Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10"

Transcript

1 Tестирање хипотеза 5.час 30. март Боjана Тодић Статистички софтвер март / 10

2 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење симулациjе. Првобитно су познати као статистичка упрошћавања, али назив Монте Карло, популаризован од стране првих истраживача у овоj области jе проистекао из назива чувеног казина у Монаку. Како су за добиjање довољно тачне оцене тражене величине, потребна израчунавања за веома велики броj посебних случаjева и одговараjућа статистичка обрада огромног нумеричког материjала, то jе ефективна примена методе Монте Карло омогућена тек поjавом електронских рачунара. Боjана Тодић Статистички софтвер март / 10

3 Монте Карло тест Монте Карло тест се користи када jе позната расподела обележjа X, а ниjе позната расподела тест статстике (ТС). Предлаже се да тест статистика буде процењена за симулиране случаjне узорке да би се одредила p-вредност теста. Посматрана вредност тест статистике (ТС) се упоређуjе са вредношћу тест статистике израчунате у сваком од m симулираних узорака исте величине као дат узорак. Боjана Тодић Статистички софтвер март / 10

4 Монте Карло тест Оцењуjемо p - вредност Монте Карло теста као где jе ˆp = r m + 1, r броj узорака чиjа jе реализована вредност тест статистике већа или jеднака од ТС m броj симулациjа. За ниво значаjности α, кад год jе ˆp α нулта хипотеза ће бити одбиjена. Боjана Тодић Статистички софтвер март / 10

5 Монте Карло тест - алгоритам 1 Рачунамо тест статистику (ТС) на основу полазног узорка. 2 Симулирамо m узорака коjи имаjу исту расподелу као почетни узорак. 3 За сваки симулирани узорак рачунамо тест статистике T 1,..., T m. 4 Оцењуjемо p вредност по формули ˆp = r m+1. 5 Упоређуjемо оцењену ˆp вредност са прагом значаjности α и доносимо закључак. Боjана Тодић Статистички софтвер март / 10

6 Тест Колмогорова Тестирамо хипотезу H 0 (F X (x) = F 0 (x)), где jе F 0 непрекидна и сви параметри су познати. Тест статистика jе D n = sup F n (x) F 0 (x), x где jе F n емпириjска функциjа расподеле добиjена на основу почетног узорка. Статистика nd n има расподелу Колмогорова за коjу постоjе специjалне таблице коjе се добиjаjу по формули P { nd n x} = 1 2 ( 1) k 1 e 2k2 x 2. k=0 Боjана Тодић Статистички софтвер март / 10

7 Тест Колмогорова - алгоритам 1 Сортирати податке x (1) x (2)... x (n). 2 Реализовану вредност тест статистике рачунамо као d n = max x F n (x) F 0 (x) 3 Упоређуjемо вредност nd n са вредношћу из таблице за Колмогорову расподелу и односимо закључак. На пример, за ниво поверења α = 0.95 из таблице добиjамо да jе D n = Боjана Тодић Статистички софтвер март / 10

8 Тест Колмогоров-Смирнова Користи се када имамо два узорка и хоћемо да тестирамо да ли су ти узорци из исте расподеле. Нулта хипотеза jе H 0 (F X (x) = F Y (x)), где не знамо коjа jе то расподела ако jе H 0 тачно. Тест статистика jе D nn = sup F n (x) F n (x), где су F n и F n (y 1,..., y n ). емпириjске функциjе расподеле за узорке (x 1,..., x n ) и Хипотезa H 0 се одбацуjе ако jе n + n D nn > c(α) nn, где се c(α) добиjа из таблица за Колмогорову расподелу. Боjана Тодић Статистички софтвер март / 10

9 Тест Колмогоров-Смирнова - алгоритам 1 Сортирати податке x (1) x (2)... x (n). 2 Сортирати податке y (1) y (2)... y (n). 3 Рачунамо емпитиjске функциjе расподеле за узорке x (1), x (2),..., x (n) и y (1), y (2),..., y (n). 4 Реализовану вредност тест статистике рачунамо као d nn = max x F n (x) F n (x) 5 nn Упоређуjемо вредност d nn n+n са вредношћу из таблице за Колмогорову расподелу и доносимо закључак. На пример, за ниво поверења α = 0.95 из таблице добиjамо да jе D n = Боjана Тодић Статистички софтвер март / 10

