ДОКУМЕНТАЦИЈА ТЕХНИЧКОГ РЕШЕЊА
|
|
- Ἰοῦστος Πρωτονοτάριος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ДОКУМЕНТАЦИЈА ТЕХНИЧКОГ РЕШЕЊА Софтвер за 3Д реконструкцију и струјање крви у артеријама - MedCFD Аутори техничког решења Др Ненад Филиповић, ред. проф. Др Милош Којић, ред. проф. у пензији, дописни члан САНУ Дипл. инж. ел. Лазар Оташевић Др Бобан Стојановић, доцент Др Владимир Ранковић, доцент Милош Ивановић, асистент Наручилац техничког решења Министарство за науку Републике Србије Корисник техничког решења Клинички центар Крагујевац Година када је техничко решење урађено Област технике на коју се техничко решење односи Рачунска механика
2 1. Опис проблема који се решава техничким решењем Техничко решење, софтвер MedCFD, припада области научно-техничких услуга, пројектовање и развој компјутерског софтвера. Софтвер се односи на специфичну реконструкцију и струјање крви кроз артерије. Одређивање основних величина струјања крви као што су брзине, смичући напон, притисак, концентрација LDL-a су добијени применом методе коначних елемената (МКЕ) за конкретан проблем. Савремена медицина подразумева коришћење најновијих технологија у циљу бољег излечења људи и предвиђања развоја болести. Већ је увелико познато коришћење стандардних апарата за дијагностику као што су ЦТ скенер, магнетна резонацна, ренген апарати, гама камере, ултразвук итд. Допринос ових апарата је снимање текућег стања код пацијента што представља основни полаз за клиничку дијагностику. Процес моделирања и могућност предвиђања понашања специфичног пацијента представља један сасвим нови приступ у савременој дијагностици који се тек полако појављује пре свега у истраживачким пројектима у свету. 2. Стање решености проблема у свету приказ и анализа постојећих решења Тренутно се у Србији па и у осталим мање развијеним земљама источне Европе углавном увози технологија и софтверска решења за медицинску дијагностику. Могуће је поставити добру софтверску платформу за 3Д реконструкцију слика са пацијената са постојећих апарата у клиничким центрима. Развој нумеричких метода за моделирање струјања крви у човековом организму је следећи значајан корак у истраживању јер представља сасвим нов приступ у предвиђању понашања развоја болести код пацијената. При развоју софтвера MedCFD коришћено је доста нових и оргиналних метода решавања 3Д реконструкције коронарних и каротидних артерија, Пеналти стабилизациона метода, Мешовита формулација. Такође је имплементиран већи број 2Д и 3Д коначним елемената, са различитим бројем контурних чворова и међучворова. Применом специфичних метода оптимизације густине мреже избегавају се потенцијалне грешке које корисник софтвера може да направи у припреми података за прорачун око 3Д струјања крви са преносом масе. 3. Суштина техничког решења Код сложених случајева пацијената са обољењем коронарне артерије јављају се велики проблеми у моделирању и конвергенцији решења. Оригиналност овог софтвера је методологија веома добре 3Д реконструкције са оргинисалним ДИЦОМ снимака са ЦТ скенера, Магнетне резонанце, стабилизацији и налажења оптималних параметара који за сваки пример са великим Рејнолдсовим бројем налази задовољавајуће решење. Будућа клиничка дијагностика ће се сигурно заснивати да оптималним прорачунима струјања крви и одређивања минималног смичућег напона као и одређивања концентрације ЛДЛ у крви као и у самом зиду крвног суда. На основу савремених научних сазнања из области прорачуна динамике флуида са преносом масе развијен је домаћи софтвер за 3Д реконструцију и прорачун струјања крви. У софтвер су имплементиране најсавременије методе обраде слике, Снаке алгоритам, Деформабилни алгоритам као и нумеричке методе (Пеналти метода, Итеративна метода решавања, паралелни солвер, и др.) за решавање проблема струјања крви код реалних клиничких проблема.
