Предмет: Задатак 4: Слика 1.0

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Предмет: Задатак 4: Слика 1.0"

Transcript

1 Лист/листова: 1/1 Задатак 4: Задатак Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 + v sin θ t Задатак Брзина робота је v = 0, m rad, a угаона брзина ω = 0,6, за полупречник путање од s s 0,5m. А кретање робота се посматра у временским интервалима од 1s. За транслаторно кретање робота је усвојен угао орјентације од 2,тј. 0,5585 rad. За кретање робота у негативном математичком смеру потребно је усвојити угаону брзину супротног знака. Релативна грепшка управљачких величина је до % по униформној расподели.

2 Лист/листова: 2/2 Линија путање при: а) транслаторном кретању робота Кретање робота је описано једначинама: v=( )*rand() x=x+(v*t*cos(0.5585)) y=y+(v*t*sin(0.5585)) Табела 1.1: координате трајекторије y [m] Транслатпрнп кретаое x [m] Транслатпрнп кретаое x [m] y [m] 0,0000 0,0000 0,2560 0,1599 0,508 0,176 0,7571 0,471 1,0179 0,660 1,2744 0,796 1,51 0,9568 1,788 1,1175 2,0465 1,2788 2,061 1,4410 2,5608 1,6001 Слика 2.1: Транслаторно кретање

3 Лист/листова: / б) кретању по трајекторији кружног облика у позитивном математичком смеру Кретање робота је описано једначинама: w=( )*rand() v=( )*rand() f=f+w*t x=x+v*t*cos(f) y=y+v*t*sin(f) Кретаое пп кружници (ппзитиван y [m] x [m] Кретаое пп кружници (ппзитиван Табела 1.2: координате трајекторије x [m] y [m] 0,0000 0,0000 0,2479 0,1651 0,547 0,491 0,2868 0,799 0,0685 0,98-0,2216 0,972-0,4865 0,861-0,6261 0,5785-0,5958 0,2779-0,4017 0,0558 Слика 2.2: Кретање по кружници (позитиван

4 Лист/листова: 4/4 в) кретању по трајекторији кружног облика у негативном математичком смеру Кретање робота је описано једначинама: w=( )*rand() v=( )*rand() f=f+(-w*t) x=x+v*t*cos(f) y=y+v*t*sin(f) Кретаое пп кружници (негативан x [m] y [m] Кретаое пп кружници (негативан Табела 1.: координате трајекторије x [m] y [m] 0,0000 0,0000 0,2442-0,1644 0,594-0,4404 0,2999-0,7412 0,0802-0,9562-0,2176-1,005-0,4975-0,8755-0,6549-0,6121-0,671-0,107-0,4526-0,0645 Слика 2.: Кретање по кружници (негативан

5 Лист/листова: 5/5 Задатак На основу формуле n = 2 (N x +N y ) добили смо да је оптималан број неурона у скривеном слоју. Улазни величине су брзина робота v и угаона брзина ω, а излазни подаци су промена координата положаја по x,y осама и промена угла ротације θ. Први покушај је био да се мрежа сведе на 2 или скривена слоја (са свим комбинацијама распореда неурона по слојевим), али добијени резултати грешке нису били задовољавајући. На крају се испоставило да се најповољнији резултати (остварена грешка је мања од очекиване) добијају са једним скривеним слојем. Експеримент смо вршили са очекиваним грешкама 0,04; 0,05; 0,06; 0,07 и коефицијентима учења μ = λ = 0,2 0,5. Прихватљиви резултати су се добијали са очекиваном грешком 0,05, коефицијентима учења λ = μ = 0,2 и конфигурацијом 2: [] 1 : (Слика.1). Након интерација добијена грешка је 0,052. Уколико се конфигурација промени на 2: [4] 1 :, а да при томе коефицијенти учења и очекивана грешка остану непромењени. Након интерација добијена грешка је 0,054. При даљем смањењу очекиване грешке време трајања обучавања мреже се драстично певећава. Најоптималнија конфикурација за обучавање мреже је 2: [] 1 : са очекиваном грешком учења 0,05 и коефицијентима учења 0,2. Слика.1

6 Лист/листова: 6/6 Задатак Табела 2.1: Очекиване и добијене излазне вредности, квадрати грешака генерисаних величина ВНМ Генерисани Улазне Жељене излази величине вреднпсти [ m ] ВНМ [m] Грешка s [m] [ rad ] [m] [m] s [rad] [rad] v=0,018 v=0,2975 v=0,025 v=0,02 v=0,2941,6116 v=0,2921,6180 v=0,2950,6176 v=0,2991,5828 v=0,015,6171 v=0,076,5845 x=0,2560 y=0,1599 x=0,252 y=0,1577 x=0,2566 y=0,160 x=0,2571 y=0,1606 x=0,1068 y=0,2740,6116 x=-0,2901 y=0,049,6180 x=0,1941 y=-0,2221,6176 x=0,1152 y=-0,2760,5828 x=-0,2978 y=-0,047,6171 x=0,1845 y=0,2462,5845 x=0,2560 y=0,1627,0002 0, x=0,2519 y=0,1650,0001 0, x=0,2561 y=0,1626,0001 0, x=0,2561 y=0,1626,0002 0, x=0,1294 y=0,259,6044 0, x=-0,4661 y=0,0411,6002 0,01128 x=0,1904 y=-0,120,616 0, x=0,1491 y=-0,17,6002 0, x=-0,2804 y=-0,0705,6289 0, x=0,1797 y=0,091,5600 0, Сума: 0, Сума квадрата грешака генерисаних величина ВНМ показује да добијена трајекторија одговара жељеној трајкеторији са толерисаним одступањима.

7 Лист/листова: 7/7 Слика.2: Упоредни приказ очекиване и добијене трајекторије помоћу ВНМ Табела.1: очекиване Табела.2: координате трајекторије координате трајекторије x [m] y [m] x [m] y [m] 0,2560 0,1599 0,2560 0,1627 0,508 0,176 0,5079 0,277 0,7649 0,4779 0,7640 0,490 1,0220 0,685 1,0201 0,6529 1,1288 0,9125 1,1495 0,9122 0,887 0,9474 0,684 0,95 1,028 0,725 0,878 0,641 1,1480 0,449 1,0229 0,276 0,8502 0,4020 0,7425 0,2571 1,047 0,6482 0,9222 0,5662

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом). СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која

Διαβάστε περισσότερα

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао ЗАДАЦИ ЗА САМОСТАЛНИ РАД Задаци за самостлни рад намењени су првенствено ученицима који се припремају за полагање завршног испита из математике на крају обавезног основног образовања. Задаци су одабрани

Διαβάστε περισσότερα

Реализована вежба на протоборду изгледа као на слици 1.

