθει η μάθηση η οποία προσδιορίζεται από τους Αντικειμενικούς Σκοπούς της κάθε διδακτικής ενότητας. Η πορεία

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ ΝΟΕΜΒΡΙΟΥ 5 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο A. Να δώσετε τον ορισμό της συνέχειας μιας συνάρτησης στο πεδίο ορισμού της. ( Μονάδες)

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική Επιμέλεια: ΑΝΔΡΕΑΣ ΓΚΟΥΡΤΖΟΥΝΗΣ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1) Να

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση ΔΥΝΑΜΕΙΣ ΜΕ ΕΚΘΕΤΗ ΡΗΤΟ - ΑΡΡΗΤΟ Αν >0, μ κέριος κι ν θετικός κέριος, τότε ορίζουμε: Επιπλέον, ν μ,ν θετικοί κέριοι, ορίζουμε: 0 =0. Πρδείγμτ: 4 4,, 5 5, 4 0 =0. Γενικότερ μπορούμε ν ορίσουμε δυνάμεις

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΛΕΙΤΟΥΡΓΙΑΣ ΟΡΓΑΝΩΜΕΝΩΝ ΧΩΡΩΝ ΣΤΑΘΜΕΥΣΗΣ ΔΙΚΥΚΛΩΝ ΣΤΟ ΚΕΝΤΡΟ ΤΗΣ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΔΙΕΡΕΥΝΗΣΗ ΛΕΙΤΟΥΡΓΙΑΣ ΟΡΓΑΝΩΜΕΝΩΝ ΧΩΡΩΝ ΣΤΑΘΜΕΥΣΗΣ ΔΙΚΥΚΛΩΝ ΣΤΟ ΚΕΝΤΡΟ ΤΗΣ ΘΕΣΣΑΛΟΝΙΚΗΣ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πρόγραμμα Μεταπτυχιακών Σπουδών: Τεχνικές και Μέθοδοι στην Ανάλυση, Σχεδιασμό και Διαχείριση του Χώρου

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mil: info@iliskos.gr www.iliskos.gr Fl] = f]! D G] = F]

Διαβάστε περισσότερα

Γίτσα Σοντζόγλου-Κοτταρίδη. Η ΤΡΙΤΗ ΗΛΙΚΙΑ: ΜΥΘΟΣ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑ** Σκέψεις για μια επιστημονική έρευνα

Γίτσα Σοντζόγλου-Κοτταρίδη. Η ΤΡΙΤΗ ΗΛΙΚΙΑ: ΜΥΘΟΣ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑ** Σκέψεις για μια επιστημονική έρευνα Γίτσα Σοντζόγλου-Κοτταρίδη Η ΤΡΙΤΗ ΗΛΙΚΙΑ: ΜΥΘΟΣ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑ** Σκέψεις για μια επιστημονική έρευνα «Γήρας, έπάν μέν άπή πας εύχεται ή δέ ποτ έλθη, μέμφεται ίτι δ άεί κρεϊσσον, όφειλόμενον» Οι κοινωνικές

Διαβάστε περισσότερα

Μοντελοποίηση Στατικού Ηλεκτρισμού Νικόλας Νικολάου Καθηγητής φυσικής Λύκειο Αγίου Αντωνίου

Μοντελοποίηση Στατικού Ηλεκτρισμού Νικόλας Νικολάου Καθηγητής φυσικής Λύκειο Αγίου Αντωνίου Μοντελοποίηση Στατικού Ηλεκτρισμού Νικόλας Νικολάου Καθηγητής φυσικής Λύκειο Αγίου Αντωνίου Εισαγωγή Η εργασία η οποία παρουσιάζεται στο Παγκύπριο συνέδριο έχει να κάνει με ένα πρόγραμμα που φτιάχτηκε

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (5) ΑΘΗΝΑ ΜΑΡΤΙΟΣ 2013 1 ΕΠΕΞΗΓΗΣΗ ΤΥΠΩΝ ΚΑΙ ΣΥΜΒΟΛΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΤΑΝΟΜΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση η οποία να αντιστοιχεί

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΣΤΡΑΤΗΓΙΚΗ ΙΟΙΚΗΤΙΚΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ ιπλωµατική Εργασία ΦΟΡΟΛΟΓΙΚΟΣ

Διαβάστε περισσότερα

στο σχέδιο νόµου «Κύρωση του Πρωτοκόλλου µεταξύ το οποίο τροποποιεί τη Σύµβαση µεταξύ της Ελληνικής Δηµοκρατίας και της Ελβετικής Συνοµοσπονδίας

στο σχέδιο νόµου «Κύρωση του Πρωτοκόλλου µεταξύ το οποίο τροποποιεί τη Σύµβαση µεταξύ της Ελληνικής Δηµοκρατίας και της Ελβετικής Συνοµοσπονδίας ΑΙΤΙΟΛΟΓΙΚΗ ΕΚΘΕΣΗ στο σχέδιο νόµου «Κύρωση του Πρωτοκόλλου µεταξύ της Ελληνικής Δηµοκρατίας και της Ελβετικής Συνοµοσπονδίας το οποίο τροποποιεί τη Σύµβαση µεταξύ της Ελληνικής Δηµοκρατίας και της Ελβετικής

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός ςες ΤΕΤΡΑΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους μαθητές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ -11 ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΛ ΥΜΗΤΤΟΥ ΙΟΥΝΙΟΣ 11 Pappas Ath...page 1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

15/01/2015 Αναλυτικό Πρόγραµµα Σπουδών 09:07:38

15/01/2015 Αναλυτικό Πρόγραµµα Σπουδών 09:07:38 Εξάµηνο : 1 44 ΑΓΓΛΙΚΑ I 160 ΓΕΝ. ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Εργ.:ΓΕΝΙΚΗΣ ΧΗΜΕΙΑΣ 3010 ΓΕΝΙΚΗ ΒΟΤΑΝΙΚΗ Ι Εργ.:ΦΥΣΙΟΛΟΓΙΑΣ ΚΑΙ ΜΟΡΦΟΛΟΓΙΑΣ ΦΥΤΩΝ 3030 ΓΕΝΙΚΗ ΓΕΩΡΓΙΚΗ ΖΩΟΛΟΓΙΑ ΚΑΙ ΕΝΤΟΜΟΛΟΓΙΑ Εργ.:ΓΕΩΡΓΙΚΗΣ ΖΩΟΛΟΓΙΑΣ