3 Развијени софтвер је једноставан за употребу и подржан комплетном пратећом документацијом, одржавањем и обуком, са могућношћу брзе доградње модула по захтеву корисника. 4. Детаљан опис техничког решења (укључујући и пратеће илустрације и техничке цртеже) Развоју софтвера претходила је детаљна теоријска анализа заснована на примени методе коначних елемената на струјање крви са преносом масе ЛДЛ молекула. Детекција контура са медицинских слика представља кључни део у савременој клиничкој дијагностици где се користе медицински уређаји као што су CT скенер, магнетна резонанца, ултразвучни апарати итд. Постоје разни алгоритми који се баве овом проблематиком. На слици 1 испод је приказан LEVEL SET алгоритам (Sethian, 1999) који решавањем диференцијалне једначине (1) где се за дату контуру решава функција φ при чему се прописује брзина кретања контуре F. φ = F φ t (1) Слика 1. Кретање контура према LEVEL SET алгоритму На слици 2 је приказанo препознавање контура са стандардног DICOM снимка направљеног на мулти CT скенеру. У питању је коронарна артерија за коју је специфично да има веома мале димензије од свега 3-4 mm у најширем до mm у најужим деловима. Поред тога је веома битно открити локације и величине сужења коронарних артерија која у ствари представљају стенозе унутар тог крвног суда. И поред високе резолуције коју поседују савремени 64 и 128 мулти CT скенер као и магнетна резонанца потребно је добро извршити филтрирање слике, а затим урадити препознавање контура на основу задатог прага осетљивости (threshold). За ову сврху предлажемо LEVEL SET алгоритам као и основни алгоритам преко неколико нивоа прага осетљивости.
4 Слика 2. Препознавање контура са стандардног DICOM снимка направљеног на мулти CT скенеру Након извршеног препознавања контура са дводимензијских DICOM снимака потребно је извршити тродимензионалну реконструкцију у циљу добијања јединственог 3Д модела који би се даље користио за потребе визуелизације и нумеричког прорачуна. За разлику од класичних софтвера који се данас користе на медицинским уређајима и који се служе искључиво за визуелизацију, овај нови софтвер би поред визуелизације одређивао и неопходне улазне податке за прорачун струјања крви кроз крвне судове, фазу пројекта која следи непосредно после ове фазе. На слици 3а,б је приказана тродимензионална реконструкција каротиде и леве коронарне артерије. а) б) Слика 3. Тродимензионална реконструкција артерија а) каротидна артерија б) коронарна артерија (Filipovic et al, 2006) Развој нумеричких метода за моделирање струјања крви у човековом организму У овом делу је укратко описан поступак решавања спрегнути проблеми солида и флуида (Filipovic 1999, Kojic et al, 1998). Проблем је спрегнут када флуид изазива деформисање солида, које, са друге стране утиче на струјање флуида. Основно питање које се поставља је који је најбољи начин повезивања решавања солида и струјања флуида. Овде износимо два концепта решавања, тзв. јако и слабо спрезање.
