6.2. Симетрала дужи. Примена

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "6.2. Симетрала дужи. Примена"

Transcript

1 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права која садржи средиште те дужи и нормална је на њу. 24. Нацртај дуж: 1) АВ = 6 cm; 2) D = 7 cm; 3) EF = 5 cm, а затим за сваку од њих нацртај симетралу. 25. На слици 23 су приказане по три дужи. Свакој од њих нацртај симетралу. P T K p Слика 23. S F E Симетрала дужи је једна њена оса симетрије. Савијањем папира у односу на праву (слика 22); тачка А В, тачка О О, дуж АО ОВ. Ово значи, да је симетрала дужи једна њена оса симетрије. ( * ) (*) Дуж АВ има још једну осу симетрије. Коју? Та оса симетрије није њена симетрала. 121

2 26. а) Истакнимо неке праве које нису симетрале дате дужи (слика 24). Слика 24. q p У првом случају права р не садржи средиште дужи (О p), а у другом случају права q није управна (нормална) на дуж АВ. Приметимо да симетрала дужи мора да испуњава оба услова. б) Нацртај дуж и праву која не испуњава оба услова. Да ли је та права симетрала дате дужи? Истакнимо једно важно својство симетрале дужи. Свака тачка симетрале дужи једнако је удаљена од крајњих тачака (крајева) те дужи. И обратно, ако је нека тачка једнако удаљена од крајњих тачака те дужи, онда она припада симетрали дужи. Утврдимо (образложимо ( * ) ) тачност само првог дела тог тврђења. Дата је дуж АВ и њена симетрала. ( АВ и АО = ОВ). Тачка М припада симетрали (М ). Тврди се да је: АМ = ВМ (слика 25)? Слика 25. X Тачност једнакости АМ = ВМ утврђујемо на следећи начин: Симетрала је једна оса симетрије дужи АВ, и то значи: АО ОВ, М М, АМ МВ; што показује да је: АМ = ВМ. Тиме је тврђење доказано: За било коју тачку Х симетрале дате дужи АВ, на исти начин, утврђује се: АХ = ВХ. математика за 5. разред 122 основне школе (*) Често се каже и докажимо.

3 То значи да је свака тачка симетрале дужи једнако удаљена од њених крајњих тачака. Напомена: За тачке које не припадају симетрали дужи показујемо (само мерењем) да нису једнако удаљене од њених крајева (слика 26). АО = ОВ и АВ. АS < S и T > T Слика 26. Слика 27. N S 1 1 T 2 N 2 Дата је дуж АВ (слика 27). Како извршити конструкцију ( * ) симетрале те дужи? Решење: Конструишимо кружнице 1 (А, r) и 2 (, r), где је r > 2. Кружнице 1 и 2 секу се у тачкама М 1 и М 2. Даље, конструишемо друге две кружнице 3 (А, r 1 ) и 4 (, r), где је r 1 > r, и оне се секу у тачкама N 1 и N 2. Ако наставимо конструкције других кружница на исти начин, тј. центри су им тачке А и В и полупречници једнаки, њиховим пресеком добијамо тачке једнако удаљене од крајњих тачака дужи АВ. Све те тачке (М 1, М 2, N 1, N 2,...) припадају симетрали дужи АВ, захваљујући својству симетрале дужи. Конструкцијом симетрале дужи, одредили смо праву АВ и тачку О која полови дуж АВ, тј. АО = ОВ. До сада смо средиште дужи одређивали (приближно) мерењем. Сада се то може одредити и конструкцијом. 27. Дате су дужи АВ и СD (слика 28). Конструиши њихове симетрале. Одреди средишта тих дужи. D Слика 28. (*) Лењиром цртамо праву, а шестаром конструишемо одређене кружнице. Каже се: Тако вршимо конструкције неких фигура. 123

4 * 28. Нацртај дуж АВ = а, па конструиши: 1) средиште дужи а; 2) четвртину дужи а; 3) 3 8 а. 29. Нацртај правоугаоник. Конструиши све његове осе симетрије. 30. Дате су изломљене линије (слика 29). Слика 29. Слика 30. Конструиши симетрале свих назначених дужи. Шта се уочава за симетрале свих дужи у случају 2)? Две нормалне праве цртали смо до сада лењиром. Користећи својства симетрале дужи сада их је могуће и конструисати. Конструкција нормале у датој тачки праве. Дата је права а и једна њена тачка М ( а) (слика 30). a b Задатак: конструисати праву b, тако да је b a и М b. Решење: Конструишимо кружницу (М, r). Кружница сече праву a у тачкама А и В. Тачка М је средиште дужи АВ, тј. АМ = МВ. Симетрала дужи АВ је тражена права b (b a). * 31. Нацртај праву p. Конструиши неку праву n, тако да је n p. Колико постоји правих управних на праву p? Какав је међусобни положај тих правих? * 32. Конструиши кружницу чији је полупречник 3 cm и додирује дату праву a у датој тачки М (М a). Колико решења има тај задатак? * 33. Дуж а је пречник кружнице. Конструиши ту кружницу. * 34. Користећи модел круга нацртај кружницу, а затим конструиши њен центар. Конструкција нормале на праву из тачке ван праве. Дата је права a и једна тачка М ван праве (М a) (слика 31). Задатак: конструисати праву b, тако да је b a и М b. Конструишимо кружницу (М, r), где је r изабрано тако да кружница сече праву a у тачкама А и В. Симетрала дужи АВ је тражена права b. Образложи то тврђење. математика за 5. разред 124 основне школе

5 r Слика 31. Слика 32. r a b * 35. Дата је дуж МN и тачка А ван те дужи. Конструиши праву n, тако да је n МN и А n. 36. Дат је троугао АВС (слика 32). Конструиши праву која садржи тачку С и нормална је на праву АВ. 36.а Дате су три тачке А, В, С и тачка В је слика тачке В у односу на осу симетрије. Конструиши осу симетрије и пресликај тачке А и С у односу на ту осу (слика 32.1). Слика Дате су две различите тачке. Конструисати кружницу која садржи дате тачке. Колико решења има задатак? * 38. Дате су две тачке. Конструисати кружницу која садржи дате тачке, а полупречник јој је 5 cm. Испитај све случајеве. 39. Конструиши кружницу која додирује дату праву у датој тачки. 40. Конструиши кружницу која додирује дату праву у датој тачки, а полупречник јој је 4,5 cm Симетрала угла Дат је угао xоy (слика 33). Како конструисати праву која дели угао xоy на два једнака дела (каже се: полови га)? y Слика X 1 α x 125

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

4.4. Тежиште и ортоцентар троугла

4.4. Тежиште и ортоцентар троугла 50. 1) Нацртај правоугли троугао и конструиши његову уписану кружницу. ) Конструиши једнакокраки троугао чија је основица = 6 m и крак = 9 m, а затим конструиши уписану и описану кружницу. Да ли се уочава