Διαβάστε περισσότερα

Διαχρονικές Τάσεις Δεικτών Ανθρώπινου Δυναμικού στην Κύπρο: Συμμετοχή και Προσφορά στην Αγορά Εργασίας 2004-2010

Διαχρονικές Τάσεις Δεικτών Ανθρώπινου Δυναμικού στην Κύπρο: Συμμετοχή και Προσφορά στην Αγορά Εργασίας 2004-2010 Διαχρονικές Τάσεις Δεικτών Ανθρώπινου Δυναμικού στην Κύπρο: Συμμετοχή και Προσφορά στην Αγορά Εργασίας 2004-2010 ΔΙΑΧΡΟΝΙΚΕΣ ΤΑΣΕΙΣ ΔΕΙΚΤΩΝ ΑΝΘΡΩΠΙΝΟΥ ΔΥΝΑΜΙΚΟΥ ΣΤΗΝ ΚΥΠΡΟ: Συμμετοχή και Προσφορά στην

Διαβάστε περισσότερα

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ .7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ I. Αν μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο του πεδίου ορισμού της και είναι παραγωγισιμη σε αυτό τότε ( ).(Θεώρημα Fermat) II.

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ Έστω fµια συνάρτηση µε πεδίο ορισµού το Α. Το σύνολο των τιµών της είναι f( A) { R = υπάρχει (τουλάχιστον) ένα A : f () = }. Ο προσδιορισµός του συνόλου τιµών f( A) της

Διαβάστε περισσότερα

ΠΡΟΫΠΟΘΕΣΕΙΣ ΕΙΣΟΔΟΥ ΚΑΙ ΓΕΝΙΚΟΙ ΟΡΟΙ ΧΡΗΣΗΣ ΤΟΥ ΔΙΚΤΥΑΚΟΥ ΤΟΠΟΥ

ΠΡΟΫΠΟΘΕΣΕΙΣ ΕΙΣΟΔΟΥ ΚΑΙ ΓΕΝΙΚΟΙ ΟΡΟΙ ΧΡΗΣΗΣ ΤΟΥ ΔΙΚΤΥΑΚΟΥ ΤΟΠΟΥ ΠΡΟΫΠΟΘΕΣΕΙΣ ΕΙΣΟΔΟΥ ΚΑΙ ΓΕΝΙΚΟΙ ΟΡΟΙ ΧΡΗΣΗΣ ΤΟΥ ΔΙΚΤΥΑΚΟΥ ΤΟΠΟΥ Στο κείμενο που ακολουθεί περιλαμβάνονται οι προϋποθέσεις επίσκεψης, συνεργασίας, και οι όροι χρήσης του δικτυακού τόπου της ΑΙΓΙΣ ΕΚΔΟΤΙΚΗ

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Έκφραση - Έκθεση Κριτήρια Αξιολόγησης Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Έκφραση - Έκθεση Κριτήρια Αξιολόγησης Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Έκφραση - Έκθεση Κριτήρια Αξιολόγησης Γ Λυκείου Επιμέλεια: ΣΤΕΛΙΟΣ ΚΑΛΑΠΟΤΛΗΣ ΠΕΤΡΑ ΧΡΙΣΤΙΝΑ e-mail: info@iliaskos.gr www.iliaskos.gr

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΤΑΙΡΕΙΑ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΟΥΡΙΣΤΙΚΗΣ ΠΡΟΒΟΛΗΣ ΑΘΗΝΩΝ ΑΝΑΠΤΥΞΙΑΚΗ Α.Ε. ΟΤΑ ΑΝΟΙΧΤΗ ΠΡΟΣΚΛΗΣΗ ΓΙΑ ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΕΩΝ

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΤΑΙΡΕΙΑ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΟΥΡΙΣΤΙΚΗΣ ΠΡΟΒΟΛΗΣ ΑΘΗΝΩΝ ΑΝΑΠΤΥΞΙΑΚΗ Α.Ε. ΟΤΑ ΑΝΟΙΧΤΗ ΠΡΟΣΚΛΗΣΗ ΓΙΑ ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΤΑΙΡΕΙΑ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΟΥΡΙΣΤΙΚΗΣ ΠΡΟΒΟΛΗΣ ΑΘΗΝΩΝ ΑΝΑΠΤΥΞΙΑΚΗ Α.Ε. ΟΤΑ Ταχ. Δ/νση: ΞΕΝΟΦΩΝΤΟΣ 7 Πόλη: ΑΘΗΝΑ Ταχ..Kώδικας: 10557 Πληροφορίες: ΑΣΛΑΝ ΔΕΣΠΟΙΝΑ

Διαβάστε περισσότερα

ΤΟΠΙΚΟ ΣΧΕΔΙΟ ΔΙΑΧΕΙΡΙΣΗΣ ΑΠΟΒΛΗΤΩΝ ΔΗΜΟΥ ΗΡΑΚΛΕΙΟΥ

ΤΟΠΙΚΟ ΣΧΕΔΙΟ ΔΙΑΧΕΙΡΙΣΗΣ ΑΠΟΒΛΗΤΩΝ ΔΗΜΟΥ ΗΡΑΚΛΕΙΟΥ ΤΟΠΙΚΟ ΣΧΕΔΙΟ ΔΙΑΧΕΙΡΙΣΗΣ ΑΠΟΒΛΗΤΩΝ ΔΗΜΟΥ ΗΡΑΚΛΕΙΟΥ ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΤΑΞΗ : ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΘΕΣΜΙΚΟ ΠΛΑΙΣΙΟ, ΑΡΜΟΔΙΟΤΗΤΕΣ ΤΩΝ ΔΗΜΩΝ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ... 2 2.1 ΙΕΡΑΡΧΗΣΗ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΒΛΗΤΩΝ...

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΗΡΑΚΛΕΙΟΥ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΗΡΑΚΛΕΙΟΥ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΗΡΑΚΛΕΙΟΥ ΘΕΜΑΤΑ Γραπτών προαγωγικών εξετάσεων περιόδου Μαΐου - Ιουνίου 0 στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Πέμπτη 0 Μαΐου 0 (Να απαντήσετε σε όλα τα θέματα) Όνομα:.. Θέμα Α ν ν

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΦΑΡΜΟΓΗ ΑΝΕΛΑΣΤΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΣΟΜΟΙΩΜΑΤΟΣ ΒΛΑΒΗΣ ΣΤΟΙΧΕΙΩΝ ΤΟΙΧΟΠΟΙΙΑΣ ΣΕ ΥΠΟ ΚΛΙΜΑΚΑ ΚΤΙΡΙΑ ΤΟΙΧΟΠΟΙΙΑΣ ΥΠΟΒΑΛΛΟΜΕΝΑ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Πειραιάς 16/05/2013 ΩΡΕΣ ΑΙΘΟΥΣΕΣ ΕΞ.-ΤΥΠΟΣ ΜΑΘΗΜΑ ΒΑΡΔΙΑ ΚΩΔΙΚΟΣ ΕΞΕΤΑΣΤΕΣ. Δευτέρα, 10/06/2013

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Πειραιάς 16/05/2013 ΩΡΕΣ ΑΙΘΟΥΣΕΣ ΕΞ.-ΤΥΠΟΣ ΜΑΘΗΜΑ ΒΑΡΔΙΑ ΚΩΔΙΚΟΣ ΕΞΕΤΑΣΤΕΣ. Δευτέρα, 10/06/2013 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ 2012-2013 ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΕΑΡΙΝΟΥ ΕΞΑΜΗΝΟΥ - ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Διεύθυνση Σπουδών

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΣΠΟΥΔΑΣΤΗ ; ΝΑΟΥΜ ΙΩΑΝ. ΑΘΑΝΑΣΙΟΥ ΘΕΜΑ: «ΠΡΟΜΕΛΕΤΗ ΣΚΟΠΙΜΟΤΗΤΑΣ ΕΠΕΝΔΥΤΙΚΟΥ ΣΧΕΔΙΟΥ ΣΤΟ ΔΕΥΤΕΡΟΓΕΝΗ

Διαβάστε περισσότερα

Ο ΠΕΡΙ ΤΗΣ ΕΠΙΒΟΛΗΣ ΠΕΡΙΟΡΙΣΤΙΚΩΝ ΜΕΤΡΩΝ ΣΤΙΣ ΣΥΝΑΛΛΑΓΕΣ ΣΕ ΠΕΡΙΠΤΩΣΗ ΕΚΤΑΚΤΗΣ ΑΝΑΓΚΗΣ ΝΟΜΟΣ ΤΟΥ 2013. Διάταγμα δυνάμει των άρθρων 4 και 5

Ο ΠΕΡΙ ΤΗΣ ΕΠΙΒΟΛΗΣ ΠΕΡΙΟΡΙΣΤΙΚΩΝ ΜΕΤΡΩΝ ΣΤΙΣ ΣΥΝΑΛΛΑΓΕΣ ΣΕ ΠΕΡΙΠΤΩΣΗ ΕΚΤΑΚΤΗΣ ΑΝΑΓΚΗΣ ΝΟΜΟΣ ΤΟΥ 2013. Διάταγμα δυνάμει των άρθρων 4 και 5 Ο ΠΕΡΙ ΤΗΣ ΕΠΙΒΟΛΗΣ ΠΕΡΙΟΡΙΣΤΙΚΩΝ ΜΕΤΡΩΝ ΣΤΙΣ ΣΥΝΑΛΛΑΓΕΣ ΣΕ ΠΕΡΙΠΤΩΣΗ ΕΚΤΑΚΤΗΣ ΑΝΑΓΚΗΣ ΝΟΜΟΣ ΤΟΥ 2013 Διάταγμα δυνάμει των άρθρων 4 και 5 ΕΠΕΙΔΗ υπάρχει έλλειψη ουσιαστικής ρευστότητας και σημαντικός κίνδυνος

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ 1. EIΣΑΓΩΓΗ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Πακέτο Στοχευμένων Μέτρων Κρατικής Φοιτητικής Πρόνοιας για το ακαδημαϊκό έτος 2013-2014 Kριτήρια - Οδηγίες 1.1 Στο

Διαβάστε περισσότερα

ΟΙ ΜΙΚΡΟΜΕΣΑΙΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΣΤΗΝ ΕΛΛΑΔΑ ΚΑΙ Ο ΚΛΑΔΟΣ ΤΗΣ ΥΠΟΔΗΣΗΣ

ΟΙ ΜΙΚΡΟΜΕΣΑΙΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΣΤΗΝ ΕΛΛΑΔΑ ΚΑΙ Ο ΚΛΑΔΟΣ ΤΗΣ ΥΠΟΔΗΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΚΤΙΚΗ Διπλωματική Εργασία ΟΙ ΜΙΚΡΟΜΕΣΑΙΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ

Διαβάστε περισσότερα

H Εξωτερική Αξιολόγηση στο ΑΠΘ 2010 2014

H Εξωτερική Αξιολόγηση στο ΑΠΘ 2010 2014 H Εξωτερική Αξιολόγηση στο ΑΠΘ 2010 2014 Αναθεωρημένη έκδοση / Ιούλιος 2014 Γενική Εποπτεία Πρόεδρος ΜΟΔΙΠ-ΑΠΘ Καθηγήτρια Δέσπω Λιάλιου, Αναπληρώτρια Πρύτανη, Αντιπρύτανις Ακαδημαϊκών Υποθέσεων & Προσωπικού

Διαβάστε περισσότερα

Α Π Ο Φ Α Σ Ι Ζ Ο Υ Μ Ε. A. Ορίζουµε αναπληρωτές Προϊσταµένους των νεοσύστατων Τµηµάτων, τους παρακάτω υπαλλήλους:

Α Π Ο Φ Α Σ Ι Ζ Ο Υ Μ Ε. A. Ορίζουµε αναπληρωτές Προϊσταµένους των νεοσύστατων Τµηµάτων, τους παρακάτω υπαλλήλους: ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΙΑ ΙΚΤΥΟ ΚΑΛΑΜΑΤΑ 5.3.2012 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΜΕΣΣΗΝΙΑΣ ΗΜΟΣ ΚΑΛΑΜΑΤΑΣ Αρ.Πρωτ. 11757 ΙΕΥΘΥΝΣΗ ΙΟΙΚΗΤΙΚΩΝ ΤΑΧ. /ΝΣΗ : Αριστοδήµου 22 ΠΛΗΡΟΦΟΡΙΕΣ 24100 ΚΑΛΑΜΑΤΑ : Ιντζέ Αθανασία ΤΗΛΕΦΩΝΟ

Διαβάστε περισσότερα

...105 ...109...111...112 - ...117 9....118...119 ...130 1. ...133...136 10. ...138...146