Реализована вежба на протоборду изгледа као на слици 1. Вежбе из електронике Вежба 1. Kондензатор три диоде везане паралелно Циљ вежбе је да ученици повежу струјно коло са три диоде везане паралелно од којих свака има свој отпорник. Вежба је успешно реализована

Διαβάστε περισσότερα

Са неким, до сада неуведеним појмовима из теоријских основа турбомашина, упознаћемо се кроз израду следећих задатака.

Са неким, до сада неуведеним појмовима из теоријских основа турбомашина, упознаћемо се кроз израду следећих задатака. Основе механике флуида и струјне машине 1/11 Са неким, до сада неуведеним појмовима из теоријских основа турбомашина, упознаћемо се кроз израду следећих задатака 1задатак Познате су следеће величине једнe

Διαβάστε περισσότερα

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5 05.03.011 - III РАЗРЕД 1. Нацртај 4 праве a, b, c и d, ако знаш да је права а нормална на праву b, права c нормалана на b, а d паралелнa са а. Затим попуни табелу стављајући знак (ако су праве нормалне)

Διαβάστε περισσότερα

ФИЗИКА Кинематика тачке у једној. Шема прикупљања поена - измене. Предиспитне обавезе

ФИЗИКА Кинематика тачке у једној. Шема прикупљања поена - измене. Предиспитне обавезе ФИЗИКА 9. Понедељак, 1. октобар, 9. Кинематика тачке у једној димензији Кинематика кретања у две димензије 1 Предиспитне обавезе Шема прикупљања поена - измене Активност у току предавања 5 поена (са више

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕНИКЕ

ОСНОВА ЕЛЕКТРОТЕНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ЧЕТРНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 1

Διαβάστε περισσότερα

Теорија одлучивања. Анализа ризика

Теорија одлучивања. Анализа ризика Теорија одлучивања Анализа ризика Циљеви предавања Упознавање са процесом анализе ризика Моделовање ризика Монте-Карло Симулација Предности и недостаци анализе ризика 2 Дефиниција ризика (квалитативни

Διαβάστε περισσότερα

ПРОЈЕКТОВАЊЕ РАМПЕ. Слика А.1 - (а) приказ рампе у основи, (б) подужни пресек рампе

ПРОЈЕКТОВАЊЕ РАМПЕ. Слика А.1 - (а) приказ рампе у основи, (б) подужни пресек рампе ПРОЈЕКТОВАЊЕ РАМПЕ Рампа представља косу подземну просторију која повезује хоризонте или откопне нивое, и тако је пројектована и изведена да омогућује кретање моторних возила. Приликом пројектовања рампе

Διαβάστε περισσότερα

Анализа тачности мерења електричне енергије и максималне снаге у систему директног и полуиндиректног мерења

Анализа тачности мерења електричне енергије и максималне снаге у систему директног и полуиндиректног мерења Анализа тачности мерења електричне енергије и максималне снаге у систему директног и полуиндиректног мерења Славиша Пузовић Факултет техничких наука, Чачак Електротехничко и рачунарско инжењерство, Eлектроенергетика,

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5 МАТЕМАТИЧКИ ЛИСТ 014/15. бр. XLIX-5 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред 1. а) 70 - седамсто три; б) двесто осамдесет два 8.. а) 4, 54, 54, 45, 504, 54. б)

Διαβάστε περισσότερα

ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА. школска 2013/2014. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД

ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА. школска 2013/2014. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 0/04. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД Тест који треба да решиш има 0 задатака. За рад је предвиђено 0 минута. Задатке не мораш да радиш

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

Антене и простирање. Показна лабораторијска вежба - мерење карактеристика антена. 1. Антене - намена и својства

Антене и простирање. Показна лабораторијска вежба - мерење карактеристика антена. 1. Антене - намена и својства Антене и простирање Показна лабораторијска вежба - мерење карактеристика антена 1. Антене - намена и својства Антена је склоп који претвара вођени електромагнетски талас у електромагнетски талас у слободном

Διαβάστε περισσότερα

Испитвање тока функције

Испитвање тока функције Милош Станић Техничка школа Ужицe 7/8 Испитвање тока функције Испитивање тока функције y f подразумева да се аналитичким путем дође до сазнања о понашању функције, као и њеним значајним тачкама у координантном

Διαβάστε περισσότερα

УВОД У ЕКСПЕРИМЕНТ И ЛАБОРАТОРИЈУ Банка питања

УВОД У ЕКСПЕРИМЕНТ И ЛАБОРАТОРИЈУ Банка питања УВОД У ЕКСПЕРИМЕНТ И ЛАБОРАТОРИЈУ Банка питања ЈЕДИНИЦЕ: А) Изразите следеће изведене јединице преко основних јединица SI система, при чему ћете користити релације које су наведене:. њутн F N F a. паскал

Διαβάστε περισσότερα

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити. IV разред 1. Колико ће година проћи од 1. јануара 2015. године пре него што се први пут догоди да производ цифара у ознаци године буде већи од збира ових цифара? 2. Свако слово замени цифром (различита

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

СТАТИСТИЧКИ БИЛТЕН. Септембар

СТАТИСТИЧКИ БИЛТЕН. Септембар Септембар 2016 СТАТИСТИЧКИ БИЛТЕН Септембар 2016 НАРОДНА БАНКА СРБИЈЕ Београд, Краља Петра 12 Тел. 011/3027-100 Београд, Немањина 17 Тел. 011/333-8000 www.nbs.rs ISSN 1451-6349 Статистички билтен септембар

Διαβάστε περισσότερα

Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група

Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 0/0. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група СЕНТА.0.0.. Играчи билијара су познати по извођењу специфичних удараца

Διαβάστε περισσότερα

Експериментална истраживања ефеката различитих екрана на смањење магнетске индукције индустријске учестаности

Експериментална истраживања ефеката различитих екрана на смањење магнетске индукције индустријске учестаности Стручни рад UDK:621.317.42:621.316.97 BIBLID:0350-8528(2012),22.p.173-184 doi:10.5937/zeint22-2341 Експериментална истраживања ефеката различитих екрана на смањење магнетске индукције индустријске учестаности

Διαβάστε περισσότερα

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.