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом). СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5 МАТЕМАТИЧКИ ЛИСТ 014/15. бр. XLIX-5 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред 1. а) 70 - седамсто три; б) двесто осамдесет два 8.. а) 4, 54, 54, 45, 504, 54. б)

Διαβάστε περισσότερα

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5 05.03.011 - III РАЗРЕД 1. Нацртај 4 праве a, b, c и d, ако знаш да је права а нормална на праву b, права c нормалана на b, а d паралелнa са а. Затим попуни табелу стављајући знак (ако су праве нормалне)

Διαβάστε περισσότερα

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао ЗАДАЦИ ЗА САМОСТАЛНИ РАД Задаци за самостлни рад намењени су првенствено ученицима који се припремају за полагање завршног испита из математике на крају обавезног основног образовања. Задаци су одабрани

Διαβάστε περισσότερα

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити. IV разред 1. Колико ће година проћи од 1. јануара 2015. године пре него што се први пут догоди да производ цифара у ознаци године буде већи од збира ових цифара? 2. Свако слово замени цифром (различита

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

Испитвање тока функције

Испитвање тока функције Милош Станић Техничка школа Ужицe 7/8 Испитвање тока функције Испитивање тока функције y f подразумева да се аналитичким путем дође до сазнања о понашању функције, као и њеним значајним тачкама у координантном

Διαβάστε περισσότερα

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z.

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z. Дефиниција функције више променљивих Околина тачке R График и линије нивоа функције : Дефиниција Величина се назива функцијом променљивих величина и на скупу D ако сваком уређеном пару D по неком закону

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака

Διαβάστε περισσότερα

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.

Διαβάστε περισσότερα

ЗЛАТНИ ПРЕСЕК У МАТЕМАТИЦИ THE GOLDEN SECTION IN MATHEMATICS

ЗЛАТНИ ПРЕСЕК У МАТЕМАТИЦИ THE GOLDEN SECTION IN MATHEMATICS ЗЛАТНИ ПРЕСЕК У МАТЕМАТИЦИ THE GOLDEN SECTION IN MATHEMATICS АУТОР: Анђелика Радивојевић, ученица II разреда, гимназије Бора Станковић Бор МЕНТОР: Светлана Арсенијевић, професор математике, гимназија Бора

Διαβάστε περισσότερα

1. УВОД 1.1. ЗАШТО ИНДИВИДУАЛИЗАЦИЈА НАСТАВЕ МАТЕМАТИКЕ? ''Настава математике није наука. Она је уметност'' Ђерђ Поја - ''Математичко откриће''

1. УВОД 1.1. ЗАШТО ИНДИВИДУАЛИЗАЦИЈА НАСТАВЕ МАТЕМАТИКЕ? ''Настава математике није наука. Она је уметност'' Ђерђ Поја - ''Математичко откриће'' ''Настава математике није наука. Она је уметност'' Ђерђ Поја - ''Математичко откриће'' 1. УВОД Зашто су краљевићи и царевићи од античких па до наших времена имали своје приватне учитеље математике? Зашто

Διαβάστε περισσότερα

ПРОЈЕКТОВАЊЕ РАМПЕ. Слика А.1 - (а) приказ рампе у основи, (б) подужни пресек рампе

ПРОЈЕКТОВАЊЕ РАМПЕ. Слика А.1 - (а) приказ рампе у основи, (б) подужни пресек рампе ПРОЈЕКТОВАЊЕ РАМПЕ Рампа представља косу подземну просторију која повезује хоризонте или откопне нивое, и тако је пројектована и изведена да омогућује кретање моторних возила. Приликом пројектовања рампе

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕНИКЕ

ОСНОВА ЕЛЕКТРОТЕНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ЧЕТРНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 1

Διαβάστε περισσότερα

МРЕЖЕ ПАРТИЦИЈА И КОНГРУЕНЦИЈА АЛГЕБРИ Мастер рад

МРЕЖЕ ПАРТИЦИЈА И КОНГРУЕНЦИЈА АЛГЕБРИ Мастер рад Универзитет у Београду Математички факултет МРЕЖЕ ПАРТИЦИЈА И КОНГРУЕНЦИЈА АЛГЕБРИ Мастер рад студент: Данка Николић ментор: доцент др Небојша Икодиновић Београд, 2016. Садржај Предговор... 1 1. Уводни

Διαβάστε περισσότερα

Реализована вежба на протоборду изгледа као на слици 1.

Реализована вежба на протоборду изгледа као на слици 1. Вежбе из електронике Вежба 1. Kондензатор три диоде везане паралелно Циљ вежбе је да ученици повежу струјно коло са три диоде везане паралелно од којих свака има свој отпорник. Вежба је успешно реализована

Διαβάστε περισσότερα

1. ЕЛЕКТРОСТАТИЧКО ПОЉЕ

1. ЕЛЕКТРОСТАТИЧКО ПОЉЕ Б Крстајић Збирка задатака из Електромагнетике - (007/008) ЕЛЕКТРОСТАТИЧКО ПОЉЕ Примјер Израчунати силу на тачкасто наелектрисање = 0µ C од тачкастог наелектрисања = 300µ C ако су координате тачака и одређене

Διαβάστε περισσότερα

Са неким, до сада неуведеним појмовима из теоријских основа турбомашина, упознаћемо се кроз израду следећих задатака.

Са неким, до сада неуведеним појмовима из теоријских основа турбомашина, упознаћемо се кроз израду следећих задатака. Основе механике флуида и струјне машине 1/11 Са неким, до сада неуведеним појмовима из теоријских основа турбомашина, упознаћемо се кроз израду следећих задатака 1задатак Познате су следеће величине једнe

Διαβάστε περισσότερα

ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД.

ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД. ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД. ВО ПРЕЗЕНТАЦИЈАТА ЌЕ ПРОСЛЕДИТЕ ЗАДАЧИ ЗА ПРЕСМЕТУВАЊЕ ПЛОШТИНА И ВОЛУМЕН НА ГЕОМЕТРИСКИТЕ ТЕЛА КОИ ГИ ИЗУЧУВАМЕ ВО ОСНОВНОТО ОБРАЗОВАНИЕ. СИТЕ ЗАДАЧИ

Διαβάστε περισσότερα

Теорија одлучивања. Анализа ризика

Теорија одлучивања. Анализа ризика Теорија одлучивања Анализа ризика Циљеви предавања Упознавање са процесом анализе ризика Моделовање ризика Монте-Карло Симулација Предности и недостаци анализе ризика 2 Дефиниција ризика (квалитативни

Διαβάστε περισσότερα

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година

Διαβάστε περισσότερα

ОСНОВНА ЛОГИКА. Коста Дошен

ОСНОВНА ЛОГИКА. Коста Дошен ОСНОВНА ЛОГИКА Коста Дошен 2 Овa књигa je учињена слободно доступном преданошћу издавача Арона Сворца. Београд, 2013 This book is made freely available by the good offices of the publisher Aaron Swartz.

Διαβάστε περισσότερα

МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2011/2012. година УПУТСТВО ЗА РАД НА ТЕСТУ Тест који треба да решиш има 20 задатака.