...105 ...109...111...112 - ...117 9....118...119 ...130 1. ...133...136 10. ...138...146 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ...i ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ...4 ΚΕΦΑΛΑΙΟ 2. ΙΣΤΟΡΙΚΗ ΑΝΑ ΡΟΜΗ...7 1. Επιχειρήσεων των ΟΤΑ µέχρι τον Κώδικα ήµων και Κοινοτήτων του 1954...7 Α. Νοµική µορφή των επιχειρήσεων...7

Διαβάστε περισσότερα

ΣΑΟΡΖΠ ΓΗΘΑΗΥΚΑΡΥΛ ΘΑΗ ΞΝΣΟΔΥΠΔΥΛ ΡΝ ΓΖΚΝΡΖ. Απφθαζε Γεκνηηθνχ Ππκβνπιίνπ ππ αξηζκ. 157/2011

ΣΑΟΡΖΠ ΓΗΘΑΗΥΚΑΡΥΛ ΘΑΗ ΞΝΣΟΔΥΠΔΥΛ ΡΝ ΓΖΚΝΡΖ. Απφθαζε Γεκνηηθνχ Ππκβνπιίνπ ππ αξηζκ. 157/2011 ΣΑΟΡΖΠ ΓΗΘΑΗΥΚΑΡΥΛ ΘΑΗ ΞΝΣΟΔΥΠΔΥΛ ΡΝ ΓΖΚΝΡΖ Απφθαζε Γεκνηηθνχ Ππκβνπιίνπ ππ αξηζκ. 157/2011 Ρη είλαη ν ράξηεο θαη πνπ ρξεζηκεύεη Αξρέο ηνπ ράξηε πεξεζίεο ηνπ Γήκνπ Ν ράξηεο είλαη ν πξαθηηθφο νδεγφο ηνπ

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΕΡΕΥΝΩΝ ΑΜΕΡΙΚΗΣ 11, ΑΘΗΝΑ Τ.Κ. 10672, Τηλ. 210 3676400 Fax 210 3611136

ΚΕΝΤΡΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΕΡΕΥΝΩΝ ΑΜΕΡΙΚΗΣ 11, ΑΘΗΝΑ Τ.Κ. 10672, Τηλ. 210 3676400 Fax 210 3611136 ΚΕΝΤΡΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΕΡΕΥΝΩΝ ΑΜΕΡΙΚΗΣ 11, ΑΘΗΝΑ Τ.Κ. 10672, Τηλ. 210 3676400 Fax 210 3611136 Διεύθυνση Διοικητικού Αθήνα, 16.5.2014 Πληροφορίες: Χ. Νούνης Α.Π. 839/379 Διευθυντής Διοικητικού

Διαβάστε περισσότερα

ΔΙΚΤΥΟ «ΓΑΣΤΡΟΝΟΜΙΚΕΣ ΠΕΡΙΠΛΑΝΗΣΕΙΣ ΚΑΙ Ο ΠΟΛΙΤΙΣΜΟΣ ΤΩΝ ΓΕΥΣΕΩΝ» ΑΝΑΛΥΤΙΚΟ ΤΕΥΧΟΣ ΠΡΟΚΗΡΥΞΗΣ ΠΡΟΧΕΙΡΟΥ ΑΝΟΙΧΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΔΡΑΣΗΣ 1

ΔΙΚΤΥΟ «ΓΑΣΤΡΟΝΟΜΙΚΕΣ ΠΕΡΙΠΛΑΝΗΣΕΙΣ ΚΑΙ Ο ΠΟΛΙΤΙΣΜΟΣ ΤΩΝ ΓΕΥΣΕΩΝ» ΑΝΑΛΥΤΙΚΟ ΤΕΥΧΟΣ ΠΡΟΚΗΡΥΞΗΣ ΠΡΟΧΕΙΡΟΥ ΑΝΟΙΧΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΔΡΑΣΗΣ 1 ΔΙΚΤΥΟ «ΓΑΣΤΡΟΝΟΜΙΚΕΣ ΠΕΡΙΠΛΑΝΗΣΕΙΣ ΚΑΙ Ο ΠΟΛΙΤΙΣΜΟΣ ΤΩΝ ΓΕΥΣΕΩΝ» ΑΝΑΛΥΤΙΚΟ ΤΕΥΧΟΣ ΠΡΟΚΗΡΥΞΗΣ ΠΡΟΧΕΙΡΟΥ ΑΝΟΙΧΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΔΡΑΣΗΣ 1 «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΠΡΟΩΘΗΣΗ ΚΟΙΝΩΝ ΔΙΑΔΡΟΜΩΝ ΓΕΥΣΕΩΝ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΑΜΟΡΦΩΣΗ

Διαβάστε περισσότερα

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Α' ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) 1 ΠΙΝΑΚΕΣ- ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Α' Ομάδας i) 3x7 ii) π.χ. το στοιχείο α 12 μας πληροφορεί ότι η ομάδα «ΝΙΚΗ» έχει 6 νίκες. x = -7, y = 8, ω = 8..i) x

Διαβάστε περισσότερα

Αθήνα, 21. 12. 2015. Α.Π. Φ80000/οικ.59819/1961

Αθήνα, 21. 12. 2015. Α.Π. Φ80000/οικ.59819/1961 Αθήνα, 21. 12. 2015 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ, ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ & ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΓΓΥΗΣ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΚΟΙΝΩΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΓΕΝΙΚΗ Δ/ΝΣΗ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ Δ/ΝΣΗ ΚΥΡΙΑΣ ΑΣΦΑΛΙΣΗΣ

Διαβάστε περισσότερα

Ε.Σ.Π.Α. 2014-2020 και Τοπική Αυτοδιοίκηση. Οι δυνατότητες ένταξης έργων και δράσεων της Τ.Α. στα Επιχειρησιακά Προγράμματα

Ε.Σ.Π.Α. 2014-2020 και Τοπική Αυτοδιοίκηση. Οι δυνατότητες ένταξης έργων και δράσεων της Τ.Α. στα Επιχειρησιακά Προγράμματα Ε.Σ.Π.Α. 2014-2020 και Τοπική Αυτοδιοίκηση Οι δυνατότητες ένταξης έργων και δράσεων της Τ.Α. στα Επιχειρησιακά Προγράμματα ΔΕΚΕΜΒΡΙΟΣ 2015 3 Περιεχόμενα 5 Πρόλογος 6 Εισαγωγικές πληροφορίες 11 23 29 69

Διαβάστε περισσότερα

Η ΕΞΕΛΙΞΗ ΤΟΥ ΚΛΑΔΟΥ ΤΡΟΦΙΜΩΝ ΣΕ ΠΕΡΙΟΔΟ ΚΡΙΣΗΣ: Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΕΒΡΟΦΑΡΜΑ Α. Β. Ε. Ε.