10 Задаци 1. Нека су x <- rnorm(1000), y <- rnorm(1000) и Z = X 2 + Y 2. Претпоставити коjу расподелу има случаjна величина Z и тестирати ту предпоставку тестом Колмогорова и Монте Карло тестом. 2. Нека су x <- round((-1/3)*log(runif(1000)),2) и y <- round(rexp(1000,3),2). Тестирати хипотезу да су X и Y из исте расподеле тестом Колмогоров-Смирнова. 3. Описати неки поступак тестирања хипотеза и написати функциjу у R-у коja симулира таj поступак. Све кораке детаљно обjаснити. Боjана Тодић Статистички софтвер март / 10

Монте Карло Интеграциjа

Монте Карло Интеграциjа Монте Карло Интеграциjа 4.час 22. март 2016. Боjана Тодић Статистички софтвер 2 22. март 2016. 1 / 22 Монте Карло методе Oве нумеричке методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Теорија одлучивања. Анализа ризика

Теорија одлучивања. Анализа ризика Теорија одлучивања Анализа ризика Циљеви предавања Упознавање са процесом анализе ризика Моделовање ризика Монте-Карло Симулација Предности и недостаци анализе ризика 2 Дефиниција ризика (квалитативни

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

Objektno orijentisano programiranje

Objektno orijentisano programiranje Matematički fakultet, Univerzizet u Beogradu Katedra za računarstvo i informatiku Objektno orijentisano programiranje vežbe školska 2016/ 2017 Biljana Stojanović Nemanja Mićović Nikola Milev 1 Наслеђивање

Διαβάστε περισσότερα

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

УНАПРЕЂИВАЊЕ SMT РЕШАВАЧА КОРИШЋЕЊЕМ CSP ТЕХНИКА И ТЕХНИКА ПАРАЛЕЛИЗАЦИJЕ

УНАПРЕЂИВАЊЕ SMT РЕШАВАЧА КОРИШЋЕЊЕМ CSP ТЕХНИКА И ТЕХНИКА ПАРАЛЕЛИЗАЦИJЕ УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ Милан Банковић УНАПРЕЂИВАЊЕ SMT РЕШАВАЧА КОРИШЋЕЊЕМ CSP ТЕХНИКА И ТЕХНИКА ПАРАЛЕЛИЗАЦИJЕ докторска дисертациjа Београд, 2016. UNIVERSITY OF BELGRADE FACULTY

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

Испитвање тока функције

Испитвање тока функције Милош Станић Техничка школа Ужицe 7/8 Испитвање тока функције Испитивање тока функције y f подразумева да се аналитичким путем дође до сазнања о понашању функције, као и њеним значајним тачкама у координантном

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

МАСТЕР РАД УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ. Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ

МАСТЕР РАД УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ. Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ МАСТЕР РАД Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ МЕНТОР: КАНДИДАТ: Проф. др Драгољуб Кечкић Милинко Миловић

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Задатак 1: Муње из ведре главе (10 поена)

Задатак 1: Муње из ведре главе (10 поена) ЗАДАЦИ Задатак 1: Муње из ведре главе (10 поена) У овом задатку ћемо разматрати кружење наелектрисања у атмосфери укључуjући муње праћене грмљавином. Jоносфера jе горњи слоj атмосфере коjи jе услед космичког

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1 6. Четвороугао 6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова А Сл. 1 А На приложеним сликама сигурно уочаваш геометријске фигуре које су ти познате (троугао,

Διαβάστε περισσότερα

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао ЗАДАЦИ ЗА САМОСТАЛНИ РАД Задаци за самостлни рад намењени су првенствено ученицима који се припремају за полагање завршног испита из математике на крају обавезног основног образовања. Задаци су одабрани

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ

Διαβάστε περισσότερα

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z.