Διαβάστε περισσότερα

Теорија група и музика

Теорија група и музика Математички факултет Теорија група и музика Ментор: Небојша Икодиновић Студент: Андријана Радосављевић 1078/2013 Универзитет у Београду, 2014. Не би ли се музика могла описати као математика осећаја, а

Διαβάστε περισσότερα

Сунчев систем. Кеплерови закони

Сунчев систем. Кеплерови закони Сунчев систем Кеплерови закони На слици је приказан хипотетички сунчев систем. Садржи једну планету (Земљу нпр.) која се креће око Сунца и једина сила која се ту појављује је гравитационо привлачење. Узимајући

Διαβάστε περισσότερα

ЈЕДАН НЕМОГУЋИ ОСВРТ НА УРБОФИЛИЈУ, ДВАДЕСЕТ ПРОПАЛИХ ГОДИНА КАСНИЈЕ

ЈЕДАН НЕМОГУЋИ ОСВРТ НА УРБОФИЛИЈУ, ДВАДЕСЕТ ПРОПАЛИХ ГОДИНА КАСНИЈЕ АЛЕКСАНДАР ЈЕРКОВ ЈЕДАН НЕМОГУЋИ ОСВРТ НА УРБОФИЛИЈУ, ДВАДЕСЕТ ПРОПАЛИХ ГОДИНА КАСНИЈЕ Mожда је дошло време да се запише понека успомена, иако би се рекло да је прерано за сећања. Има нечег гротескног

Διαβάστε περισσότερα

Задатак 1: Несташни миш (10 поена) се равномерно креће по тасу 2. Сматрати да да у току посматраног кретања нити остају вертикалне. Слика 1. Слика 2.

Задатак 1: Несташни миш (10 поена) се равномерно креће по тасу 2. Сматрати да да у току посматраног кретања нити остају вертикалне. Слика 1. Слика 2. ШКОЛСКА /4. ГОДИНЕ. ЗАДАЦИ -.5.4. Задатак : Несташни миш ( поена) Идеалан котур занемарљиве масе је преко идеалног динамометра окачен о плафон. Преко котура је пребачена идеална нит, на чијим крајевима

Διαβάστε περισσότερα

ЕКОНОМИЈА НОВА ВАВИЛОНСКА КУЛА

ЕКОНОМИЈА НОВА ВАВИЛОНСКА КУЛА Др Зоран Крстић, протојереј ЕКОНОМИЈА НОВА ВАВИЛОНСКА КУЛА Говорећи на прослави 180 годишњице Старе Милошеве цркве у Крагујевцу проф. др Радош Љушић 1 је говорио о двема нашим историјским заблудама, које

Διαβάστε περισσότερα

ТЕСТ ИЗ ФИЗИКЕ (3 сата)

ТЕСТ ИЗ ФИЗИКЕ (3 сата) Електријада 003 Будва ТЕСТ ИЗ ФИЗИКЕ (3 сата) Заокружује се само један од понуђених одговора. Сваки тачан и адекватно образложен одговор бодује се са по 5 поена. ЗАДАЦИ. Положај материјалне тачке (МТ),

Διαβάστε περισσότερα

37. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 основни училишта 18 мај VII одделение (решенија на задачите)

37. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 основни училишта 18 мај VII одделение (решенија на задачите) 37. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 03 основни училишта 8 мај 03 VII одделение (решенија на задачите) Задача. Во еден пакет хартија која вообичаено се користи за печатење, фотокопирање и сл. има N = 500

Διαβάστε περισσότερα

School of Physics, University of Athens, Panepistimioupolis, Zographos 157 84, Athens-Greece ** Aстрономска опсерваторија, Волгина 7,

School of Physics, University of Athens, Panepistimioupolis, Zographos 157 84, Athens-Greece ** Aстрономска опсерваторија, Волгина 7, 27-725 Indikoplovac K. 528.425(495.02) ВАСИЛИЈЕ Н. МАНИМАНИС * ЕВСТРАТИЈЕ Т. ТЕОДОСИЈУ * МИЛАН С. ДИМИТРИЈЕВИЋ ** * Department of Astrophysics-Astronomy and Mechanics, School of Physics, University of

Διαβάστε περισσότερα

. Одредити количник ако је U12 U34

. Одредити количник ако је U12 U34 област. У колу сталне струје са слике познато је = 3 = и =. Одредити количник λ = E/ E ако је U U34 =. Решење: а) λ = b) λ = c) λ = 3 / d) λ = g E 4 g 3 3 E Слика. област. Дата је жичана мрежа у облику

Διαβάστε περισσότερα

Антене и простирање. Показна лабораторијска вежба - мерење карактеристика антена. 1. Антене - намена и својства

Антене и простирање. Показна лабораторијска вежба - мерење карактеристика антена. 1. Антене - намена и својства Антене и простирање Показна лабораторијска вежба - мерење карактеристика антена 1. Антене - намена и својства Антена је склоп који претвара вођени електромагнетски талас у електромагнетски талас у слободном

Διαβάστε περισσότερα

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству. април 06. Суботица, СРБИЈА АНАЛИЗA СТАБИЛНОСТИ ВЕРТИКАЛНОГ ЗАСЕКА ПРИМЕНОМ МЕХАНИКЕ ЛОМА Предраг Митковић Никола Обрадовић Драгослав Шумарац

Διαβάστε περισσότερα

АКАДЕМСКА БУДУЋНОСТ ЗАВИСИ ОД РАНОГ СТАРТА

АКАДЕМСКА БУДУЋНОСТ ЗАВИСИ ОД РАНОГ СТАРТА Оригинални научни рад UDK:37.022/.026:371.314.6. АКАДЕМСКА БУДУЋНОСТ ЗАВИСИ ОД РАНОГ СТАРТА ACADEMIC FUTURE DEPENDS ON EARLY START Ненад Сузић Резиме: Аутор полази од тезе да рано предшколско учење (рани

Διαβάστε περισσότερα

ANALI OGRANKA SANU U NOVOM SADU. број 4 за 2008.