Διαβάστε περισσότερα

4.4. Тежиште и ортоцентар троугла

4.4. Тежиште и ортоцентар троугла 50. 1) Нацртај правоугли троугао и конструиши његову уписану кружницу. ) Конструиши једнакокраки троугао чија је основица = 6 m и крак = 9 m, а затим конструиши уписану и описану кружницу. Да ли се уочава

Διαβάστε περισσότερα

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година

Διαβάστε περισσότερα

УПРАВЉАЊЕ КРЕТАЊЕМ ЛИФТА У ФУНКЦИЈИ ВРИЈЕДНОСТИ ТРЗАЈА ELEVATOR MOVEMENT CONTROL IN THE FUNCTION OF JERK VALUE

УПРАВЉАЊЕ КРЕТАЊЕМ ЛИФТА У ФУНКЦИЈИ ВРИЈЕДНОСТИ ТРЗАЈА ELEVATOR MOVEMENT CONTROL IN THE FUNCTION OF JERK VALUE INFOTEH-JAHORINA Vol., Ref. A-9, p. 4-44, March. УПРАВЉАЊЕ КРЕТАЊЕМ ЛИФТА У ФУНКЦИЈИ ВРИЈЕДНОСТИ ТРЗАЈА ELEVATOR MOVEMENT ONTROL IN THE FUNTION OF JERK VALUE Бојан Кнежевић, Машински факултет, Бања Лука

Διαβάστε περισσότερα

Катедра за електронику, Основи електронике

Катедра за електронику, Основи електронике Лабораторијске вежбе из основа електронике, 13. 7. 215. Презиме, име и број индекса. Трајање испита: 12 минута Тест за лабораторијске вежбе 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 5 1 5 1 5 5 2 3 5 1

Διαβάστε περισσότερα

ЗЛАТНИ ПРЕСЕК У МАТЕМАТИЦИ THE GOLDEN SECTION IN MATHEMATICS

ЗЛАТНИ ПРЕСЕК У МАТЕМАТИЦИ THE GOLDEN SECTION IN MATHEMATICS ЗЛАТНИ ПРЕСЕК У МАТЕМАТИЦИ THE GOLDEN SECTION IN MATHEMATICS АУТОР: Анђелика Радивојевић, ученица II разреда, гимназије Бора Станковић Бор МЕНТОР: Светлана Арсенијевић, професор математике, гимназија Бора

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Примјена модела вредновања капиталне активе у функцији одређивања очекиваних приноса предузећа на тржишту капитала Републике Српске

Примјена модела вредновања капиталне активе у функцији одређивања очекиваних приноса предузећа на тржишту капитала Републике Српске ACTA ECONOMICA Година XIV, број 4 / фебруар 016. ISSN 151-858X, e ISSN 3 738X СТРУЧНИ ЧЛАНАК УДК: 347.731.1 DOI: 10.751/ACE164191J COBISS.RS-ID 5766168 Драган Јањић 1 Примјена модела вредновања капиталне

Διαβάστε περισσότερα

РЕГУЛАЦИЈА БРЗИНЕ КОД ЛИФТОВСКИХ ПОГОНА СА КОНТРОЛОМ ТРЗАЈА

РЕГУЛАЦИЈА БРЗИНЕ КОД ЛИФТОВСКИХ ПОГОНА СА КОНТРОЛОМ ТРЗАЈА УНИВЕРЗИТЕТ У БАЊОЈ ЛУЦИ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ Бојан Кнежевић РЕГУЛАЦИЈА БРЗИНЕ КОД ЛИФТОВСКИХ ПОГОНА СА КОНТРОЛОМ ТРЗАЈА семинарски рад Бања Лука, октобар 7. Тема: РЕГУЛАЦИЈА БРЗИНЕ КОД ЛИФТОВСКИХ

Διαβάστε περισσότερα

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ЕНЕРГЕТСКИХ ТРАНСФОРМАТОРА И АСИНХРОНИХ МАШИНА

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ЕНЕРГЕТСКИХ ТРАНСФОРМАТОРА И АСИНХРОНИХ МАШИНА Електротехнички факултет Универзитета у Београду Енергетски одсек Катедра за енергетске претвараче и погоне УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ЕНЕРГЕТСКИХ ТРАНСФОРМАТОРА И АСИНХРОНИХ МАШИНА Име и презиме:

Διαβάστε περισσότερα

ФИЗИКА Рад. Рад константне силе над системом = F d cos θ

ФИЗИКА Рад. Рад константне силе над системом = F d cos θ ФИЗИКА 2009 Понедељак, 26. Октобар, 2009 1. Рад 2. Кинетичка енергија 3. Потенцијална енергија 1. Конзервативне силе и потенцијална енергија 2. Неконзервативне силе. Отворенисистеми 4. Закон одржања енергије

Διαβάστε περισσότερα

Утицај дистрибуираних извора електричне енергије на мрежу

Утицај дистрибуираних извора електричне енергије на мрежу INFOTEH-JAHORINA Vol. 13, March 2014. Утицај дистрибуираних извора електричне енергије на мрежу Младен Бањанин, Јована Тушевљак Електротехнички факултет Источно Сарајево, Босна и Херцеговина banjanin@ymail.com,

Διαβάστε περισσότερα

Одређивање специфичне тежине и густине чврстих и течних тела. Одређивање специфичне тежине и густине чврстих и течних тела помоћу пикнометра

Одређивање специфичне тежине и густине чврстих и течних тела. Одређивање специфичне тежине и густине чврстих и течних тела помоћу пикнометра Одређивање специфичне тежине и густине чврстих и течних тела Густина : V Специфична запремина : V s Q g Специфична тежина : σ V V V g Одређивање специфичне тежине и густине чврстих и течних тела помоћу

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Сунчев систем. Кеплерови закони

Сунчев систем. Кеплерови закони Сунчев систем Кеплерови закони На слици је приказан хипотетички сунчев систем. Садржи једну планету (Земљу нпр.) која се креће око Сунца и једина сила која се ту појављује је гравитационо привлачење. Узимајући