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z. Дефиниција функције више променљивих Околина тачке R График и линије нивоа функције : Дефиниција Величина се назива функцијом променљивих величина и на скупу D ако сваком уређеном пару D по неком закону

Διαβάστε περισσότερα

U = ax i by j. u = U x ) , v = w = 0. ρ = ρ x ) 1. T = T 0 e x/l sin,

U = ax i by j. u = U x ) , v = w = 0. ρ = ρ x ) 1. T = T 0 e x/l sin, Å Ü Ò ÙÐØ Ø Ó Ö Ã Ø Ö Þ Ñ Ò Ù ÐÙ Å À ÆÁà ÄÍÁ ¹ II Ø Ø ¾¼º Ñ Ö ¾¼¼ º Ó º 1. ÖÙÔ ½º ÈÓ ÖÞ Ò ÔÖ Ö Ú Ò ÓÑ ØÖÙ Ù ÐÙ Ù a b ÔÓÞ Ø ÚÒ ÓÒ Ø ÒØ º U = ax i by j Ç Ö Ø Ó Ù ÐÓÚ ÑÓÖ Ù Þ ÓÚÓ ÓÒ Ø ÒØ a b ØÖÙ ÐÙ ÐÓ Ò Ø

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

Испитивање магнетних и електричних својстава нанокомпозита поли(метил метакрилат-а) и легуре никл-гвожђе-волфрама

Испитивање магнетних и електричних својстава нанокомпозита поли(метил метакрилат-а) и легуре никл-гвожђе-волфрама Испитивање магнетних и електричних својстава нанокомпозита поли(метил метакрилат-а) и легуре никл-гвожђе-волфрама Александар Миловановић Факултет техничких наука, Чачак Електротехничко и рачунарско инжењерство,

Διαβάστε περισσότερα

УПУТСТВО ЗА ОДРЕЂИВАЊЕ ВРСТЕ ДОКУМЕНАТА КОЈЕ ИЗРАЂУЈЕ ОПЕРАТЕР СЕВЕСО ПОСТРОЈЕЊА. август 2010.

УПУТСТВО ЗА ОДРЕЂИВАЊЕ ВРСТЕ ДОКУМЕНАТА КОЈЕ ИЗРАЂУЈЕ ОПЕРАТЕР СЕВЕСО ПОСТРОЈЕЊА. август 2010. УПУТСТВО ЗА ОДРЕЂИВАЊЕ ВРСТЕ ДОКУМЕНАТА КОЈЕ ИЗРАЂУЈЕ ОПЕРАТЕР СЕВЕСО ПОСТРОЈЕЊА август 2010. I. УВОД Сврха овог Упутства је да помогне оператерима који управљају опасним материјама, како да одреде да

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/

Διαβάστε περισσότερα

МЕТОДА ПИКОВА ЈЕДАН СТОХАСТИЧКИ МОДЕЛ ЗАПРЕМИНА ПРЕКОРАЧЕЊА

МЕТОДА ПИКОВА ЈЕДАН СТОХАСТИЧКИ МОДЕЛ ЗАПРЕМИНА ПРЕКОРАЧЕЊА МЕТОДА ПИКОВА ЈЕДАН СТОХАСТИЧКИ МОДЕЛ ЗАПРЕМИНА ПРЕКОРАЧЕЊА Драгутин Павловић 1 Војислав Вукмировић 2 Јасна Плавшић 3 Јован Деспотовић 4 УДК: 519.217 DOI: 10.14415/zbornikGFS24.008 Резиме: Метода пикова

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака

Διαβάστε περισσότερα

ПРЕДВИЂАЊЕ ВРЕМЕНА ИЗРАДЕ КАО ОСНОВА ЗА СИМУЛАЦИЈУ ПОНАШАЊА ПРОИЗВОДНОГ СИСТЕМА У РЕАЛНИМ УСЛОВИМА

ПРЕДВИЂАЊЕ ВРЕМЕНА ИЗРАДЕ КАО ОСНОВА ЗА СИМУЛАЦИЈУ ПОНАШАЊА ПРОИЗВОДНОГ СИСТЕМА У РЕАЛНИМ УСЛОВИМА ГЛАСНИК ШУМАРСКОГ ФАКУЛТЕТА, БЕОГРАД, 2005, бр. 92, стр. 7-13 BIBLID: 0353-4537, (2005), 92, p 7-13 Милан Вукићевић UDK: 684:65.015.2 Оригинални научни рад ПРЕДВИЂАЊЕ ВРЕМЕНА ИЗРАДЕ КАО ОСНОВА ЗА СИМУЛАЦИЈУ

Διαβάστε περισσότερα

3. Емпиријске формуле за израчунавање испаравања (4)

3. Емпиријске формуле за израчунавање испаравања (4) 3.1 3. Емпиријске формуле за израчунавање испаравања (4) 3.1 Основни појмови o испаравању 3.2 Кружење воде у природи У атмосфери водена пара затвара један круг који је познат под именом кружење воде или

Διαβάστε περισσότερα

Тест за 7. разред. Шифра ученика

Тест за 7. разред. Шифра ученика Министарство просвете Републике Србије Српско хемијско друштво Окружно/градско/међуокружно такмичење из хемије 28. март 2009. године Тест за 7. разред Шифра ученика Пажљиво прочитај текстове задатака.