ANALI OGRANKA SANU U NOVOM SADU. број 4 за 2008. ANALI OGRANKA SANU U NOVOM SADU број 4 за 2008. S E R B I A N A C A D E M Y O F S C I E N C E S A N D A R T S B R A N C H I N N O V I S A D ANNALS of the sasa branch in novi sad N o 4 for 2008 NOVI SAD

Διαβάστε περισσότερα

УВОД У ЕКСПЕРИМЕНТ И ЛАБОРАТОРИЈУ Банка питања

УВОД У ЕКСПЕРИМЕНТ И ЛАБОРАТОРИЈУ Банка питања УВОД У ЕКСПЕРИМЕНТ И ЛАБОРАТОРИЈУ Банка питања ЈЕДИНИЦЕ: А) Изразите следеће изведене јединице преко основних јединица SI система, при чему ћете користити релације које су наведене:. њутн F N F a. паскал

Διαβάστε περισσότερα

ИЗВЕШТАЈ О СПОЉАШЊЕМ ВРЕДНОВАЊУ КВАЛИТЕТА РАДА ШКОЛА

ИЗВЕШТАЈ О СПОЉАШЊЕМ ВРЕДНОВАЊУ КВАЛИТЕТА РАДА ШКОЛА Република Србија ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ИЗВЕШТАЈ О СПОЉАШЊЕМ ВРЕДНОВАЊУ КВАЛИТЕТА РАДА ШКОЛА (школска 2012/13. и школска 2013/14. година) Београд, децембар 2014. Завод за

Διαβάστε περισσότερα

Компјутерска графика

Компјутерска графика Компјутерска графика Подела компјутерске графике Растерска Векторска Растерска графика У рачунарској графици, растер или битмапа, је структура података представљена у правоугаоној мрежи пиксела, то јест

Διαβάστε περισσότερα

ОБРАЗОВНО-ВАСПИТНА ФУНКЦИЈА ПРЕВЕНТИВНО-КОРЕКТИВНИХ ВЕЖБИ

ОБРАЗОВНО-ВАСПИТНА ФУНКЦИЈА ПРЕВЕНТИВНО-КОРЕКТИВНИХ ВЕЖБИ Др Марта Дедај 1 Висока школа струковних студија за васпитаче Oригиналан научни рад и пословне информатичаре Сирмијум УДК: 371.72 Сремска Митровица ==========================================================================

Διαβάστε περισσότερα

Приредиле: др Сања Филиповић др Александра Јоксимовић Флу, Наставник као истраживач

Приредиле: др Сања Филиповић др Александра Јоксимовић Флу, Наставник као истраживач Приредиле: др Сања Филиповић др Александра Јоксимовић Флу, 2015. 1 Наставник као истраживач 2 Циљ курса је развијање компетенција студената, будућих наставника да: истражују и унапређују сопствену праксу

Διαβάστε περισσότερα

УСАГЛАШЕНА КЛАСИФИКАЦИЈА И ОБИЉЕЖАВАЊЕ ЗА ОДРЕЂЕНЕ ОПАСНЕ СУПСТАНЦЕ

УСАГЛАШЕНА КЛАСИФИКАЦИЈА И ОБИЉЕЖАВАЊЕ ЗА ОДРЕЂЕНЕ ОПАСНЕ СУПСТАНЦЕ ПРИЛОГ 6. УСАГЛАШЕНА КЛАСИФИКАЦИЈА И ОБИЉЕЖАВАЊЕ ЗА ОДРЕЂЕНЕ ОПАСНЕ СУПСТАНЦЕ Овај прилог се састоји из 3 дијела: Дио 1. овог Прилога обезбеђује увођење у списак усаглашене класификације и обиљежавања

Διαβάστε περισσότερα

УПУТСТВО ЗА ОДРЕЂИВАЊЕ ВРСТЕ ДОКУМЕНАТА КОЈЕ ИЗРАЂУЈЕ ОПЕРАТЕР СЕВЕСО ПОСТРОЈЕЊА. август 2010.

УПУТСТВО ЗА ОДРЕЂИВАЊЕ ВРСТЕ ДОКУМЕНАТА КОЈЕ ИЗРАЂУЈЕ ОПЕРАТЕР СЕВЕСО ПОСТРОЈЕЊА. август 2010. УПУТСТВО ЗА ОДРЕЂИВАЊЕ ВРСТЕ ДОКУМЕНАТА КОЈЕ ИЗРАЂУЈЕ ОПЕРАТЕР СЕВЕСО ПОСТРОЈЕЊА август 2010. I. УВОД Сврха овог Упутства је да помогне оператерима који управљају опасним материјама, како да одреде да

Διαβάστε περισσότερα

ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА. школска 2013/2014. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД

ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА. школска 2013/2014. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 0/04. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД Тест који треба да решиш има 0 задатака. За рад је предвиђено 0 минута. Задатке не мораш да радиш

Διαβάστε περισσότερα

ISSN УЧЕЊЕ И НАСТАВА. Београд

ISSN УЧЕЊЕ И НАСТАВА. Београд ISSN 2466-2801 УЧЕЊЕ И НАСТАВА 3 2015 Београд ISSN 2466-2801 КLЕТТ ДРУШТВО ЗА РАЗВОЈ ОБРАЗОВАЊА УЧЕЊЕ И НАСТАВА ГОДИНА I Број 3, 2015. УДК 37(497.11) УЧЕЊЕ И НАСТАВА Година I Број 3 2015 415 618 ISSN 2466-2801

Διαβάστε περισσότερα

Кондензатор је уређај који се користи

Кондензатор је уређај који се користи Kондензатори 1 Кондензатор Кондензатор је уређај који се користи у великом броју електричних кола Капацитет, C, кондензатора се дефинише као количник интензитета наелектрисања на његовим плочама и интернзитета

Διαβάστε περισσότερα

РЕГУЛАЦИЈА БРЗИНЕ КОД ЛИФТОВСКИХ ПОГОНА СА КОНТРОЛОМ ТРЗАЈА

РЕГУЛАЦИЈА БРЗИНЕ КОД ЛИФТОВСКИХ ПОГОНА СА КОНТРОЛОМ ТРЗАЈА УНИВЕРЗИТЕТ У БАЊОЈ ЛУЦИ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ Бојан Кнежевић РЕГУЛАЦИЈА БРЗИНЕ КОД ЛИФТОВСКИХ ПОГОНА СА КОНТРОЛОМ ТРЗАЈА семинарски рад Бања Лука, октобар 7. Тема: РЕГУЛАЦИЈА БРЗИНЕ КОД ЛИФТОВСКИХ

Διαβάστε περισσότερα

УПРАВЉАЊЕ КРЕТАЊЕМ ЛИФТА У ФУНКЦИЈИ ВРИЈЕДНОСТИ ТРЗАЈА ELEVATOR MOVEMENT CONTROL IN THE FUNCTION OF JERK VALUE

УПРАВЉАЊЕ КРЕТАЊЕМ ЛИФТА У ФУНКЦИЈИ ВРИЈЕДНОСТИ ТРЗАЈА ELEVATOR MOVEMENT CONTROL IN THE FUNCTION OF JERK VALUE INFOTEH-JAHORINA Vol., Ref. A-9, p. 4-44, March. УПРАВЉАЊЕ КРЕТАЊЕМ ЛИФТА У ФУНКЦИЈИ ВРИЈЕДНОСТИ ТРЗАЈА ELEVATOR MOVEMENT ONTROL IN THE FUNTION OF JERK VALUE Бојан Кнежевић, Машински факултет, Бања Лука

Διαβάστε περισσότερα

ВЛ А Д А. 16. октобар Број 99 3

ВЛ А Д А. 16. октобар Број 99 3 16. октобар 2012. Број 99 3 2763 На осно ву чла на 83. став 4. За ко на о елек трон ским ко му ни каци ја ма ( Слу жбе ни гла сник РС, број 44/10) и чла на 42. став 1. Зако на о Вла ди ( Слу жбе ни гла