Η ΕΞΕΛΙΞΗ ΤΟΥ ΚΛΑΔΟΥ ΤΡΟΦΙΜΩΝ ΣΕ ΠΕΡΙΟΔΟ ΚΡΙΣΗΣ: Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΕΒΡΟΦΑΡΜΑ Α. Β. Ε. Ε. ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΚΤΙΚΗ Διπλωματική Εργασία Η ΕΞΕΛΙΞΗ ΤΟΥ ΚΛΑΔΟΥ ΤΡΟΦΙΜΩΝ ΣΕ ΠΕΡΙΟΔΟ ΚΡΙΣΗΣ: της ΜΑΡΙΑΣ ΑΝΔΡΕΑΔΟΥ

Διαβάστε περισσότερα

- International Scientific Electronic Journal, Issue 1, 2004 Department of Cultural Technology and Communication University of the Aegean

- International Scientific Electronic Journal, Issue 1, 2004 Department of Cultural Technology and Communication University of the Aegean Μια έκθεση για τα αρχαία ελληνικά µαθηµατικά. Ανδροµάχη Γκαζή Περίληψη Το παρόν άρθρο εξετάζει τις πιο σηµαντικές παραµέτρους ανάπτυξης µιας έκθεσης για τα αρχαία ελληνικά µαθηµατικά και παρουσιάζει τα

Διαβάστε περισσότερα

Μεταϖτυχιακή Εργασία. Εκτίµηση εϖικινδυνότητας της ϖοιότητας του νερού του δικτύου ύδρευσης του ήµου Ηρακλείου του Νοµού Ηρακλείου Κρήτης

Μεταϖτυχιακή Εργασία. Εκτίµηση εϖικινδυνότητας της ϖοιότητας του νερού του δικτύου ύδρευσης του ήµου Ηρακλείου του Νοµού Ηρακλείου Κρήτης ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ» Μεταϖτυχιακή Εργασία Εκτίµηση εϖικινδυνότητας της ϖοιότητας

Διαβάστε περισσότερα

Στοιχεία και έγγραφα που απαιτούνται για την εγγραφή στο ΓΕΜΗ

Στοιχεία και έγγραφα που απαιτούνται για την εγγραφή στο ΓΕΜΗ Στοιχεία και έγγραφα που απαιτούνται για την εγγραφή στο ΓΕΜΗ Σύμφωνα με την αριθμ. Κ1-941 οικ./27.4.12 και την Κ1-1484/12.6.2012 του Υπουργείου Ανάπτυξης & Ανταγωνιστικότητας πρέπει να γίνει εγγραφή των

Διαβάστε περισσότερα

Οργάωνση του Περιφερικού Νευρικού Συστήµατος λκλλκλκλλκκκκ

Οργάωνση του Περιφερικού Νευρικού Συστήµατος λκλλκλκλλκκκκ Οργάωνση του Περιφερικού Νευρικού Συστήµατος λκλλκλκλλκκκκ Εισαγωγή Τα Εγκεφαλονωτιαία Γάγγλια Το Περιφερικό Νεύρο Δοµή του Περιφερικού Νεύρου Ταξινόµηση των Περιφερικών Ινών Τα Εγκεφαλικά Νεύρα Λειτουργική

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3234 της 6ης ΑΠΡΙΑΙΟΥ 1998 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ Ι

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3234 της 6ης ΑΠΡΙΑΙΟΥ 1998 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ Ι Ν. 16(Ι)/98 ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3234 της 6ης ΑΠΡΙΑΙΟΥ 1998 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ Ι Ο ΠΕΡΙ ΔΙΠΛΩΜΑΤΩΝ ΕΥΡΕΣΙΤΕΧΝΙΑΣ ΝΟΜΟΣ ΚΑΤΑΤΑΞΗ ΑΡΘΡΩΝ Άρθρο 1. Συνοπτικός τίτλος. 2.

Διαβάστε περισσότερα

ΕΠΙΔΡΑΣΗ ΤΗΣ ΘΕΡΜΑΝΣΗΣ ΤΟΥ ΥΠΟΣΤΡΩΜΑΤΟΣ ΣΕ ΔΙΑΦΟΡΟΥΣ ΤΥΠΟΥΣ ΥΠΟΔΟΧΕΩΝ ΣΕ ΥΔΡΟΠΟΝΙΚΗ ΚΑΛΛΙΕΡΓΕΙΑ ΤΡΙΑΝΤΑΦΥΛΛΙΑΣ ΓΙΑ ΔΡΕΠΤΟ ΑΝΘΟΣ

ΕΠΙΔΡΑΣΗ ΤΗΣ ΘΕΡΜΑΝΣΗΣ ΤΟΥ ΥΠΟΣΤΡΩΜΑΤΟΣ ΣΕ ΔΙΑΦΟΡΟΥΣ ΤΥΠΟΥΣ ΥΠΟΔΟΧΕΩΝ ΣΕ ΥΔΡΟΠΟΝΙΚΗ ΚΑΛΛΙΕΡΓΕΙΑ ΤΡΙΑΝΤΑΦΥΛΛΙΑΣ ΓΙΑ ΔΡΕΠΤΟ ΑΝΘΟΣ ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΘΕΡΜΟΚΗΠΙΑΚΩΝ ΚΑΛΛΙΕΡΓΕΙΩΝ ΚΑΙ ΑΝΘΟΚΟΜΙΑΣ ΕΠΙΔΡΑΣΗ ΤΗΣ ΘΕΡΜΑΝΣΗΣ ΤΟΥ ΥΠΟΣΤΡΩΜΑΤΟΣ ΣΕ ΔΙΑΦΟΡΟΥΣ ΤΥΠΟΥΣ ΥΠΟΔΟΧΕΩΝ ΣΕ ΥΔΡΟΠΟΝΙΚΗ