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК

ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК СКАЛАРНЕ И ВЕКТОРСКЕ ВЕЛИЧИНЕ Величибе које су одређене само својом бројном вредношћу и одговарајућом јединицом су скаларне величине или кратко, скалари.

Διαβάστε περισσότερα

САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR

САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR INFOTEH-JAHORINA Vol. 10, Ref. F-36, p. 1061-1065, March 2011. САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR Глуховић Владимир, Електротехнички факултет Источно Сарајево Садржај-У

Διαβάστε περισσότερα

Одређивање вредности Планкове константе

Одређивање вредности Планкове константе Одређивање вредности Планкове константе Увод Посебна врста полупроводничких диода су LED диоде (Light Emitting Diode). Ове диоде емитују светлост када су директно поларисане. Појава емисије инфрацрвене

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

Вежба 4. Графика. Наредба има облик plot(x,y) Аргументи x и y су вектори, који морају имати исти број елемената.

Вежба 4. Графика. Наредба има облик plot(x,y) Аргументи x и y су вектори, који морају имати исти број елемената. Вежба Графика У МATLAB-у постоји много команди за цртање графика. Изглед графика може се подешавати произвољним избором боје, дебљине и врсте линија, уношењем мреже, наслова, коментара и слично. У овој

Διαβάστε περισσότερα

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом). СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која

Διαβάστε περισσότερα

РЕЦИКЛАЖА И ОДРЖИВИ РАЗВОЈ UDK : Научни рад

РЕЦИКЛАЖА И ОДРЖИВИ РАЗВОЈ UDK : Научни рад РЕЦИКЛАЖА И ОДРЖИВИ РАЗВОЈ UDK 628.477:666.91 Научни рад Технички факултет у Бору Универзитета у Београду, В. Ј. 12, 19210 Бор, Србија Катедра за минералне и рециклажне технологије Тел. +381 30 424 555,

Διαβάστε περισσότερα

КА КО КОД НАС ЦР КВЕ И ДА ЉЕ ЛЕ ТЕ

КА КО КОД НАС ЦР КВЕ И ДА ЉЕ ЛЕ ТЕ Н И КО Л И Н А Т У Т У Ш КА КО КОД НАС ЦР КВЕ И ДА ЉЕ ЛЕ ТЕ Мо тив ле те ће цр кве чест је у на род ним пре да њи ма и ле генда ма о на с т а н к у по је д и н и х ц р к а в а и ма на с т и ра. 1 Ро ма

Διαβάστε περισσότερα

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5 05.03.011 - III РАЗРЕД 1. Нацртај 4 праве a, b, c и d, ако знаш да је права а нормална на праву b, права c нормалана на b, а d паралелнa са а. Затим попуни табелу стављајући знак (ако су праве нормалне)

Διαβάστε περισσότερα

ОБЛАСТ АТРАКЦИЈЕ РАЗНИХ ПОСТУПАКА

ОБЛАСТ АТРАКЦИЈЕ РАЗНИХ ПОСТУПАКА УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Оља Скакавац ОБЛАСТ АТРАКЦИЈЕ РАЗНИХ ПОСТУПАКА мастер рад Нови Сад, 014. Садржај Предговор 4 1. Уводни део 5

Διαβάστε περισσότερα

ЊУТНОВ ПОСТУПАК И ЊЕГОВЕ МОДИФИКАЦИЈЕ ТРЕЋЕГ РЕДА КОНВЕРГЕНЦИЈЕ

ЊУТНОВ ПОСТУПАК И ЊЕГОВЕ МОДИФИКАЦИЈЕ ТРЕЋЕГ РЕДА КОНВЕРГЕНЦИЈЕ УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Дара Бошковић ЊУТНОВ ПОСТУПАК И ЊЕГОВЕ МОДИФИКАЦИЈЕ ТРЕЋЕГ РЕДА КОНВЕРГЕНЦИЈЕ мастер рад Нови Сад, Садржај Предговор