Διαβάστε περισσότερα

Метод и кључни налази

Метод и кључни налази 55 54 Мапа у Србији Мапа у Србији Метод и кључни налази Републички завод за статистику 1 2 Мапа у Србији ЗАХВАЛНИЦА АУТОРА Овај извештај је резултат заједничког рада Републичког завода за статистику (РЗС)

Διαβάστε περισσότερα

ВЈЕЖБЕ ИЗ ПРЕДМЕТА МЕХАНИКА ТЛА вјежба број 7 - Чврстоћа тла СМИЧУЋА ЧВРСТОЋА ТЛА

ВЈЕЖБЕ ИЗ ПРЕДМЕТА МЕХАНИКА ТЛА вјежба број 7 - Чврстоћа тла СМИЧУЋА ЧВРСТОЋА ТЛА -1- СМИЧУЋА ЧВРСТОЋА ТЛА Смичућа чврстоћа представља највећи смичући напон који се може нанијети структури тла у одређеном правцу. Када је достигнут највећи могућ смичући напон, праћен пластичним деформацијама,

Διαβάστε περισσότερα

УПУТСТВО ЗА ОДРЕЂИВАЊЕ ВРСТЕ ДОКУМЕНАТА КОЈЕ ИЗРАЂУЈЕ ОПЕРАТЕР СЕВЕСО ПОСТРОЈЕЊА. август 2010.

УПУТСТВО ЗА ОДРЕЂИВАЊЕ ВРСТЕ ДОКУМЕНАТА КОЈЕ ИЗРАЂУЈЕ ОПЕРАТЕР СЕВЕСО ПОСТРОЈЕЊА. август 2010. УПУТСТВО ЗА ОДРЕЂИВАЊЕ ВРСТЕ ДОКУМЕНАТА КОЈЕ ИЗРАЂУЈЕ ОПЕРАТЕР СЕВЕСО ПОСТРОЈЕЊА август 2010. I. УВОД Сврха овог Упутства је да помогне оператерима који управљају опасним материјама, како да одреде да

Διαβάστε περισσότερα

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 1 МАШИНСКИ ЕЛЕМЕНТИ I

Машински факултет Универзитета у Београду/ Машински елементи 1/ Предавање 1 МАШИНСКИ ЕЛЕМЕНТИ I МАШИНСКИ ЕЛЕМЕНТИ I Дефиниција, подела и класификација машинских елемената Техникa и технологије имају за циљ да човеку, односно човечанству, омогуће што боље живљење, како материјално тако и духовно.

Διαβάστε περισσότερα

МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2011/2012. година УПУТСТВО ЗА РАД НА ТЕСТУ Тест који треба да решиш има 20 задатака.

Διαβάστε περισσότερα

РЕЦИКЛАЖА И ОДРЖИВИ РАЗВОЈ UDK 628.4(497.11)(094.9) Стручни рад

РЕЦИКЛАЖА И ОДРЖИВИ РАЗВОЈ UDK 628.4(497.11)(094.9) Стручни рад РЕЦИКЛАЖА И ОДРЖИВИ РАЗВОЈ UDK 628.4(497.11)(094.9) Стручни рад Технички факултет у Бору Универзитет у Београду, В.Ј. 12, 19210 Бор, Србија Катедра за минералне и рециклажне технологије Тел. +381 30 424

Διαβάστε περισσότερα

Задатак 1: Несташни миш (10 поена) се равномерно креће по тасу 2. Сматрати да да у току посматраног кретања нити остају вертикалне. Слика 1. Слика 2.

Задатак 1: Несташни миш (10 поена) се равномерно креће по тасу 2. Сматрати да да у току посматраног кретања нити остају вертикалне. Слика 1. Слика 2. ШКОЛСКА /4. ГОДИНЕ. ЗАДАЦИ -.5.4. Задатак : Несташни миш ( поена) Идеалан котур занемарљиве масе је преко идеалног динамометра окачен о плафон. Преко котура је пребачена идеална нит, на чијим крајевима

Διαβάστε περισσότερα

ИЗВЕШТАЈ О СПОЉАШЊЕМ ВРЕДНОВАЊУ КВАЛИТЕТА РАДА ШКОЛА

ИЗВЕШТАЈ О СПОЉАШЊЕМ ВРЕДНОВАЊУ КВАЛИТЕТА РАДА ШКОЛА Република Србија ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ИЗВЕШТАЈ О СПОЉАШЊЕМ ВРЕДНОВАЊУ КВАЛИТЕТА РАДА ШКОЛА (школска 2012/13. и школска 2013/14. година) Београд, децембар 2014. Завод за

Διαβάστε περισσότερα

. Одредити количник ако је U12 U34

. Одредити количник ако је U12 U34 област. У колу сталне струје са слике познато је = 3 = и =. Одредити количник λ = E/ E ако је U U34 =. Решење: а) λ = b) λ = c) λ = 3 / d) λ = g E 4 g 3 3 E Слика. област. Дата је жичана мрежа у облику

Διαβάστε περισσότερα

Orthogonal Frequency Division Multiplex перформансе система базираног на стандарду IEEE a

Orthogonal Frequency Division Multiplex перформансе система базираног на стандарду IEEE a XI ТЕЛЕКОМУНИКАЦИОНИ ФОРУМ ТЕЛФОР 003, Београд, 5.-7.11.003. Orthogonal Frquncy Dvon Multplx перформансе система базираног на стандарду IEEE 80.11a Немања Петровић, Телеком Србија А.Д. Београд I УВОД Развојем

Διαβάστε περισσότερα

Утврђивање времена сушења кукуруза примјеном технологије драјерације

Утврђивање времена сушења кукуруза примјеном технологије драјерације Оригиналан научни рад Original scientific paper UDK: 631.15:631.563 DOI: 10.7251/AGRSR1504519R Утврђивање времена сушења кукуруза примјеном технологије драјерације Борислав Раилић 1, Зоран Маличевић 1

Διαβάστε περισσότερα

ТРЕНДови ШУМСКЕ ПОВРШИНЕ И БРОЈА СТАНОВНИКА

ТРЕНДови ШУМСКЕ ПОВРШИНЕ И БРОЈА СТАНОВНИКА ГЛАСНИК ШУМАРСКОГ ФАКУЛТЕТА, БЕОГРАД, 2012, бр. 106, стр. 183-196 BIBLID: 0353-4537, (2012), 106, p 183-196 Ranković N. 2012. Trends of forest area and population and the impact of population on forest

Διαβάστε περισσότερα

Енергетски трансформатори рачунске вежбе

Енергетски трансформатори рачунске вежбе 1. Jеднофазни транформатор примарног напона 4 V, фреквенције 5 Hz има једностепени крстасти попречни пресек магнетског кола чије су димензије a = 55mm и b = 35 mm. а) Израчунати површину пресека чистог

Διαβάστε περισσότερα

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z.