Διαβάστε περισσότερα

Енергетски трансформатори рачунске вежбе

Енергетски трансформатори рачунске вежбе 1. Jеднофазни транформатор примарног напона 4 V, фреквенције 5 Hz има једностепени крстасти попречни пресек магнетског кола чије су димензије a = 55mm и b = 35 mm. а) Израчунати површину пресека чистог

Διαβάστε περισσότερα

Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група

Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 0/0. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група СЕНТА.0.0.. Играчи билијара су познати по извођењу специфичних удараца

Διαβάστε περισσότερα

Радна група за МС. Бела књига о Мултиплој Склерози. Право на здравље и здравствену правичност

Радна група за МС. Бела књига о Мултиплој Склерози. Право на здравље и здравствену правичност Радна група за МС Бела књига о Мултиплој Склерози Право на здравље и здравствену правичност Здравствена правичност (у складу са глобалним принципима WHО) Право на здравље је основно људско право. Заштита

Διαβάστε περισσότερα

Утицај дистрибуираних извора електричне енергије на мрежу

Утицај дистрибуираних извора електричне енергије на мрежу INFOTEH-JAHORINA Vol. 13, March 2014. Утицај дистрибуираних извора електричне енергије на мрежу Младен Бањанин, Јована Тушевљак Електротехнички факултет Источно Сарајево, Босна и Херцеговина banjanin@ymail.com,

Διαβάστε περισσότερα

ФИЗИКА Кинематика тачке у једној. Шема прикупљања поена - измене. Предиспитне обавезе

ФИЗИКА Кинематика тачке у једној. Шема прикупљања поена - измене. Предиспитне обавезе ФИЗИКА 9. Понедељак, 1. октобар, 9. Кинематика тачке у једној димензији Кинематика кретања у две димензије 1 Предиспитне обавезе Шема прикупљања поена - измене Активност у току предавања 5 поена (са више

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

САДРЖАЈ #008 // ДЕЦЕМБАР 2014.

САДРЖАЈ #008 // ДЕЦЕМБАР 2014. 1 2 САДРЖАЈ 04 Уводник 06 Четврти Фестивал науке у Бањалуци - Паметни уређаји у служби науке 09 Тема броја Депресија 12 Усамљеност 16 Стрес увод у болест 18 Наука Математика није баук 20 Све на свијету

Διαβάστε περισσότερα

Новооткривени фрагменти фресака у цркви Свете Ане изнад Пераста (Бока Которска)

Новооткривени фрагменти фресака у цркви Свете Ане изнад Пераста (Бока Которска) Новооткривени фрагменти фресака у цркви Свете Ане изнад Пераста (Бока Которска) Иван М. Ђорђевић UDK 75.052.034(497.16 Perast):75.071.1 Dobričević L. Пред мет ра да су но во от кри ве не фре ске у цркви

Διαβάστε περισσότερα

Класификација и класе опасности

Класификација и класе опасности На основу члана 10. став 4, члана 16. став 6, члана 17. став 2. и члана 30. став 6. Закона о хемикалијама ( Службени гласник РС, број 36/09) и тачке 8. став 5. подтачка 11) Одлуке о оснивању Агенције за

Διαβάστε περισσότερα

ABCDEFGHIJ KLMNOPQRS TUVWXYZ ABCEFHIKMNO PQTXYZ DGLRSV JUW

ABCDEFGHIJ KLMNOPQRS TUVWXYZ ABCEFHIKMNO PQTXYZ DGLRSV JUW ЛАТИНИЦА ЈЕ СУПЕРИОРНИЈА ОД ЋИРИЛИЦЕ НИКОЛА КОВАНОВИЋ БЕОГРАД 2008 ЛАТИНИЦА ЈЕ СУПЕРИОРНИЈА ОД ЋИРИЛИЦЕ Ово је изјава коју можете врло често чути од наших људи. Неко је некад, негде то тако рекао и сви

Διαβάστε περισσότερα

Како лечимо генерализовани анксиозни поремећај?

Како лечимо генерализовани анксиозни поремећај? 204 Srp Arh Celok Lek. 2014 Mar-Apr;142(3-4):204-212 DOI: 10.2298/SARH1404204L ОРИГИНАЛНИ РАД / ORIGINAL ARTICLE UDC: 616.89-008.441-085 Како лечимо генерализовани анксиозни поремећај? Милан Латас 1,2,

Διαβάστε περισσότερα

ТЕОРИЈСКА АНАЛИЗА ПРОДУКТИВНОСТИ ПОЉОПРИВРЕДНОГ СЕКТОРА СА АСПЕКТА МАКРОЕКОНОМСКИХ ТРАНСФОРМАЦИЈА

ТЕОРИЈСКА АНАЛИЗА ПРОДУКТИВНОСТИ ПОЉОПРИВРЕДНОГ СЕКТОРА СА АСПЕКТА МАКРОЕКОНОМСКИХ ТРАНСФОРМАЦИЈА Теоријска анализа продуктивности пољопривредног... Стручни рад Економика пољопривреде Број 4/2010. УДК: 338.312:631 ТЕОРИЈСКА АНАЛИЗА ПРОДУКТИВНОСТИ ПОЉОПРИВРЕДНОГ СЕКТОРА СА АСПЕКТА МАКРОЕКОНОМСКИХ ТРАНСФОРМАЦИЈА

Διαβάστε περισσότερα

ПЛАНЕТАРНИ РЕДУКТОР СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ. Пројектовао и нацртао. Милош Мајсторовић. Подаци о редуктору:

ПЛАНЕТАРНИ РЕДУКТОР СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ. Пројектовао и нацртао. Милош Мајсторовић. Подаци о редуктору: СРЕДЊА МАШИНСКА ШКОЛА РАДОЈЕ ДАКИЋ ПЛАНЕТАРНИ РЕДУКТОР Подаци о редуктору: Број зубаца погонског зупчаника Z = 20 Број зубаца гоњеног зупчаника Z2 = 40 Нагиб бока зупца β = 0 Померање профила х = 0 Преносни

Διαβάστε περισσότερα

Андреј Фајгељ. После Вучића. Copyright 2016 Andrej Fajgelj Smashwords Edition

Андреј Фајгељ. После Вучића. Copyright 2016 Andrej Fajgelj Smashwords Edition Андреј Фајгељ После Вучића Copyright 2016 Andrej Fajgelj Smashwords Edition Свако неовлашћено умножавање, дељење и објављивање ове књиге најтоплије се препоручује. Свака сличност с правим личностима и

Διαβάστε περισσότερα

ЛИКОВНИ РЕД, АКУМУЛАЦИЈА, ОД ХАОСА КА СМИСЛУ

ЛИКОВНИ РЕД, АКУМУЛАЦИЈА, ОД ХАОСА КА СМИСЛУ Мегатренд универзитет, Београд Факултет за уметност и дизајн, Београд Марија Александровић ЛИКОВНИ РЕД, АКУМУЛАЦИЈА, ОД ХАОСА КА СМИСЛУ ДОКТОРСКА ДИСЕРТАЦИЈА-УМЕТНИЧКИ ПРОЈЕКАТ БЕОГРАД, 2014. Мегатренд