Διαβάστε περισσότερα

Дух полемике у филозофији Јован Бабић

Дух полемике у филозофији Јован Бабић Дух полемике у филозофији Јован Бабић У свом истинском смислу филозофија претпостаља једну посебну слободу мишљења, исконску слободу која подразумева да се ништа не подразумева нешто што истовремено изгледа

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕНИКЕ

ОСНОВА ЕЛЕКТРОТЕНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ЧЕТРНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 1

Διαβάστε περισσότερα

ИНТЕГРИСАНЕ АКАДЕМСКЕ

ИНТЕГРИСАНЕ АКАДЕМСКЕ РЕСТАУРАТИНА ОДОНТОЛОГИЈА II - СТРУЧНА ПРАКСА ИНТЕГРИСАНЕ АКАДЕМСКЕ СТУДИЈE СТОМАТОЛОГИЈЕ ЧЕТРТА ГОДИНА СТУДИЈА школска 2013/2014. Предмет: РЕСТАУРАТИНА ОДОНТОЛОГИЈА II СТРУЧНА ПРАКСА Предмет се вреднује

Διαβάστε περισσότερα

АПЛИКАТИВНОСТ НЕПАРАМЕТАРСКИХ МОДЕЛА ИСТОРИЈСКЕ СИМУЛАЦИЈЕ НА ТРЖИШТИМА У НАСТАЈЊУ

АПЛИКАТИВНОСТ НЕПАРАМЕТАРСКИХ МОДЕЛА ИСТОРИЈСКЕ СИМУЛАЦИЈЕ НА ТРЖИШТИМА У НАСТАЈЊУ УДК: 336.76: 330.43 Оригинални научни рад ПОСЛОВНА ЕКОНОМИЈА BUSINESS ECONOMICS Година IX Број II стр. 89-106 др Никола Радивојевић 1 Висока техничка школа струковних студија, Крагујевац мр Драгана Милојковић

Διαβάστε περισσότερα

1. УВОД 1.1. ЗАШТО ИНДИВИДУАЛИЗАЦИЈА НАСТАВЕ МАТЕМАТИКЕ? ''Настава математике није наука. Она је уметност'' Ђерђ Поја - ''Математичко откриће''

1. УВОД 1.1. ЗАШТО ИНДИВИДУАЛИЗАЦИЈА НАСТАВЕ МАТЕМАТИКЕ? ''Настава математике није наука. Она је уметност'' Ђерђ Поја - ''Математичко откриће'' ''Настава математике није наука. Она је уметност'' Ђерђ Поја - ''Математичко откриће'' 1. УВОД Зашто су краљевићи и царевићи од античких па до наших времена имали своје приватне учитеље математике? Зашто

Διαβάστε περισσότερα

Приредиле: др Сања Филиповић др Александра Јоксимовић Флу, Наставник као истраживач

Приредиле: др Сања Филиповић др Александра Јоксимовић Флу, Наставник као истраживач Приредиле: др Сања Филиповић др Александра Јоксимовић Флу, 2015. 1 Наставник као истраживач 2 Циљ курса је развијање компетенција студената, будућих наставника да: истражују и унапређују сопствену праксу

Διαβάστε περισσότερα

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити. IV разред 1. Колико ће година проћи од 1. јануара 2015. године пре него што се први пут догоди да производ цифара у ознаци године буде већи од збира ових цифара? 2. Свако слово замени цифром (различита

Διαβάστε περισσότερα

Слика 1: Савремени аутоматски дифрактометар x зрака; принципијелна шема, изглед дифрактометра (горе лево)

Слика 1: Савремени аутоматски дифрактометар x зрака; принципијелна шема, изглед дифрактометра (горе лево) ОДРЕЂИВАЊЕ ПАРАМЕТАРА КРИСТАЛНЕ РЕШЕТКЕ МЕТОДОМ КРИСТАЛНОГ ПРАХА, ДЕБАЈ ШЕРЕРОВ МЕТОД ТЕОРИЈСКИ УВОД У параметре кристалне решетке убрајају се дужине ивица кристалне ћелије: a, b и c и дужина међураванског