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z. Дефиниција функције више променљивих Околина тачке R График и линије нивоа функције : Дефиниција Величина се назива функцијом променљивих величина и на скупу D ако сваком уређеном пару D по неком закону

Διαβάστε περισσότερα

На основу члана 15. став 2, члана 18. став 5. и члана 21. став 8. Закона о метрологији ( Службени гласник РС, број 30/10), ПРАВИЛНИК

На основу члана 15. став 2, члана 18. став 5. и члана 21. став 8. Закона о метрологији ( Службени гласник РС, број 30/10), ПРАВИЛНИК 4463 На основу члана 15. став 2, члана 18. став 5. и члана 21. став 8. Закона о метрологији ( Службени гласник РС, број 30/10), Министар привреде доноси ПРАВИЛНИК о мерним трансформаторима који се користе

Διαβάστε περισσότερα

ИНДЕКСИ ТЕМПЕРАТУРНИХ И ПАДАВИНСКИХ ЕКСТРЕМА У ПОДГОРИЦИ У ПЕРИОДУ

ИНДЕКСИ ТЕМПЕРАТУРНИХ И ПАДАВИНСКИХ ЕКСТРЕМА У ПОДГОРИЦИ У ПЕРИОДУ Доступно онлајн на www.gi.sanu.ac.rs Зборник радова Географског института Јован Цвијић САНУ 61(1) (29-39) Оригинални научни рад УДК: 911.2:551.58(497.16) ИНДЕКСИ ТЕМПЕРАТУРНИХ И ПАДАВИНСКИХ ЕКСТРЕМА У

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

ТЕХНИЧЕСКИ ПАРАМЕТРИ ПРЕДИ ДА СЕ ОБЪРНЕТЕ КЪМ СЕРВИЗА

ТЕХНИЧЕСКИ ПАРАМЕТРИ ПРЕДИ ДА СЕ ОБЪРНЕТЕ КЪМ СЕРВИЗА 4. Никога не потапяйте уреда във вода или друга течност и не позволявайте вода да проникне до електрическата част на уреда, докато го почиствате! 5. Не използвайте абразивни предмети или разтворители!

Διαβάστε περισσότερα

ОБРАЗОВНИ СОФТВЕР КАО ПЕРСПЕКТИВА УЧЕЊА ПУТЕМ РЈЕШАВАЊА ПРОБЛЕМА

ОБРАЗОВНИ СОФТВЕР КАО ПЕРСПЕКТИВА УЧЕЊА ПУТЕМ РЈЕШАВАЊА ПРОБЛЕМА Методолошки рад UDK 371.3::51]:004 ОБРАЗОВНИ СОФТВЕР КАО ПЕРСПЕКТИВА УЧЕЊА ПУТЕМ РЈЕШАВАЊА ПРОБЛЕМА EDUCATIONAL SOFTWARE PERSPECTIVE OF LEARNING THROUGH PROBLEM SOLVING Драгица Милинковић, Миленко Пикула

Διαβάστε περισσότερα

ОДРЕЂИВАЊЕ И ПРИМЕНА МЕРИДИЈАНА М. БОЖИЋ, Д. ЦУЦИЋ*, Т. МАРКОВИЋ-ТОПАЛОВИЋ**, И. САВИЋ***, Ј. ПОПОВИЋ****

ОДРЕЂИВАЊЕ И ПРИМЕНА МЕРИДИЈАНА М. БОЖИЋ, Д. ЦУЦИЋ*, Т. МАРКОВИЋ-ТОПАЛОВИЋ**, И. САВИЋ***, Ј. ПОПОВИЋ**** ОДРЕЂИВАЊЕ И ПРИМЕНА МЕРИДИЈАНА М. БОЖИЋ, Д. ЦУЦИЋ*, Т. МАРКОВИЋ-ТОПАЛОВИЋ**, И. САВИЋ***, Ј. ПОПОВИЋ**** Институт за физику, Београд, bozic@ipb.ac.rs *Центар за таленте Михајло Пупин, Панчево, dragoljub.cucic@gmail.com

Διαβάστε περισσότερα

СКРИПТА ЗА ПРВИ КОЛОКВИЈУМ ИЗ ОПШТЕГ КУРСА ФИЗИЧКЕ ХЕМИЈЕ I

СКРИПТА ЗА ПРВИ КОЛОКВИЈУМ ИЗ ОПШТЕГ КУРСА ФИЗИЧКЕ ХЕМИЈЕ I СКРИПТА ЗА ПРВИ КОЛОКВИЈУМ ИЗ ОПШТЕГ КУРСА ФИЗИЧКЕ ХЕМИЈЕ I 9/ . ГУСТИНА ТЕЧНОСТИ Апсолутна густина ( ρ ) је маса јединице запремине на одређеној 4 температури и притску (јединица у СИ систему за апсолутну

Διαβάστε περισσότερα

Примјена линијских одводника пренапона за заштиту 110 kv постројења од атмосферских пренапона

Примјена линијских одводника пренапона за заштиту 110 kv постројења од атмосферских пренапона INFOTEH-JAHORINA Vol. 15, March 2016. Примјена линијских одводника пренапона за заштиту 110 kv постројења од атмосферских пренапона Младен Бањанин Електротехнички факултет Универзитет у Источном Сарајеву

Διαβάστε περισσότερα

АНАЛИЗА РЕЖИМА И БИЛАНС ВОДА ДОЈКИНАЧКЕ РЕКЕ ANALYSIS OF THE REGIME AND WATER BALANCE DOJKINACKA RIVER

АНАЛИЗА РЕЖИМА И БИЛАНС ВОДА ДОЈКИНАЧКЕ РЕКЕ ANALYSIS OF THE REGIME AND WATER BALANCE DOJKINACKA RIVER Пиротски зборник, бр. 40, 183-201 УДК: 556.5(497.11) DOI: 10.5937/pirotzbor1540183R оригиналан рад original work Весна Ристић Вакањац, Универзитет у Београду, Рударскогеолошки факултет, Департман за хидрогеологију,

Διαβάστε περισσότερα

1. ЕЛЕКТРОСТАТИЧКО ПОЉЕ

1. ЕЛЕКТРОСТАТИЧКО ПОЉЕ Б Крстајић Збирка задатака из Електромагнетике - (007/008) ЕЛЕКТРОСТАТИЧКО ПОЉЕ Примјер Израчунати силу на тачкасто наелектрисање = 0µ C од тачкастог наелектрисања = 300µ C ако су координате тачака и одређене

Διαβάστε περισσότερα

ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД.

ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД. ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД. ВО ПРЕЗЕНТАЦИЈАТА ЌЕ ПРОСЛЕДИТЕ ЗАДАЧИ ЗА ПРЕСМЕТУВАЊЕ ПЛОШТИНА И ВОЛУМЕН НА ГЕОМЕТРИСКИТЕ ТЕЛА КОИ ГИ ИЗУЧУВАМЕ ВО ОСНОВНОТО ОБРАЗОВАНИЕ. СИТЕ ЗАДАЧИ

Διαβάστε περισσότερα

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству. април 06. Суботица, СРБИЈА АНАЛИЗA СТАБИЛНОСТИ ВЕРТИКАЛНОГ ЗАСЕКА ПРИМЕНОМ МЕХАНИКЕ ЛОМА Предраг Митковић Никола Обрадовић Драгослав Шумарац

Διαβάστε περισσότερα

C-реактивни протеин као инфламаторни маркер у процени ефикасности лечења акутних дентогених инфекција

C-реактивни протеин као инфламаторни маркер у процени ефикасности лечења акутних дентогених инфекција 446 Srp Arh Celok Lek. 2011 Jul-Aug;139(7-8):446-451 DOI: 10.2298/SARH1108446D ОРИГИНАЛНИ РАД / ORIGINAL ARTICLE UDC: 616.314-002-07 C-реактивни протеин као инфламаторни маркер у процени ефикасности лечења

Διαβάστε περισσότερα

Машински факултет Универзитета у Београду/ Машински елементи 2/ Предавање 10

Машински факултет Универзитета у Београду/ Машински елементи 2/ Предавање 10 Машински факултет Универзитета у Београду/ Машински елементи / Предавање 0 Ланчани преносници се убрајају у групу принудних посредних преносника, код којих се пренос снаге остварује савитљивим елементима

Διαβάστε περισσότερα

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2012/2013. година УПУТСТВО ЗА РАД Тест који треба да решиш

Διαβάστε περισσότερα

Приредиле: др Сања Филиповић др Александра Јоксимовић Флу, Наставник као истраживач

Приредиле: др Сања Филиповић др Александра Јоксимовић Флу, Наставник као истраживач Приредиле: др Сања Филиповић др Александра Јоксимовић Флу, 2015. 1 Наставник као истраживач 2 Циљ курса је развијање компетенција студената, будућих наставника да: истражују и унапређују сопствену праксу

Διαβάστε περισσότερα

МЕХАНИКА ФЛУИДА. скрипта

МЕХАНИКА ФЛУИДА. скрипта Факултет техничких наука Нови Сад МЕХАНИКА ФЛУИДА скрипта Маша Букуров септембар, 2006. УВОД У МЕХАНИКУ ФЛУИДА У циљу побољшања услова живота, иако несвесно, принципи механике флуида примењивани су још

Διαβάστε περισσότερα

ЕЛЕМЕНТИ ИЗГРАЂЕНОСТИ И РАСТА САСТОЈИНЕ ЦРНОГ БОРА НА СТАНИШТУ ЦЕРА И СЛАДУНА

ЕЛЕМЕНТИ ИЗГРАЂЕНОСТИ И РАСТА САСТОЈИНЕ ЦРНОГ БОРА НА СТАНИШТУ ЦЕРА И СЛАДУНА UDK 630*56:582,475 Pinus nigrа Оригинални научни рад ЕЛЕМЕНТИ ИЗГРАЂЕНОСТИ И РАСТА САСТОЈИНЕ ЦРНОГ БОРА НА СТАНИШТУ ЦЕРА И СЛАДУНА МИЛИВОЈ ВУЧКОВИЋ 1 БРАНКО СТАЈИЋ 1 МАРКО СМИЉАНИЋ 1 1. УВОД Извод: У раду

Διαβάστε περισσότερα

Универзитет y Београду Машински факултет

Универзитет y Београду Машински факултет Универзитет y Београду Машински факултет Горан М. Цвијовић Истраживање утицаја локалног оптерећења точкова колица на напонска стања једношинских носача машина за механизацију Докторска дисертација Београд,

Διαβάστε περισσότερα

ТЕСТ ИЗ ФИЗИКЕ (3 сата)

ТЕСТ ИЗ ФИЗИКЕ (3 сата) Електријада 003 Будва ТЕСТ ИЗ ФИЗИКЕ (3 сата) Заокружује се само један од понуђених одговора. Сваки тачан и адекватно образложен одговор бодује се са по 5 поена. ЗАДАЦИ. Положај материјалне тачке (МТ),

Διαβάστε περισσότερα

Тест за I разред средње школе

Тест за I разред средње школе Министарство просветe Републике Србије Српско хемијско друштво Републичко такмичење из хемије Ужице, 23.05.2009. Тест за I разред средње школе Име и презиме Место и школа Разред Име и презиме професора

Διαβάστε περισσότερα

Нумеричко моделовање ударних оштећења ваздухопловних структура

Нумеричко моделовање ударних оштећења ваздухопловних структура Универзитет у Београду Машински факултет Драгољуб М. Спасић Нумеричко моделовање ударних оштећења ваздухопловних структура докторска дисертација Београд, 2015 University of Belgrade Faculty of mechanical

Διαβάστε περισσότερα

ПРИМЕНА ЕЛЕКТРОНСКОГ НАСТАВНОГ МАТЕРИЈАЛА У ОБРАДИ ТЕМЕ СИЛА У ГИМНАЗИЈИ

ПРИМЕНА ЕЛЕКТРОНСКОГ НАСТАВНОГ МАТЕРИЈАЛА У ОБРАДИ ТЕМЕ СИЛА У ГИМНАЗИЈИ УНИВЕРЗИТЕТ У НОВОМ САДУ Природно-математички факултет Департман за физику ТЕЛ/ФАКС: +381(0)21 455 318 21000 Нови Сад, Трг Д. Обрадовића 4 ПРИМЕНА ЕЛЕКТРОНСКОГ НАСТАВНОГ МАТЕРИЈАЛА У ОБРАДИ ТЕМЕ СИЛА У

Διαβάστε περισσότερα

Како лечимо генерализовани анксиозни поремећај?