Διαβάστε περισσότερα

Eутаназија: у одбрану једне добре, античке речи

Eутаназија: у одбрану једне добре, античке речи Драган Павловић 44 Одељење за анестезију и интензивну медицинску негу, Универзитет Ернст Мориц Арнт, Немачка Александар Спасов Одељење за ортодонтију, Медицински факултет, Универзитет у Грајфсвалду, Немачка

Διαβάστε περισσότερα

ХРИСТОС ВОСКРЕСЕ! Ј О В А Н

ХРИСТОС ВОСКРЕСЕ! Ј О В А Н Ј О В А Н ХРИСТОС ВОСКРЕСЕ! Ово је дан Васкрсења, радујмо се људи! Васкрс је, драга браћо и сестре, најрадоснији догађај и овога и онога света. Васкрс је најрадоснији осећај човеков, јер је Васкрсењем

Διαβάστε περισσότερα

Тест за I разред средње школе

Тест за I разред средње школе Министарство просветe Републике Србије Српско хемијско друштво Републичко такмичење из хемије Ужице, 23.05.2009. Тест за I разред средње школе Име и презиме Место и школа Разред Име и презиме професора

Διαβάστε περισσότερα

КОНСТАНТИН ВЕЛИКИ ( )

КОНСТАНТИН ВЕЛИКИ ( ) Мр Александра Смирнов-Бркић Филозофски факултет у Новом Саду Тема такмичења из историје 2012/2013. година КОНСТАНТИН ВЕЛИКИ (306 337) Део I ЖИВОТ И ВЛАДАВИНА КОНСТАНТИНА ВЕЛИКОГ Константиново порекло Диоклецијан

Διαβάστε περισσότερα

ШКОЛСКИ ЧАСОПИС ТАКОВСКИ УСТАНАК ГОРЊИ БАЊАНИ. Page 1

ШКОЛСКИ ЧАСОПИС ТАКОВСКИ УСТАНАК ГОРЊИ БАЊАНИ. Page 1 ШКОЛСКИ ЧАСОПИС ТАКОВСКИ УСТАНАК ГОРЊИ БАЊАНИ Page 1 2 P age ОШ ТАКОВСКИ УСТАНАК, ИЗДВОЈЕНО ОДЕЉЕЊЕ ГОРЊИ БАЊАНИ... П олазећи из Такова, села недалеко од Горњег Милановца, стићи ћете и до Горњих Бањана,

Διαβάστε περισσότερα

ТРИБИНА БИБЛИОТЕКЕ САНУ ГОДИНА III БРОЈ 3

ТРИБИНА БИБЛИОТЕКЕ САНУ ГОДИНА III БРОЈ 3 ТРИБИНА БИБЛИОТЕКЕ САНУ ГОДИНА III БРОЈ 3 SERBIAN ACADEMY OF SCIENCES AND ARTS THE SASA LIBRARY FORUM YEAR III VOLUME 3 Accepted on December 9 th 2014, at the 9 th meeting of the SASA Department of Languages

Διαβάστε περισσότερα

ЗНАЊЕ, ВЕШТИНА, МУДРОСТ: ЈЕДАН КРАТАК ЕСЕЈ ЈОВАНА ХРИСТИЋА

ЗНАЊЕ, ВЕШТИНА, МУДРОСТ: ЈЕДАН КРАТАК ЕСЕЈ ЈОВАНА ХРИСТИЋА 821.163.41-4.09 Hristiж J. Др ГОРДАН МАРИЧИЋ Филозофски факултет Универзитет у Београду ЗНАЊЕ, ВЕШТИНА, МУДРОСТ: ЈЕДАН КРАТАК ЕСЕЈ ЈОВАНА ХРИСТИЋА Aпрстакт: Успешан у свему чега се латио, негде одличан,

Διαβάστε περισσότερα

Драгана Милијашевић ХИДРОГЕОГРАФСКА СТУДИЈА РЕКЕ ЂЕТИЊЕ

Драгана Милијашевић ХИДРОГЕОГРАФСКА СТУДИЈА РЕКЕ ЂЕТИЊЕ Драгана Милијашевић ХИДРОГЕОГРАФСКА СТУДИЈА РЕКЕ ЂЕТИЊЕ Београд 2010 GEOGRAPHICAL INSTITUTE JOVAN CVIJIĆ SERBIAN ACADEMY OF SCIENCES AND ARTS SPECIAL ISSUES 76 Dragana Milijašević HYDROGEOGRAPHIC STUDY

Διαβάστε περισσότερα

СКРИПТА ЗА ПРВИ КОЛОКВИЈУМ ИЗ ОПШТЕГ КУРСА ФИЗИЧКЕ ХЕМИЈЕ I

СКРИПТА ЗА ПРВИ КОЛОКВИЈУМ ИЗ ОПШТЕГ КУРСА ФИЗИЧКЕ ХЕМИЈЕ I СКРИПТА ЗА ПРВИ КОЛОКВИЈУМ ИЗ ОПШТЕГ КУРСА ФИЗИЧКЕ ХЕМИЈЕ I 9/ . ГУСТИНА ТЕЧНОСТИ Апсолутна густина ( ρ ) је маса јединице запремине на одређеној 4 температури и притску (јединица у СИ систему за апсолутну

Διαβάστε περισσότερα

ΟΙ ΚΑΣΤΟΡΙΑΝΟΙ ΖΩΓΡΑΦΟΙ ΠΟΥ ΜΕΤΑΚΙΝΟΥΝΤΑΙ ΒΟΡΕΙΑ ΚΑΤΑ ΤΟ ΠΡΩΤΟ ΜΙΣΟ ΤΟΥ 14 ΟΥ ΑΙΩΝΑ

ΟΙ ΚΑΣΤΟΡΙΑΝΟΙ ΖΩΓΡΑΦΟΙ ΠΟΥ ΜΕΤΑΚΙΝΟΥΝΤΑΙ ΒΟΡΕΙΑ ΚΑΤΑ ΤΟ ΠΡΩΤΟ ΜΙΣΟ ΤΟΥ 14 ΟΥ ΑΙΩΝΑ Ni{ i Vizantija II 295 Ιωάννης Σίσιου ΟΙ ΚΑΣΤΟΡΙΑΝΟΙ ΖΩΓΡΑΦΟΙ ΠΟΥ ΜΕΤΑΚΙΝΟΥΝΤΑΙ ΒΟΡΕΙΑ ΚΑΤΑ ΤΟ ΠΡΩΤΟ ΜΙΣΟ ΤΟΥ 14 ΟΥ ΑΙΩΝΑ Μετά την μάχη της Πελαγονίας και όσο βρισκόταν σε εξέλιξη η προσπάθεια για την