5 Уводна разматрања. У почетним истраживањима у решавању спрегнутих проблема поставило се питање да ли је неопходно мењати већ постојеће програме за анализу солида и флуида, односно да ли је потребно поново писати солвере за истовремено решавање солида и флуида. Показало се да је веома компликовано правити нове солвере који би истовремено решавали солид-флуид интеракцију (Filipovic 1999, Kojic et al, 1998, Kojic et al, 2008). Да би се успешно решили интердисциплинарни проблеми, засада се узимају програми за CFD (Computational Fluid Dynamics) и CSD (Computational Solid Dynamics) онакви какви јесу, и праве се нови специјализовани управљачки програми који користе могућности оба солвера и управљају њиховим решавањем (Kojic et al, 1998). У принципу, издвојили су се следећи правци у решавању проблема интеракција солид-флуид: - јако спрезање (када се све решава у једном систему једначина); и - слабо спрезање (када се спољашњим програмом управља решавањем посебно проблема солида и проблема флуида) Имајући у виду горе речено, слабо спрезање на први поглед представља бољу алтернативу. Међутим и овај прилаз, због својих специфичности које се иначе не јављају у методи јаког спрезања, садржи низ проблема. Ту се пре свега мисли на временску интеграцију. Наиме, због различитости самих физичких карактеристика солида и флуида, не може се генерално користити исти временски корак решавања. Јер, домени нумеричке стабилности су наравно потпуно различити при решавању проблема солида и проблема флуида. Друга тешкоћа се јавља приликом трансфера података између програма CFD и CSD. Различита дискретизација додатно отежава проблем, јер је потребно пренети информације са једне на другу мрежу са најчешће различитом дискретизацијом. У овој фази пројекта ће се развијати паралелно слабо и јако спрезање. Без свакодневне клиничке верификације развијене методе и софтвер не могу да се користе у клиничкој пракси. Циљ овог софтвера је да се клиничари који су прошли обуку ангажују за коришћење развијеног софтвера у својој пракси као и да учествују од самог почетка у развоју софтвера својим корисним предлозима.
6 Figure 9. Shear stress distribution for unsteady state condition (peak diastolic). The units are in [Pa]
7 Figure 10. The shear stress distribution and the line positions Figure 11. Shear stress distribution for steady case along the lines 1 and 2
8 a) b) Figure 17. Shear stress and concentration distribution in both branch of the LCA for a specific patient 5. Литература Bharadvej BK, Maron RF, Giddens DP, Steady flow in a model of the human carotid bifurcation. Part I-flow visuelisation. J. Biomechanics. 15: Bratzler R, Chislom G, Colton C, The distribution of labeled low-density lipoproteins across the rabbit thoracic aorta in vivo. Atherosclerosis. 28: Brooks AN, Hughes TJR Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier- Stokes equations. Comput. Meths. Appl. Mech. Engrg. 32: Caro CG, Fitz-Gerald JM, Schroter RC Atheroma and Arterial Wall Shear. Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis. Proc. R. Soc. London, Ser. B. 177: Cho YJ, Kensey KR, Effects of the non-newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flow. Biorheology. 28: Ding J, Zhu H, Friedman MH Coronary artery dynamics in vivo. Annals Biomed. Eng. 30:
9 Filipovic N, Numerical Analysis of Coupled Problems: Deformable Body and Fluid Flow. Ph. D. Thesis, Faculty of Mechanical Engineering, Kragujevac, (Serbia- Yugoslavia). Filipovic N, Kojic M (2004). Computer simulations of blood flow with mass transport through the carotid artery bifurcation, Theoret. Appl. Mech. (Serbian), 31(1), Filipovic N, Mijailovic S, Tsuda A, Kojic M. 2006a. An Implicit Algorithm Within The Arbitrary Lagrangian-Eulerian Formulation for Solving Incompressible Fluid Flow With Large Boundary Motions, Comp. Meth. Appl. Mech. Eng. 195: Fogelson AL, Guy RG, Platelet-Wall Interaction in Continuum Models of Platelet Thrombosis: Formulation and Numerical Solution. Mathematical Medicine and Biology. 21(4): Fogelson AL, Kuharsky AL Membrane binding-site density can modulate activation thresholds in enzyme systems. J. Theor. Biol. 193: Gaudio CD, Morbiducci U, Grigioni M Time dependent non-newtonian numerical study of the flow field in a realistic model of aortic arch, Biomaterials. 