Како лечимо генерализовани анксиозни поремећај? 204 Srp Arh Celok Lek. 2014 Mar-Apr;142(3-4):204-212 DOI: 10.2298/SARH1404204L ОРИГИНАЛНИ РАД / ORIGINAL ARTICLE UDC: 616.89-008.441-085 Како лечимо генерализовани анксиозни поремећај? Милан Латас 1,2,

Διαβάστε περισσότερα

РАЗЛИКЕ ПРИМЕЊЕНИХ МЕТОДА У ПРОЦЕНИ ТЕЛЕСНОГ САСТАВА ДЕЧАКА АДОЛЕСЦЕНТСКОГ УЗРАСТА

РАЗЛИКЕ ПРИМЕЊЕНИХ МЕТОДА У ПРОЦЕНИ ТЕЛЕСНОГ САСТАВА ДЕЧАКА АДОЛЕСЦЕНТСКОГ УЗРАСТА НАУЧНИ РАДОВИ Марија Мацура Борис Јерковић Марина Ђорђевић-Никић Ивана Милановић 613.25-053.2/.6 Милинко Дабовић Изворни научни чланак Факултет спорта и физичког васпитања, Универзитет у Београду РАЗЛИКЕ

Διαβάστε περισσότερα

Тест за I разред средње школе

Тест за I разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Међуокружно такмичење из хемије 10. мај 2003. Тест за I разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

ПИТАЊА ЗА ТЕСТ ИЗ МАШИНСКИХ ЕЛЕМЕНАТА

ПИТАЊА ЗА ТЕСТ ИЗ МАШИНСКИХ ЕЛЕМЕНАТА ПИТАЊА ЗА ТЕСТ ИЗ МАШИНСКИХ ЕЛЕМЕНАТА 1.Толеранције су: 2 а) прописи о избору материјала и методе обраде машинских делова б) прописи о величини и облику машинских делова в) дозвољена одступања од задатих

Διαβάστε περισσότερα

ПЛАНЕТАРНИ РЕДУКТОР СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ. Пројектовао и нацртао. Милош Мајсторовић. Подаци о редуктору:

ПЛАНЕТАРНИ РЕДУКТОР СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ. Пројектовао и нацртао. Милош Мајсторовић. Подаци о редуктору: СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ ПЛАНЕТАРНИ РЕДУКТОР Подаци о редуктору: Број зубаца погонског зупчаника Z = 20 Број зубаца гоњеног зупчаника Z2 = 40 Нагиб бока зупца β = 0 Померање профила х = 0 Преносни

Διαβάστε περισσότερα

PDH (Plesiochronous Digital Hierarchy) систем

PDH (Plesiochronous Digital Hierarchy) систем 2.2.2.1. PDH (Plesiochronous Digital Hierarchy) систем Импулсно кодно мултиплексирање (РСМ) и хијерархијски комуникациони систем који је објашњен често се назива и PDH систем ( plesiоchronous digital hierarchy).

Διαβάστε περισσότερα

ЕЛЕКТРИЧНА СТРУЈА РЈЕШАВАЊА ЗАДАТАКА

ЕЛЕКТРИЧНА СТРУЈА РЈЕШАВАЊА ЗАДАТАКА Ивана Љубојевић ЕЛЕКТРИЧНА СТРУЈА РЈЕШАВАЊА ЗАДАТАКА 0. Садржај: Улога и значај рјешавања задатака из физике... Класификација задатака... 4 Методика рјешавања задатака... 5 Квантитативни задаци... 6 Квалитативни

Διαβάστε περισσότερα

Класификација и класе опасности

Класификација и класе опасности На основу члана 10. став 4, члана 16. став 6, члана 17. став 2. и члана 30. став 6. Закона о хемикалијама ( Службени гласник РС, број 36/09) и тачке 8. став 5. подтачка 11) Одлуке о оснивању Агенције за

Διαβάστε περισσότερα

Катодна заштита подземних инсталација

Катодна заштита подземних инсталација Аутор: Љиљана Топаловић, дипл.ел.инж. Катодна заштита подземних инсталација У складу са принципима термодинамике метали у које је уложена енергија у процесу екстракције из руде настоје да у природном окружењу

Διαβάστε περισσότερα

ПРАКТИЧАН ПРИМЕР ПРОРАЧУНА

ПРАКТИЧАН ПРИМЕР ПРОРАЧУНА Инжењерска комора Србије ПРАКТИЧАН ПРИМЕР ПРОРАЧУНА ЕНЕРГЕТСКЕ ЕФИКАСНОСТИ ЗГРАДА У СКЛАДУ СА ВАЖЕЋИМ ПРОПИСИОМА IX Међународни и регионални сајам привреде Суботица 2015 Суботица, Грађевински факултет,

Διαβάστε περισσότερα

Управни одбор Републичке агенције за електронске комуникације, на седници од 25. октобра године, донео је ПРАВИЛНИК

Управни одбор Републичке агенције за електронске комуникације, на седници од 25. октобра године, донео је ПРАВИЛНИК На основу чл. 8. став 1. тачка 1), 23. став 1, 37. став 3. и 38. став 3. Закона о електронским комуникацијама ( Службени гласник РС, бр. 44/10 и 60/13-УС), члана 12. став 1. тачка 1) и члана 16. тачка

Διαβάστε περισσότερα

Microsoft Expression Web корисничко окружење. Прављење новог сајта

Microsoft Expression Web корисничко окружење. Прављење новог сајта Microsoft Expression Web корисничко окружење Expression Web кориснички интерфејс се састоји од бројних окана задатака (task panes), трака алатки (toolbars), и дијалога са широким опсегом могућности. Команде