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α ΤΗΣ 14/2015 ΜΕΛΕΤΗΣ ΤΕΧΝΙΚΗΣ ΥΠΗΡΕΣΙΑΣ ΔΗΜΟΥ ΑΛΜΩΠΙΑΣ

ΠΑΡΑΡΤΗΜΑ Α ΤΗΣ 14/2015 ΜΕΛΕΤΗΣ ΤΕΧΝΙΚΗΣ ΥΠΗΡΕΣΙΑΣ ΔΗΜΟΥ ΑΛΜΩΠΙΑΣ ΠΑΡΑΡΤΗΜΑ Α ΤΗΣ 14/2015 ΜΕΛΕΤΗΣ ΤΕΧΝΙΚΗΣ ΥΠΗΡΕΣΙΑΣ ΔΗΜΟΥ ΑΛΜΩΠΙΑΣ Α. ΑΝΤΙΚΕΙΜΕΝΟ TΗΣ ΠΑΡΟΧΗΣ ΕΡΓΑΣΙΑΣ Αντικείμενο της παροχής εργασίας είναι η Συντήρηση και Επισκευή 87 (περίπου) Αρδευτικών Γεωτρήσεων

Διαβάστε περισσότερα

ΕΤΑΙΡΕΙΑ ΠΡΟΣΤΑΣΙΑΣ ΑΤΟΜΩΝ ΜΕ ΑΥΤΙΣΜΟ & Δ.Α.Δ. Ν.ΚΑΣΤΟΡΙΑΣ. ΚΕΝΤΡΟ ΗΜΕΡΑΣ / πλατεία ΜΑΝΙΑΚΩΝ, ΚΑΣΤΟΡΙΑ. Η Έδρα του Συλλόγου. 21/12/2012, 10:30μμ

ΕΤΑΙΡΕΙΑ ΠΡΟΣΤΑΣΙΑΣ ΑΤΟΜΩΝ ΜΕ ΑΥΤΙΣΜΟ & Δ.Α.Δ. Ν.ΚΑΣΤΟΡΙΑΣ. ΚΕΝΤΡΟ ΗΜΕΡΑΣ / πλατεία ΜΑΝΙΑΚΩΝ, ΚΑΣΤΟΡΙΑ. Η Έδρα του Συλλόγου. 21/12/2012, 10:30μμ ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Συνοπτικά στοιχεία Έργου ΑΝΑΘΕΤΟΥΣΑ ΑΡΧΗ ΤΙΤΛΟΣ ΕΡΓΟΥ ΦΟΡΕΑΣ ΓΙΑ ΤΟΝ ΟΠΟΙΟ ΠΡΟΟΡΙΖΕΤΑΙ ΤΟ ΕΡΓΟ ΤΟΠΟΣ ΠΑΡΑΔΟΣΗΣ ΤΟΠΟΣ ΠΑΡΟΧΗΣ ΥΠΗΡΕΣΙΩΝ ΤΥΠΟΣ ΔΙΑΓΩΝΙΣΜΟΥ ΠΡΟΥΠΟΛΟΓΙΣΜΟΣ ΧΡΗΜΑΤΟΔΟΤΗΣΗ

Διαβάστε περισσότερα

«ΣΧΕΔΙΑΣΜΟΣ ΘΕΡΜΙΚΟΥ ΗΛΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΙΑ ΤΑ ΜΕΤΕΩΡΟΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ ΤΗΣ ΠΑΤΡΑΣ»

«ΣΧΕΔΙΑΣΜΟΣ ΘΕΡΜΙΚΟΥ ΗΛΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΙΑ ΤΑ ΜΕΤΕΩΡΟΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ ΤΗΣ ΠΑΤΡΑΣ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΠΑΡΑΓΩΓΗΣ, ΜΕΤΑΦΟΡΑΣ, ΔΙΑΝΟΜΗΣ ΚΑΙ ΧΡΗΣΙΜΟΠΟΙΗΣΕΩΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Διευθυντής:

Διαβάστε περισσότερα

ΕΠΑΓΓΕΛΜΑΤΙΚΟ ΛΥΚΕΙΟ ΥΠΟΣΤΗΡΙΚΤΙΚΗ Ι ΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2011-12

ΕΠΑΓΓΕΛΜΑΤΙΚΟ ΛΥΚΕΙΟ ΥΠΟΣΤΗΡΙΚΤΙΚΗ Ι ΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2011-12 1 ΕΠΑΓΓΕΛΜΑΤΙΚΟ ΛΥΚΕΙΟ ΥΠΟΣΤΗΡΙΚΤΙΚΗ Ι ΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 011-1 ΣΗΜΕΙΩΜΑ Οι παρακάτω συνοπτικές σηµειώσεις θεωρίας και ενδεικτική συλλογή ασκήσεων

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ ΑΡΙΘ. 544/VII/2012* Η ΕΠΙΤΡΟΠΗ ΑΝΤΑΓΩΝΙΣΜΟΥ ΣΕ TMHMA

ΑΠΟΦΑΣΗ ΑΡΙΘ. 544/VII/2012* Η ΕΠΙΤΡΟΠΗ ΑΝΤΑΓΩΝΙΣΜΟΥ ΣΕ TMHMA ΑΠΟΦΑΣΗ ΑΡΙΘ. 544/VII/2012* Η ΕΠΙΤΡΟΠΗ ΑΝΤΑΓΩΝΙΣΜΟΥ ΣΕ TMHMA Συνεδρίασε στην Αίθουσα Συνεδριάσεων του 1ου ορόφου του κτιρίου των γραφείων της, επί της οδού Κότσικα 1Α, Αθήνα, την 26η Ιουλίου 2012, ηµέρα

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΑΔΑ: ΒΛ1Π7Λ7-ΖΛΞ. Fax: 213 1501501 Email: attiki@mou.gr

ΑΔΑ: ΒΛ1Π7Λ7-ΖΛΞ. Fax: 213 1501501 Email: attiki@mou.gr ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΕΥΡΩΠΑΙΚΗ ΕΝΩΣΗ ΕΝ ΙΑΜΕΣΗ ΙΑΧΕΙΡΙΣΤΙΚΗ ΑΡΧΗ ΠΕΡΙΦΕΡΕΙΑΣ ΑΤΤΙΚΗΣ Ταχ. / νση: Λ. Συγγρού 98-100 Ταχ. Κώδικας: 11741 Πληροφορίες: Γρ. Προϊσταµένου Τηλέφωνο: 213 1501500

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Προγραμματική Σύμβαση Πολιτισμικής Ανάπτυξης Δήμος Κισσάμου Δήμος Πλατανιά Περιφέρεια Κρήτης