Διαβάστε περισσότερα

Одређивање специфичне тежине и густине чврстих и течних тела. Одређивање специфичне тежине и густине чврстих и течних тела помоћу пикнометра

Одређивање специфичне тежине и густине чврстих и течних тела. Одређивање специфичне тежине и густине чврстих и течних тела помоћу пикнометра Одређивање специфичне тежине и густине чврстих и течних тела Густина : V Специфична запремина : V s Q g Специфична тежина : σ V V V g Одређивање специфичне тежине и густине чврстих и течних тела помоћу

Διαβάστε περισσότερα

ПРИМЕНА ЕЛЕКТРОНСКОГ НАСТАВНОГ МАТЕРИЈАЛА У ОБРАДИ ТЕМЕ СИЛА У ГИМНАЗИЈИ

ПРИМЕНА ЕЛЕКТРОНСКОГ НАСТАВНОГ МАТЕРИЈАЛА У ОБРАДИ ТЕМЕ СИЛА У ГИМНАЗИЈИ УНИВЕРЗИТЕТ У НОВОМ САДУ Природно-математички факултет Департман за физику ТЕЛ/ФАКС: +381(0)21 455 318 21000 Нови Сад, Трг Д. Обрадовића 4 ПРИМЕНА ЕЛЕКТРОНСКОГ НАСТАВНОГ МАТЕРИЈАЛА У ОБРАДИ ТЕМЕ СИЛА У

Διαβάστε περισσότερα

Превенција наглог повећања интраокуларног притиска после лечења примарног глаукома отвореног угла трабекулопластиком аргонским ласером

Превенција наглог повећања интраокуларног притиска после лечења примарног глаукома отвореног угла трабекулопластиком аргонским ласером 12 Srp Arh Celok Lek. 2011 Jan-Feb;139(1-2):12-17 DOI: 10.2298/SARH1102012B ОРИГИНАЛНИ РАД / ORIGINAL ARTICLE UDC: 617.7-007.681-085-06-084 Превенција наглог повећања интраокуларног притиска после лечења

Διαβάστε περισσότερα

Иван В. Лалић је написао низ есеја о другим песницима и о поезији, а

Иван В. Лалић је написао низ есеја о другим песницима и о поезији, а 821.111:821.163.41.02NEOSIMBOLIZAM 821.111.09 Eliot T. S. Саша М. РАДОЈЧИЋ 1 Универзитет уметности у Београду Факултет ликовних уметности Теоријски одсек Т. С. ЕЛИОТ И СРПСКИ НЕОСИМБОЛИЗАМ У овом огледу

Διαβάστε περισσότερα

Примјена модела вредновања капиталне активе у функцији одређивања очекиваних приноса предузећа на тржишту капитала Републике Српске

Примјена модела вредновања капиталне активе у функцији одређивања очекиваних приноса предузећа на тржишту капитала Републике Српске ACTA ECONOMICA Година XIV, број 4 / фебруар 016. ISSN 151-858X, e ISSN 3 738X СТРУЧНИ ЧЛАНАК УДК: 347.731.1 DOI: 10.751/ACE164191J COBISS.RS-ID 5766168 Драган Јањић 1 Примјена модела вредновања капиталне

Διαβάστε περισσότερα

Клинички и микробиолошки ефекти каузалне терапије пародонтопатије

Клинички и микробиолошки ефекти каузалне терапије пародонтопатије 10 Srp Arh Celok Lek. 2014 Jan-Feb;142(1-2):10-16 DOI: 10.2298/SARH1402010P ОРИГИНАЛНИ РАД / ORIGINAL ARTICLE UDC: 616.31-08 Клинички и микробиолошки ефекти каузалне терапије пародонтопатије Тања Предин

Διαβάστε περισσότερα

ОРГАНИЗАЦИЈА НАСТАВЕ У РЕДОВНИМ ШКОЛАМА И ОБРАЗОВАЊЕ УЧЕНИКА СА СЕНЗОРНИМ ОШТЕЋЕЊИМА

ОРГАНИЗАЦИЈА НАСТАВЕ У РЕДОВНИМ ШКОЛАМА И ОБРАЗОВАЊЕ УЧЕНИКА СА СЕНЗОРНИМ ОШТЕЋЕЊИМА УНИВЕРЗИТЕТ У БЕОГРАДУ ФИЛОЗОФСКИ ФАКУЛТЕТ САША Љ. СТЕПАНОВИЋ ОРГАНИЗАЦИЈА НАСТАВЕ У РЕДОВНИМ ШКОЛАМА И ОБРАЗОВАЊЕ УЧЕНИКА СА СЕНЗОРНИМ ОШТЕЋЕЊИМА докторска дисертација Београд, 2016. UNIVERSITY OF BELGRADE

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ИЗ СРПСКОГ ЈЕЗИКА

ЗБИРКА ЗАДАТАКА ИЗ СРПСКОГ ЈЕЗИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗБИРКА ЗАДАТАКА ИЗ СРПСКОГ ЈЕЗИКА ЗА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ ЗА ШКОЛСКУ 2011/2012.

Διαβάστε περισσότερα

МЕХАНИКА ФЛУИДА Б - проблеми и задаци из прве области

МЕХАНИКА ФЛУИДА Б - проблеми и задаци из прве области Машински факултет Београд Катедра за механику флуида МЕХАНИКА ФЛУИДА Б - проблеми и задаци из прве области. Наjдубља тачка у океанима jе 0m, измерена у Мариjанскоj бразди у близини острва Гвам у Тихом

Διαβάστε περισσότερα

Как Бог велик! Ι œ Ι œ Ι œ. œ œ Ι œ. œ œ œ œ œ œ œ œ. œœœ. œ œ. œ Œ. œ œ œ œ œ. œ œ œ œ œ œ œ œ œ œ œ œ œ. œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ

Как Бог велик! Ι œ Ι œ Ι œ. œ œ Ι œ. œ œ œ œ œ œ œ œ. œœœ. œ œ. œ Œ. œ œ œ œ œ. œ œ œ œ œ œ œ œ œ œ œ œ œ. œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ Как Бог велик! oprano Любовь Бондаренко Степенно Œ Светлана Зайцева Аранж. Станислав Маген ass Œ 1.Как Бог ве.как Бог ве Piano Œ Œ Как Как Бог Бог ве ве лик! Е лик! Мне не го по ве ли чье ня тно, сво им

Διαβάστε περισσότερα

ОДРЕЂИВАЊЕ И ПРИМЕНА МЕРИДИЈАНА М. БОЖИЋ, Д. ЦУЦИЋ*, Т. МАРКОВИЋ-ТОПАЛОВИЋ**, И. САВИЋ***, Ј. ПОПОВИЋ****

ОДРЕЂИВАЊЕ И ПРИМЕНА МЕРИДИЈАНА М. БОЖИЋ, Д. ЦУЦИЋ*, Т. МАРКОВИЋ-ТОПАЛОВИЋ**, И. САВИЋ***, Ј. ПОПОВИЋ**** ОДРЕЂИВАЊЕ И ПРИМЕНА МЕРИДИЈАНА М. БОЖИЋ, Д. ЦУЦИЋ*, Т. МАРКОВИЋ-ТОПАЛОВИЋ**, И. САВИЋ***, Ј. ПОПОВИЋ**** Институт за физику, Београд, bozic@ipb.ac.rs *Центар за таленте Михајло Пупин, Панчево, dragoljub.cucic@gmail.com