Διαβάστε περισσότερα

ПРОРАЧУН ДИЈАФРАГМЕ ПРЕМА КЛАСИЧНОЈ МЕТОДИ И ПРЕМА ЕВРОКОДУ 7

ПРОРАЧУН ДИЈАФРАГМЕ ПРЕМА КЛАСИЧНОЈ МЕТОДИ И ПРЕМА ЕВРОКОДУ 7 ПРОРАЧУН ДИЈАФРАГМЕ ПРЕМА КЛАСИЧНОЈ МЕТОДИ И ПРЕМА ЕВРОКОДУ 7 Петар Сантрач 1 Жељко Бајић 2 УДК: Резиме: У односу на претходни период, у последњих 10-так година je значајно порастао број објеката у урбаним

Διαβάστε περισσότερα

Как Бог велик! Ι œ Ι œ Ι œ. œ œ Ι œ. œ œ œ œ œ œ œ œ. œœœ. œ œ. œ Œ. œ œ œ œ œ. œ œ œ œ œ œ œ œ œ œ œ œ œ. œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ

Как Бог велик! Ι œ Ι œ Ι œ. œ œ Ι œ. œ œ œ œ œ œ œ œ. œœœ. œ œ. œ Œ. œ œ œ œ œ. œ œ œ œ œ œ œ œ œ œ œ œ œ. œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ Как Бог велик! oprano Любовь Бондаренко Степенно Œ Светлана Зайцева Аранж. Станислав Маген ass Œ 1.Как Бог ве.как Бог ве Piano Œ Œ Как Как Бог Бог ве ве лик! Е лик! Мне не го по ве ли чье ня тно, сво им

Διαβάστε περισσότερα

Логаритамска функција шта ће то мени?

Логаритамска функција шта ће то мени? Логаритамска функција шта ће то мени? Александра Равас Јован Кнежевић Нела Спасојевић Републички семинар 06. о настави математике и рачунарства у основним и средњим школама Београд, 4. фебруар 06. Кратка

Διαβάστε περισσότερα

ГЛАСНИК СРПСКОГ ГЕОГРАФСКОГ ДРУШТВА BULLETIN OF THE SERBIAN GEOGRAPHICAL SOCIETY ГОДИНА СВЕСКА XCIV- Бр. 3 YEAR 2014 TOME XCIV - N о 3

ГЛАСНИК СРПСКОГ ГЕОГРАФСКОГ ДРУШТВА BULLETIN OF THE SERBIAN GEOGRAPHICAL SOCIETY ГОДИНА СВЕСКА XCIV- Бр. 3 YEAR 2014 TOME XCIV - N о 3 ГЛАСНИК СРПСКОГ ГЕОГРАФСКОГ ДРУШТВА BULLETIN OF THE SERBIAN GEOGRAPHICAL SOCIETY ГОДИНА 2014. СВЕСКА XCIV- Бр. 3 YEAR 2014 TOME XCIV - N о 3 Оriginal Scientific papers RECENT EXTREME AIR TEMPERATURE CHANGES

Διαβάστε περισσότερα

КОНСТАНТИН ВЕЛИКИ ( )

КОНСТАНТИН ВЕЛИКИ ( ) Мр Александра Смирнов-Бркић Филозофски факултет у Новом Саду Тема такмичења из историје 2012/2013. година КОНСТАНТИН ВЕЛИКИ (306 337) Део I ЖИВОТ И ВЛАДАВИНА КОНСТАНТИНА ВЕЛИКОГ Константиново порекло Диоклецијан

Διαβάστε περισσότερα

ИЗБОРНОМ ВЕЋУ ПОЉОПРИВРЕДНОГ ФАКУЛТЕТА УНИВЕРЗИТЕТА У БЕОГРАДУ

ИЗБОРНОМ ВЕЋУ ПОЉОПРИВРЕДНОГ ФАКУЛТЕТА УНИВЕРЗИТЕТА У БЕОГРАДУ ИЗБОРНОМ ВЕЋУ ПОЉОПРИВРЕДНОГ ФАКУЛТЕТА УНИВЕРЗИТЕТА У БЕОГРАДУ Одлуком Изборног већа Пољопривредног факултета од 30.06.2016. године одређени смо у Комисију за писање реферата о кандидатима који учествују

Διαβάστε περισσότερα

Studija o životnom standardu

Studija o životnom standardu Studija o životnom standardu Srbija 00 007. CPBIJE Republiåki zavod za statistiku Srbije The World Bank Department for International Development Студија о животном стандарду 00-007 Издавач: Републички

Διαβάστε περισσότερα

Компјутерска графика

Компјутерска графика Компјутерска графика Подела компјутерске графике Растерска Векторска Растерска графика У рачунарској графици, растер или битмапа, је структура података представљена у правоугаоној мрежи пиксела, то јест

Διαβάστε περισσότερα

Welcome to the. of wega

Welcome to the. of wega Welcome to the world of wega ATLAS Simple and essential, but with a professional core that can always meet the highest demands. Thanks to its minimalist linear design, Atlas adapts perfectly to any context

Διαβάστε περισσότερα

Анализа фактора ризика за настанак непожељних интеракција лекова код пацијената у неуролошкој јединици интензивне неге

Анализа фактора ризика за настанак непожељних интеракција лекова код пацијената у неуролошкој јединици интензивне неге УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ МЕДИЦИНСКИХ НАУКА НАСТАВНО-НАУЧНОМ ВЕЋУ 1.Одлука Наставно-научног већа Одлуком Наставно-научног већа Факултета медицинских наука Универзитета у Крагујевцу, број 01-9476/3-1,

Διαβάστε περισσότερα

ГЛАСНИК СРПСКОГ ГЕОГРАФСKОГ ДРУШТВА BULLETIN OF THE SERBIAN GEOGRAPHICAL SOCIETY ГОДИНА СВЕСКА LXXXVI - Бр. 2 YEAR 2006 TOME LXXXVI - N о 2

ГЛАСНИК СРПСКОГ ГЕОГРАФСKОГ ДРУШТВА BULLETIN OF THE SERBIAN GEOGRAPHICAL SOCIETY ГОДИНА СВЕСКА LXXXVI - Бр. 2 YEAR 2006 TOME LXXXVI - N о 2 ГЛАСНИК СРПСКОГ ГЕОГРАФСKОГ ДРУШТВА BULLETIN OF THE SERBIAN GEOGRAPHICAL SOCIETY ГОДИНА 2006. СВЕСКА LXXXVI - Бр. 2 YEAR 2006 TOME LXXXVI - N о 2 Оригиналан научни рад UDC 911.2:551.4(497.11) СЛАВОЉУБ

Διαβάστε περισσότερα