29: Gerstein M, Levitt M, (2005) Simulating water and the molecules of life, Scientific American (The Water of Life, Special Issue), Gresho PM, Lee RL, Sani RL On the time dependent solution of the incompressible Navier-Stokes equations in two and three dimension, Chapter 2, Finite Elements in Fluids, Vol. 4, eds. Gallagher et al., John Wiley &Sons, Chichester. Haber S, Filipovic N, Kojic M, Tsuda A Dissipative Particle Dynamics Simulation of flow generated by two rotating concentric cylinders. Part I: Boundary conditions. Phys. Rev. E. 74: He X, Ku DN Pulsatile flow in the human left coronary artery bifurcation: Average conditions. J. Biomech. Eng. 118: Hoogerbrugge P. J., Koelman J. M. V. A., (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett., 19, Jovanov, E., J. Price, D. Raskovic, K. Kavi, T. Martin, and R. Adhami (2000). Wireless Personal Area Networks in Telemedical Environment. Third International Conference on Information technology in Biomedicine, ITAB-ITIS 2000, pp Kojic M, Bathe KJ Inelastic Analysis of Solids and Structures. Springer-Verlag, Berlin/Heidelberg. Kojic M, Filipovic N, Stojanovic B, Kojic N, Computer modeling in bioengineering: Thеoretical Background, Examples and Software, John Wiley and Sons, Chichester, England. Kojic M, Filipovic N, Zivkovic M, Slavkovic R, and Grujovic N PAK-F Finite Element Program for Laminar Flow of Incompressible Fluid and Heat Transfer, Laboratory for Engineering Software, Faculty of Mech. Engrg, Univ. Kragujevac, Kragujevac, Serbia-Yugoslavia Kojic M, Filipovic N, Zivkovic M, Slavkovic R, Grujovic N (1998). PAK-FS Finite Element Program for Fluid-Structure Interaction. Faculty of Mech. Engrg, University of Kragujevac, Serbia. Kojic M, Filipovic N, Zivkovic M, Slavkovic R, Grujovic N (1999). PAK-F Finite Element Program for Laminar Flow of Incompressible Fluid and Heat Transfer. Faculty of Mech. Engrg, University of Kragujevac, Serbia. Ku DN, and Giddens DP Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation, J. Biomechanics. 20: Ku DN, Giddens DP, Zarins CZ, and Glagov S Pulsatile flow and arterosclerosis in the human carotid bifurcation. Arteriosclerosis. 5: Ku DN Blood flow in arteries, Annu. Rev. Fluid Mech. 29:
10 Marcus JT, Smeenk HG, Kuijer JPA, Van der Geest RJ, Heethaar RM, and Van Rossum AC Flow profiles in the left anterior descending and the right coronary artery assessed by MR velocity quantification: Effects of through-plane and in-plane motion of the heart. J. Computer Assisted Tomogr. 23: May-Newman K, Hillen, Dembitsky W Effect of left ventricular assist device outflow conduit anastomosis location on flow patterns in the native aorta. ASAIO Journal. 52: Moore JA and Etheir CR Oxygen mass transfer calculations in large arteries, J. Biomech. Engrg., 119: Myers JG, Moore JA, Ojha M, Johnston KW, and Ethier CR Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng. 29: Perktold K, Peter R, Resch O, Langs G Pulsatile non-newtonian blood flow in threedimensional carotid bifurcation models: a numerical study of flow phenomena under diferent biurcation angles. J. Biomech. Engrg. 13: Perktold K, Resch M, Peter O Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation model, J. Biomechanics. 24: Perktold K. Hofer M, Rappitsch G, Loew M, Kuban BD, and Friedman MH Validated computation of physiologic flow in realistic coronary artery branch, J. Biomechanics. 31: Perktold K. Rappitsch G, Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model, J. Biomechanics. 28: Prosi M, Perktold K, Ding J, Friedman MH Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J. Biomech. 37: Rappitsch G, Perktold K, Computer simulation of convective diffusion processes in large arteries. J. Biomechanics. 29: Rindt CCM, van Steenhoven AA, Janssen JD, Reneman RS, Segal A. (1990), A numerical analysis of steady flow in a three-dimensional model of the carotid artery bifurcation. J. Biomechanics. 23: Sorensen EN, Computational simulation of platelet transport, activation and deposition. Ph.D. thesis. U. Pittsburgh. Sorensen EN, Burgreen GW, Wagner WR, Antaki JF, 1999b. Computational simulation of platelet deposition and activation: II. Results of Poiseulle flow over collagen. Ann. Biomed. Eng. 27: Sorensen EN, Burgreen GW, Wagner WR, Antaki JF. 1999a. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng. 27: Soulis JV, Giannoglou GD, Papaioannou V, Parcharidis GE, Louridas GE Lowdensity lipoprotein concentration in the normal left coronary artery tree, Biomedical Engineering Online. 7:26. Tarbell JM Mass transport in arteries and the localization of atherosclerosis. Annual Rev. Biomed. Eng. 5: Taylor CA, Hughes TJR, Zarins CK Finite element modeling of blood flow in arteries, Comput. Meths. Appl. Mech. Engrg.. 158: Vorp DA, Wang DHJ, Webster MW, Federspiel WJ Effect of intraluminal thrombus thickness and bulge diameter on the oxygen diffusion in abdominal aortic aneurysm. Journal of Biomechanical Engineering. 120:
11 Weydahl ES, Moore Jr JE Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model. J. Biomech. 34: Wootton DM, Ku DN Fluid mechanics of vascular systems, diseases, and thrombosis, Annu. Rev. Biomed. Eng. 1: Zarins CK, Giddens DP, Bharadvej BK, Sottiurai VS, Mabon RF, Glagov S Carotid bifurcation ahterosclerosis: Quantitative correlation of plaque localization with low velocity profiles and wall shear stress. Circ. Res. 53: Zhao SZ, Xu XY, Collins MW, Stanton AV, Hughes AD, Thom, SA Flow in carotid bifurcations: effect of the superior thyroid artery, Medical Engineering & Physics. 21:
12
13
14
15
налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
Теорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
ДОКУМЕНТАЦИЈА ТЕХНИЧКОГ РЕШЕЊА
ДОКУМЕНТАЦИЈА ТЕХНИЧКОГ РЕШЕЊА Софтвер за ламинарно струјање флуида и пренос топлоте Аутори техничког решења Др Милош Којић, ред. проф. у пензији, дописни члан САНУ Др Ненад Филиповић, ред. проф. Др Мирослав
Анализа Петријевих мрежа
Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,
Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10
Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење
2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
2.3. Решавање линеарних једначина с једном непознатом
. Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0
Теорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,
Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ. 2004 2009 Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ ΔΙΕΥΘΥΝΣΗ Ινστιτούτο Έρευνας και Τεχνολογίας Θεσσαλίας (ΙΕΤΕΘ) Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης (ΕΚΕΤΑ) Δημητριάδος 95 και Παύλου Μελά 38333 Βόλος
Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)
ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити
Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика
Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике
Предмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ
ΜΑΪΟΣ - ΙΟΥΝΙΟΣ 2006 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 1 ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Διευθυντής ΝΙΚΟΛΑΟΣ ΒΛΑΧΟΣ, Καθηγητής Μέλη ΕΡΡΙΚΟΣ ΣΤΑΠΟΥΝΤΖΗΣ,
ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног
ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА
ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5 ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ЗАВРШНИ РАД Предмет се вреднује са 6 ЕСПБ. НАСТАВНИЦИ И САРАДНИЦИ: РБ Име и презиме Email адреса звање 1. Јасмина Кнежевић
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
Писмени испит из Метода коначних елемената
Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни
предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА
Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем
ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα
ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα
Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα Experimental verification of shear wall modeling using finite element
ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
Слика 1. Слика 1.2 Слика 1.1
За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика
Ротационо симетрична деформација средње површи ротационе љуске
Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну
Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:
Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом
Могућности и планови ЕПС на пољу напонско реактивне подршке. Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије
Могућности и планови ЕПС на пољу напонско реактивне подршке Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије 1 Обавезе ЈП ЕПС као КПС... ЗАКОН О ЕНЕРГЕТИЦИ ЧЛАН 94. Енергетски
Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала
Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја
Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ
Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Прва година ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА Г1: ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА 10 ЕСПБ бодова. Недељно има 20 часова
Simon et al. Supplemental Data Page 1
Simon et al. Supplemental Data Page 1 Supplemental Data Acute hemodynamic effects of inhaled sodium nitrite in pulmonary hypertension associated with heart failure with preserved ejection fraction Short
Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow
4 D-5 Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow,, 3--, E-mail tsuboi@ab.eng.isas.ac.jp, 7-3-, E-mail ymats@mech.t.u-tokyo.ac.jp Nobuyuki Tsuboi, Institute of Space and Astronautical
Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.
СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању
TAЧКАСТА НАЕЛЕКТРИСАЊА
TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични
Осцилације система са једним степеном слободе кретања
03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)
Количина топлоте и топлотна равнотежа
Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина
Eulerian Simulation of Large Deformations
Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications
ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева
ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2/13 Diffie-Hellman размена кључева први алгоритам са јавним
1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1
1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу
3-dimensional motion simulation of a ship in waves using composite grid method
1 E14-1 3-dimensional motion simulation of a ship in waves using composite grid method matsuo@triton.naoe.t.u-tokyo.ac.jp, park@triton.naoe.t.u-tokyo.ac.jp, sato@triton.naoe.t.u-tokyo.ac.jp, miyata@triton.naoe.t.u-tokyo.ac.jp,
ОДРЕЂИВАЊЕ КРИТИЧНОГ БРОЈА ОБРТАЈА РОТОРА ПАРНИХ ТУРБИНА ВЕЛИКЕ СНАГЕ Мастер (М. Sc.) рад
ОДРЕЂИВАЊЕ КРИТИЧНОГ БРОЈА ОБРТАЈА РОТОРА ПАРНИХ ТУРБИНА ВЕЛИКЕ СНАГЕ Мастер (М. Sc.) рад Студент : Милош Д. Радовановић Ментор: проф. Dr-Ing Милан В. Петровић Београд 2016. Увод Садржај мастер рада: Приказ
СИМУЛАЦИЈА ПРОЦЕСА ОБРАДЕ ПЛАСТИЧНИМ ДЕФОРМИСАЊЕМ (МЕТОД КОНАЧНИХ ЕЛЕМЕНАТА)
ТЕХНОЛОГИЈА МАШИНОГРАДЊЕ ЛЕТЊИ СЕМЕСТАР 3. лабораторијска вежба СИМУЛАЦИЈА ПРОЦЕСА ОБРАДЕ ПЛАСТИЧНИМ ДЕФОРМИСАЊЕМ (МЕТОД КОНАЧНИХ ЕЛЕМЕНАТА) Дефиниција Метод коначних елемената (МКЕ) се заснива на одређеној
МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА
Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два
Hydrologic Process in Wetland
J. Jpn. Soc. Soil Phys. No. +*-, p.1+12,**0 * Hydrologic Process in Wetland Characteristics of a Mire in a Snowy Region Makoto NAKATSUGAWA** ** Toyohashi O$ce of River Works, Chubu Regional Development
6.2. Симетрала дужи. Примена
6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права
Boundary Conditions for the Convective-dispersive Solute Transport in Soils
J. Jpn. Soc. Soil Phys. No. +*., p.1/2.,**0 * *** Boundary Conditions for the Convective-dispersive Solute Transport in Soils Nobuo TORIDE*, Masaru SAKAI* and Hirotaka SAITO** + + CDE boundary condition,
10.3. Запремина праве купе
0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка
8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези
Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ
5.2. Имплицитни облик линеарне функције
математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.
ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών ΠΜΣ οµοστατικός Σχεδιασµός και Ανάλυση Κατασκευών Εργαστήριο Μεταλλικών Κατασκευών Μεταπτυχιακή ιπλωµατική Εργασία ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ
РАЗВОЈ И ПРИМЕНА МЕТОДА ХЕУРИСТИЧКЕ ОПТИМИЗАЦИЈЕ МАШИНСКИХ КОНСТРУКЦИЈА
УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА Ненад Костић РАЗВОЈ И ПРИМЕНА МЕТОДА ХЕУРИСТИЧКЕ ОПТИМИЗАЦИЈЕ МАШИНСКИХ КОНСТРУКЦИЈА Докторска дисертација Крагујевац, 2017. Идентификациона страна:
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање
NonEquilibrium Thermodynamics of Flowing Systems: 2
*Following the development in Beris and Edwards, 1994, Section 9.2 NonEquilibrium Thermodynamics of Flowing Systems: 2 Antony N. Beris Schedule: Multiscale Modeling and Simulation of Complex Fluids Center
3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни
ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује
Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност,
Температурно стабилан отпорник састоји се од два једнака цилиндрична дела начињена од различитих материјала (гвожђе и графит) У ком односу стоје отпорности ова два дела отпорника ако се претпостави да
Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.
Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
2.1
181 8588 2 21 1 e-mail: sekig@th.nao.ac.jp 1. G ab kt ab, (1) k 8pGc 4, G c 2. 1 2.1 308 2009 5 3 1 2) ( ab ) (g ab ) (K ab ) 1 2.2 3 1 (g ab, K ab ) 1 t a S n a a b a 2.3 a b i (t a ) 2 1 2.4 1 g ab ab
Семинарски рад из линеарне алгебре
Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити
Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије
Рекурзија Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије Рекурзивна функција (неформално) је функција која у својој дефиницији има позив те
6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре
0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских
Монте Карло Интеграциjа
Монте Карло Интеграциjа 4.час 22. март 2016. Боjана Тодић Статистички софтвер 2 22. март 2016. 1 / 22 Монте Карло методе Oве нумеричке методе код коjих се употребљаваjу низови случаjних броjева за извршење
12 2006 Journal of the Institute of Science and Engineering. Chuo University
12 2006 Journal of the Institute of Science and Engineering. Chuo University abstract In order to study the mitigation effect on urban heated environment of urban park, the microclimate observations have
«ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΒΙΟΪΑΤΡΙΚΗ ΜΗΧΑΝΙΚΗ»
ΜΑΘΗΜΑ ETY-494 «ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΒΙΟΪΑΤΡΙΚΗ ΜΗΧΑΝΙΚΗ» Τμήμα Επιστήμης και Τεχνολογίας Υλικών, Σχολή Θετικών Επιστημών, Πανεπιστήμιο Κρήτης ρ. Γεώργιος Βλαστός (E-mail: vlastos@materials.uoc.gr) Ιστοσελίδα
1. Модел кретања (1.1)
1. Модел кретања Кинематика, у најопштијој формулацији, може да буде дефинисана као геометрија кретања. Другим речима, применом основног апарата математичке анализе успостављају се зависности између елементарних
* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***
J. Jpn. Soc. Soil Phys. No. +*2, p. +3,2,**2 * ** *** *** Influence Area of Stem Flow on a Soil of Deciduous Forest Floor by Electric Resistivity Survey and the Evaluation of Groundwater Recharge through
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Discretization of Generalized Convection-Diffusion
Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion
КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1
КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΛΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΓΚΥΡΩΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΣΥΖΕΥΓΜΕΝΗ ΑΝΑΛΥΣΗ ΠΛΩΤΗΣ ΑΝΕΜΟΓΕΝΝΗΤΡΙΑΣ
ΚΛΙΜΑΤΟΛΟΓΙΑ CLIMATOLOGY
10 ο COMECAP 2010, Πρακτικά Συνεδρίου, Πάτρα 10 th COMECAP 2010, Proceedings, Patras, Greece ΚΛΙΜΑΤΟΛΟΓΙΑ CLIMATOLOGY ΥΧΡΟΥΡΟΝΗΚΖ ΓΗΑΚΤΜΑΝΖ ΣΧΝ ΖΛΔΚΣΡΗΚΧΝ ΔΚΚΔΝΧΔΧΝ ΣΖΝ ΔΛΛΑΓΑ ΓΗΑ ΣΖΝ ΥΡΟΝΗΚΖ ΠΔΡΗΟΓΟ 1998-2007
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
Механика флуида Б - уводни поjмови
Механика флуида Б - уводни поjмови Александар Ћоћић Машински факултет Београд Александар Ћоћић (MФ Београд) MФБ-01 1 / 11 Информациjе o предмету, професору, итд. Александар Ћоћић, доцент email: acocic@mas.bg.ac.rs
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45
Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες
Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες Miroshnikov & Tchepine 1999 Ahn & Freeman 1984 Ένας σηµαντικός παράγοντας που επηρεάζει την αποτελεσµατικότητα ενός χάρτη ως µέσω επικοινωνίας
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of
Toward the Quantitative Study of Hydrothermal Systems An Approach to Understand Hydrothermal Systems
J. Hot Spring Sci. 0*,0+,1+,*+* + Toward the Quantitative Study of Hydrothermal Systems An Approach to Understand Hydrothermal Systems Sachio E + HARA Abstract The quantitative understanding of hydrothermal
АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ
ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ
КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.
КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг
6.5 Површина круга и његових делова
7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност
У н и в е р з и т е т у Б е о г р а д у Математички факултет. Семинарски рад. Методологија стручног и научног рада. Тема: НП-тешки проблеми паковања
У н и в е р з и т е т у Б е о г р а д у Математички факултет Семинарски рад из предмета Методологија стручног и научног рада Тема: НП-тешки проблеми паковања Професор: др Владимир Филиповић Студент: Владимир
SIMULATION DRIVEN PRODUCT DEVELOPMENT
SIMULATION DRIVEN PRODUCT DEVELOPMENT ENGLISH FEAC Engineering P.C. is an engineering & consulting company, highly specialized in Simulation Driven Product Development. The company was founded in 2014
ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.
ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕΛΕΤΗ ΤΟΥ ΣΗΜΕΙΟΥ ΠΡΟΣΒΑΣΗΣ ΑΡΤΗΡΙΟΦΛΕΒΙΚΟΥ ΜΟΣΧΕΥΜΑΤΟΣ ΣΕ ΑΙΜΟΚΑΘΑΙΡΟΜΕΝΟΥΣ ΑΣΘΕΝΕΙΣ Παντελάκης
(Proper Orthogonal Decomposition, POD) POD POD Galerkin Projection PIV. Proper Orthogonal Decomposition in Fluid Flow Analysis: 1.
115 連載 固有直交分解による流体解析 : 1. ( ) (Proper Orthogonal Decomposition, POD) POD POD Galerkin Projection PI Proper Orthogonal Decomposition in Fluid Flow Analysis: 1. Introduction Kunihiko TAIRA, Fundamental Technology
8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: PI регулација брзине напонски управљаним микромотором једносмерне струје
Регулација електромоторних погона 8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: регулација брзине напонски управљаним микромотором једносмерне струје Увод Simulik модел На основу упрошћеног блок дијаграма
Παίζοντας με τις φυσαλίδες: εμβάθυνση σε ένα απλό πείραμα μελέτης της ευθύγραμμης ομαλής κίνησης
Παίζοντας με τις φυσαλίδες: εμβάθυνση σε ένα απλό πείραμα μελέτης της ευθύγραμμης ομαλής κίνησης Αναστάσιος Νέζης Όλοι όσοι διδάσκουμε Φυσική είτε στη Β Γυμνασίου είτε στην Α Λυκείου, είμαστε λίγο πολύ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА
2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.
36 2010 8 8 Vol 36 No 8 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Aug 2010 Ⅰ 100124 TB 534 + 2TP 273 A 0254-0037201008 - 1091-08 20 Hz 2 ~ 8 Hz 1988 Blondet 1 Trombetti 2-4 Symans 5 2 2 1 1 1b 6 M p
Катедра за електронику, Основи електронике
Лабораторијске вежбе из основа електронике, 13. 7. 215. Презиме, име и број индекса. Трајање испита: 12 минута Тест за лабораторијске вежбе 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 5 1 5 1 5 5 2 3 5 1