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΟΔΗΓΟΣ ΣΠΟΥΔΩΝ ΑΘΗΝΑ 2009-2010 I Η εικόνα του εξώφυλλου είναι αντίγραφο έργου του διάσημου Έλληνα ζωγράφου Ν. Χατζηκυριάκου - Γκίκα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ ΣΕΠΕ ΟΑΕΔ ΙΚΑ ΕΤΑΜ ΡΟΕΣ ΜΙΣΘΩΤΗΣ ΑΠΑΣΧΟΛΗΣΗΣ ΣΤΟΝ ΙΔΙΩΤΙΚΟ ΤΟΜΕΑ ΟΚΤΩΒΡΙΟΣ 2013

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ ΣΕΠΕ ΟΑΕΔ ΙΚΑ ΕΤΑΜ ΡΟΕΣ ΜΙΣΘΩΤΗΣ ΑΠΑΣΧΟΛΗΣΗΣ ΣΤΟΝ ΙΔΙΩΤΙΚΟ ΤΟΜΕΑ ΟΚΤΩΒΡΙΟΣ 2013 ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ ΣΕΠΕ ΟΑΕΔ ΙΚΑ ΕΤΑΜ ΡΟΕΣ ΜΙΣΘΩΤΗΣ ΑΠΑΣΧΟΛΗΣΗΣ ΣΤΟΝ ΙΔΙΩΤΙΚΟ ΤΟΜΕΑ ΟΚΤΩΒΡΙΟΣ 2013 Μονάδα Ανάλυσης & Τεκμηρίωσης, Υπουργείου Εργασίας, Κοινωνικής Ασφάλισης

Διαβάστε περισσότερα

ΚΑΤΕΥΘΥΝΤΗΡΙΑ Ο ΗΓΙΑ ΓΙΑ ΤΗN ΠΙΣΤΟΠΟΙΗΣΗ ΩΣ ΠΡΟΣ ΤΟ ΠΡΟΤΥΠΟ GUIDELINE ON THE CERTIFICATION ACCORDING TO THE STANDARD. Κατευθυντήρια Οδηγία

ΚΑΤΕΥΘΥΝΤΗΡΙΑ Ο ΗΓΙΑ ΓΙΑ ΤΗN ΠΙΣΤΟΠΟΙΗΣΗ ΩΣ ΠΡΟΣ ΤΟ ΠΡΟΤΥΠΟ GUIDELINE ON THE CERTIFICATION ACCORDING TO THE STANDARD. Κατευθυντήρια Οδηγία 25.04.2012/1 η Έκδοση ΚΑΤΕΥΘΥΝΤΗΡΙΑ Ο ΗΓΙΑ ΓΙΑ ΤΗN ΠΙΣΤΟΠΟΙΗΣΗ ΩΣ ΠΡΟΣ ΤΟ ΠΡΟΤΥΠΟ GUIDELINE ON THE CERTIFICATION ACCORDING TO THE STANDARD 7 AGRO 7 Προδιαγραφή για την παραγωγή προϊόντων από ζώα που δεν

Διαβάστε περισσότερα

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΚΕΦΑΛΑΙΟ Ο.. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΕΘΟΔΟΛΟΓΙΑ : ΟΛΟΚΛΗΡΩΜΑΤΑ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Συμφώνα με το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού Θ.Θ.Ο.Λ ισχύει : I. d II. d III. d ln IV. d V. d VI. d VII. d

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ 66 ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΤΑΞΗΣ Οι πέτε κλύτεροι φίλοι σς είι το Τι, ιτί, Πού, Πότε κι Πώς. Ότ χρειάζεστε συµβουλές, ρτείστε Τι; ρτείστε ιτί; ρτείστε Πού; Πότε κι Πώς κι µη ρτάτε κέ άλλο Προιµί. 67

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει

Διαβάστε περισσότερα

ΕΛΤΙΟ ΤΥΠΟΥ. Η εξέλιξη του είκτη Τιµών Καταναλωτή, µε έτος αναφοράς 2009=100,0 του µηνός Φεβρουαρίου 2015, έχει ως εξής:

ΕΛΤΙΟ ΤΥΠΟΥ. Η εξέλιξη του είκτη Τιµών Καταναλωτή, µε έτος αναφοράς 2009=100,0 του µηνός Φεβρουαρίου 2015, έχει ως εξής: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, 10 Μαρτίου 2015 ΕΛΤΙΟ ΤΥΠΟΥ ΕΙΚΤΗΣ ΤΙΜΩΝ ΚΑΤΑΝΑΛΩΤΗ : Φεβρουάριος 2015 Η εξέλιξη του είκτη Τιµών Καταναλωτή, µε έτος αναφοράς 2009=100,0 του µηνός

Διαβάστε περισσότερα

ΑΝΣΙΔΡΑΣΗΡΙΑ ΚΑΙ ΑΝΑΛΨΙΜΑ ΓΙΑ ΑΙΜΑΣΟΛΟΓΙΚΟΤ ΑΝΑΛΤΣΕ

ΑΝΣΙΔΡΑΣΗΡΙΑ ΚΑΙ ΑΝΑΛΨΙΜΑ ΓΙΑ ΑΙΜΑΣΟΛΟΓΙΚΟΤ ΑΝΑΛΤΣΕ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΤΠΟΤΡΓΕΙΟ ΤΓΕΙΑ 5 η Τ.ΠΕ. ΘΕΑΛΙΑ & ΣΕΡΕΑ ΕΛΛΑΔΑ ΓΕΝΙΚΟ ΝΟΟΚΟΜΕΙΟ ΑΜΥΙΑ ΔΙΑΚΗΡΤΞΗ ΓΙΑ ΣΗΝ ΠΡΟΜΗΘΕΙΑ ΜΕ ΣΙΣΛΟ: ΑΝΣΙΔΡΑΣΗΡΙΑ ΚΑΙ ΑΝΑΛΨΙΜΑ ΓΙΑ ΑΙΜΑΣΟΛΟΓΙΚΟΤ ΑΝΑΛΤΣΕ ΑΡ. ΠΡΨΣ.: 909/Δ/13

Διαβάστε περισσότερα

ΑΙΤΙΟΛΟΓΙΚΗ ΕΚΘΕΣΗ. Προς τη Βουλή των Ελλήνων. διαστάσεις, οδήγησε τα θεσµικά όργανα της Ευρωπαϊκής Ένωσης (ΕΕ), να χαράξουν µία ενιαία πολιτική