Διαβάστε περισσότερα

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2014/2015. година УПУТСТВО ЗА РАД Тест који треба да решиш

Διαβάστε περισσότερα

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ЕНЕРГЕТСКИХ ТРАНСФОРМАТОРА И АСИНХРОНИХ МАШИНА

УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ЕНЕРГЕТСКИХ ТРАНСФОРМАТОРА И АСИНХРОНИХ МАШИНА Електротехнички факултет Универзитета у Београду Енергетски одсек Катедра за енергетске претвараче и погоне УПУТСТВА ЗА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ЕНЕРГЕТСКИХ ТРАНСФОРМАТОРА И АСИНХРОНИХ МАШИНА Име и презиме:

Διαβάστε περισσότερα

Поређење утицаја два различита типа хормонске терапије на параметре хемостазе код жена у раној постменопаузи

Поређење утицаја два различита типа хормонске терапије на параметре хемостазе код жена у раној постменопаузи 52 Srp Arh Celok Lek. 2011 Jan-Feb;139(1-2):52-57 DOI: 10.2298/SARH1102052T ОРИГИНАЛНИ РАД / ORIGINAL ARTICLE UDC: 618.173-085:616.151 Поређење утицаја два различита типа хормонске терапије на параметре

Διαβάστε περισσότερα

ТЕХНИЧЕСКИ ПАРАМЕТРИ ПРЕДИ ДА СЕ ОБЪРНЕТЕ КЪМ СЕРВИЗА

ТЕХНИЧЕСКИ ПАРАМЕТРИ ПРЕДИ ДА СЕ ОБЪРНЕТЕ КЪМ СЕРВИЗА 4. Никога не потапяйте уреда във вода или друга течност и не позволявайте вода да проникне до електрическата част на уреда, докато го почиствате! 5. Не използвайте абразивни предмети или разтворители!

Διαβάστε περισσότερα

БЕОГРАДСКА ДЕФЕКТОЛОШКА ШКОЛА

БЕОГРАДСКА ДЕФЕКТОЛОШКА ШКОЛА Београдска дефектолошка школа, Вол. 20 (2), Бр. 59, 269-440, 2014 I ISSN 0354-8759 БЕОГРАДСКА ДЕФЕКТОЛОШКА ШКОЛА Вол. 20 (2), Бр. 59, 2014. Раније ДЕФЕКТОЛОШКА ТЕОРИЈА И ПРАКСА (1977-1995) Раније СПЕЦИЈАЛНА

Διαβάστε περισσότερα

ЕЛЕКТРИЧНЕ МРЕЖЕ за четврти разред

ЕЛЕКТРИЧНЕ МРЕЖЕ за четврти разред ТЕХНИЧКА ШКОЛА ИВАН САРИЋ С У Б О Т И Ц А Драган Товаришић, дипл.инж.ел. СКРИПТА ЗА ПРЕДАВАЊА ИЗ ПРЕДМЕТА ЕЛЕКТРИЧНЕ МРЕЖЕ за четврти разред Суботица, 0/4.год. УВОД У ПРОРАЧУН.. СВРХА ПРОРАЧУНА ЕЛЕКТРИЧНИХ

Διαβάστε περισσότερα

ISSN x, LXV (2009), р. ( ) УДК: ; ID

ISSN x, LXV (2009), р. ( ) УДК: ; ID ISSN 0350-185x, LXV (2009), р. (375 403) УДК: 811.163.41 373.45 ; 811.163.41 373.6 ID 169698572 ЈАСНА ВЛАЈИЋ-ПОПОВИЋ (Београд) ГРЕЦИЗМИ У СРПСКОМ ЈЕЗИКУ * (осврт на досадашња и поглед на будућа истраживања)

Διαβάστε περισσότερα

INOVACIJE u nastavi. ~asopis za savremenu nastavu. YU ISSN UDC Vol. 24

INOVACIJE u nastavi. ~asopis za savremenu nastavu. YU ISSN UDC Vol. 24 , 2 1 1 INOVACIJE u nastavi ~asopis za savremenu nastavu YU ISSN 0352-2334 UDC 370.8 Vol. 24 U»ITEySKI FAKULTET UNIVERZITET U BEOGRADU Adresa redakcije: U~iteqski fakultet, Beograd, Kraqice Natalije 43

Διαβάστε περισσότερα

Катедра за електронику, Основи електронике

Катедра за електронику, Основи електронике Лабораторијске вежбе из основа електронике, 13. 7. 215. Презиме, име и број индекса. Трајање испита: 12 минута Тест за лабораторијске вежбе 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 5 1 5 1 5 5 2 3 5 1

Διαβάστε περισσότερα

КОНКУРСНА ДОКУМЕНТАЦИЈА ЗА ЈАВНУ НАБАВКУ ДОБАРА

КОНКУРСНА ДОКУМЕНТАЦИЈА ЗА ЈАВНУ НАБАВКУ ДОБАРА ЈАВНО КОМУНАЛНО ПРЕДУЗЕЋЕ ГРАДСКО САОБРАЋАЈНО ПРЕДУЗЕЋЕ "БЕОГРАД" ВНД-342/15 КОНКУРСНА ДОКУМЕНТАЦИЈА ЗА ЈАВНУ НАБАВКУ ДОБАРА ЕЛЕКТРОНСКЕ КОМПОНЕНТЕ И ПРАТЕЋА ЕЛЕКТРО ОПРЕМА ЗА ТРАМВАЈЕ И ТРОЛЕЈБУСЕ - ПО

Διαβάστε περισσότερα

О живопису на северном зиду нартекса Богородице Перивлепте (Светог Климента) у Охриду

О живопису на северном зиду нартекса Богородице Перивлепте (Светог Климента) у Охриду О живопису на северном зиду нартекса Богородице Перивлепте (Светог Климента) у Охриду Цветан Грозданов* Македонска академија наука и уметности, Скопље UDC 75.052.046.3(497.7 Ohrid)»12» DOI 10.2298/ZOG1236109G

Διαβάστε περισσότερα

Значај одређивања нивоа феритина у серуму труднице у предвиђању рађања новорођенчади телесне масе мале за гестациони узраст

Значај одређивања нивоа феритина у серуму труднице у предвиђању рађања новорођенчади телесне масе мале за гестациони узраст DOI: 10.2298/SARH1306337M ОРИГИНАЛНИ РАД / ORIGINAL ARTICLE UDC: 618.2-074-055.26 337 Значај одређивања нивоа феритина у серуму труднице у предвиђању рађања новорођенчади телесне масе мале за гестациони

Διαβάστε περισσότερα