ΑΙΤΙΟΛΟΓΙΚΗ ΕΚΘΕΣΗ. Προς τη Βουλή των Ελλήνων. διαστάσεις, οδήγησε τα θεσµικά όργανα της Ευρωπαϊκής Ένωσης (ΕΕ), να χαράξουν µία ενιαία πολιτική ΑΙΤΙΟΛΟΓΙΚΗ ΕΚΘΕΣΗ στο σχέδιο νόµου «Κύρωση Συµφωνίας Έδρας µεταξύ της Ελληνικής ηµοκρατίας και του FRONTEX (Ευρωπαϊκού Οργανισµού για τη διαχείριση της επιχειρησιακής συνεργασίας στα εξωτερικά σύνορα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΚΗ ΣΥΜΒΑΣΗ (ΣΧΕΔΙΟ)

ΠΡΟΓΡΑΜΜΑΤΙΚΗ ΣΥΜΒΑΣΗ (ΣΧΕΔΙΟ) ΠΡΟΓΡΑΜΜΑΤΙΚΗ ΣΥΜΒΑΣΗ (ΣΧΕΔΙΟ) Για την δωρεάν παραχώρηση νωπών φρούτων προς χυμοποίηση, την μεταποίηση αυτών σε χυμό και την παροχή τυποποιημένου φυσικού χυμού στους μαθητές πρωτοβάθμιας και δευτεροβάθμιας

Διαβάστε περισσότερα

Περιγραφή ΠΟΣΟΤ ΚΑΤΗΓΟΡΙΑ/ΔΡ. ΟΥΣΙΑ M.M. CPV ΠΑΡΑΤΗΡΗΣΕΙΣ Α/Α ΚΩΔΙΚΟΣ CPV

Περιγραφή ΠΟΣΟΤ ΚΑΤΗΓΟΡΙΑ/ΔΡ. ΟΥΣΙΑ M.M. CPV ΠΑΡΑΤΗΡΗΣΕΙΣ Α/Α ΚΩΔΙΚΟΣ CPV Α/Α ΚΩΔΙΚΟΣ CPV Περιγραφή ΠΟΣΟΤ ΚΑΤΗΓΟΡΙΑ/ΔΡ. ΟΥΣΙΑ M.M. CPV ΗΤΑ / ΕΙΔΟΣ 1 18424000-7 Γάντια Ζεύγος 1.500 28.2 ΛΟΙΠΑ ΥΛΙΚΑ -> 2 18411000-3 Βρεφικά ενδύματα Τεμάχιο 30.000 28.2 ΛΟΙΠΑ ΥΛΙΚΑ -> 3 18937100-7

Διαβάστε περισσότερα

περιουσιακής κατάστασης έτους 2014. (ΦΕΚ309/Α/31-12-2003)

περιουσιακής κατάστασης έτους 2014. (ΦΕΚ309/Α/31-12-2003) ΚΑΤΑΘΕΣΗ... ΤΑΧΥΔΡΟΜΙΚΩΣ... Αριθμ. Πρωτοκόλλου... Αριθμ. Μητρώου... Ημερομηνία...200... ΔΗΛΩΣΗ περιουσιακής κατάστασης έτους 2014. κατά το άρθρο 2 του Ν. 3213/2003 (ΦΕΚ309/Α/31-12-2003) Παραλήπτης της

Διαβάστε περισσότερα

Αριθμός αποφάσεως 5928/2010 ΤΟ ΠΟΛΥΜΕΛΕΣ ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΑ (Διαδικασία Εκούσιας Δικαιοδοσίας)

Αριθμός αποφάσεως 5928/2010 ΤΟ ΠΟΛΥΜΕΛΕΣ ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΑ (Διαδικασία Εκούσιας Δικαιοδοσίας) ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΩΣ Αριθμός αποφάσεως 5928/2010 ΤΟ ΠΟΛΥΜΕΛΕΣ ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΑ (Διαδικασία Εκούσιας Δικαιοδοσίας) Αποτελούμενο από τους Δικαστές Ελένη Τσίτσιου Πρόεδρο Πρωτοδικών, Κωνσταντίνα Λέκκου

Διαβάστε περισσότερα

Κώδικας επιχειρηματικής συμπεριφοράς και δεοντολογίας. Παγκόσμια Συμμόρφωση Mylan ΠΕΡΙΟΧΗ ΕΜΕΑ - ΕΛΛΗΝΙΚΑ

Κώδικας επιχειρηματικής συμπεριφοράς και δεοντολογίας. Παγκόσμια Συμμόρφωση Mylan ΠΕΡΙΟΧΗ ΕΜΕΑ - ΕΛΛΗΝΙΚΑ Κώδικας επιχειρηματικής συμπεριφοράς και δεοντολογίας Παγκόσμια Συμμόρφωση Mylan ΠΕΡΙΟΧΗ ΕΜΕΑ - ΕΛΛΗΝΙΚΑ Κώδικας επιχειρηματικής συμπεριφοράς και δεοντολογίας Βασικές αρχές και αξίες Η αποστολή της Mylan

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

ΣΧΕ ΙΟ ΑΘΗΝΑ, 09 ΕΚΕΜΒΡΙΟΥ 2013-12-06-1 -

ΣΧΕ ΙΟ ΑΘΗΝΑ, 09 ΕΚΕΜΒΡΙΟΥ 2013-12-06-1 - Εταιρικό Σύµφωνο για το Πλαίσιο Ανάπτυξης (ΕΣΠΑ) 2014-2020 ΣΧΕ ΙΟ ΑΘΗΝΑ, 09 ΕΚΕΜΒΡΙΟΥ 2013-12-06-1 - - 2 - ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1 ΣΥΝΑΦΕΙΑ ΜΕ ΤΗ ΣΤΡΑΤΗΓΙΚΗ «ΕΥΡΩΠΗ 2020» ΚΑΙ ΤΟΥΣ ΣΚΟΠΟΥΣ ΤΩΝ ΤΑΜΕΙΩΝ 7

Διαβάστε περισσότερα

ΑΔΑ: ΒΕ2Ψ7Λ7-ΡΡΡ. Fax :213 1501501 Email :attiki@mou.gr

ΑΔΑ: ΒΕ2Ψ7Λ7-ΡΡΡ. Fax :213 1501501 Email :attiki@mou.gr ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ Ενδιάµεση ιαχειριστική Αρχή Περιφέρειας Αττικής Ταχ. / νση :Λ. Συγγρού 98-100 Ταχ. Κώδικας :11741 Πληροφορίες: Γρ. Προϊσταµένου Τηλέφωνο :213 1501500

Διαβάστε περισσότερα