Διαβάστε περισσότερα

Метод таблоа у настави математичке логике у средњој школи

Метод таблоа у настави математичке логике у средњој школи Универзитет у Београду Математички факултет Метод таблоа у настави математичке логике у средњој школи - Мастер рад - Студент: Весна Петровић Ментор: др Зоран Петровић Београд, март 2011.године САДРЖАЈ

Διαβάστε περισσότερα

ИЗВЕШТАЈ О СПОЉАШЊЕМ ВРЕДНОВАЊУ КВАЛИТЕТА РАДА ШКОЛА

ИЗВЕШТАЈ О СПОЉАШЊЕМ ВРЕДНОВАЊУ КВАЛИТЕТА РАДА ШКОЛА Република Србија ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ИЗВЕШТАЈ О СПОЉАШЊЕМ ВРЕДНОВАЊУ КВАЛИТЕТА РАДА ШКОЛА (школска 2012/13. и школска 2013/14. година) Београд, децембар 2014. Завод за

Διαβάστε περισσότερα

Мониторинг квалитета ваздуха Града Новог Сада у години

Мониторинг квалитета ваздуха Града Новог Сада у години Мониторинг квалитета ваздуха Града Новог Сада у 2009. години МЕРНА МЕСТА ЗА УЗОРКОВАЊЕ ЈЕДНОЧАСОВНИХ УЗОРАКА АЗОТДИОКСИДA, УГЉЕНМОНОКСИДА И УГЉЕНДИОКСИДА А1. Поликлиника, Хајдук Вељкова 2, Нови Сад ГВИ

Διαβάστε περισσότερα

Висока техничка школа струковних студија Београд Математика 2 Вероватноћа предавач: др Мићо Милетић

Висока техничка школа струковних студија Београд Математика 2 Вероватноћа предавач: др Мићо Милетић 1. Поток воде. а) Водоводна међа између гадова А и В шематски је пиказана на сликама 1, 2, 3 и 4. Сваки квадант педставља неки елемент, а бој у кваданту веоватноћу кваа тог апаата. Кваови азличитих елемената

Διαβάστε περισσότερα

Комуникација директора школе са ученицима

Комуникација директора школе са ученицима Иновације у настави, XXIX, 2016/3, стр. 61 72 UDC 37.064.2:371.112(497.6) Рад примљен: 11. 8. 2016. Рад прихваћен: 15. 9. 2016. Семир И. Шејтанић 1 Универзитет Џемал Биједић у Мостару, Наставнички факултет

Διαβάστε περισσότερα

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,

Διαβάστε περισσότερα

ДИПЛОМСКИ РАД Анализа и имплементација графовских алгоритама

ДИПЛОМСКИ РАД Анализа и имплементација графовских алгоритама ДИПЛОМСКИ РАД Анализа и имплементација графовских алгоритама Универзитет у Београду Електротехнички факултет Ментор: Проф. др Мило Томашевић Београд, MMVII Садржај Увод... Графови - терминологија и представљање....

Διαβάστε περισσότερα

НЕ ПРО ПИ СНИ МИ ГРАН ТИ. Не дав но ми је у ру ке до шла бро шу ра у ко јој сам, из ме ђу оста лог, про читао

НЕ ПРО ПИ СНИ МИ ГРАН ТИ. Не дав но ми је у ру ке до шла бро шу ра у ко јој сам, из ме ђу оста лог, про читао НОРМА Вл а д о Ђу ка н о в и ћ НЕ ПРО ПИ СНИ МИ ГРАН ТИ Не дав но ми је у ру ке до шла бро шу ра у ко јој сам, из ме ђу оста лог, про читао и ово: KO SU NEPROPISNI MIGRANTI? Ne p r o p i s n i m i g r

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2 АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ ЧЕВИЈЕВА ТЕОРЕМА И ПОСЛЕДИЦЕ Мастер рад Кандидат: Рајка Милетић Ментор: проф др Неда Бокан Београд, 00 САДРЖАЈ Увод 3 I ЧЕВИЈЕВА ТЕОРЕМА 4 I Доказ Чевијеве теореме

Διαβάστε περισσότερα

ТЕ МАТ: 80 ГО ДИ НА ДА НИ ЛА КИ ША ( )

ТЕ МАТ: 80 ГО ДИ НА ДА НИ ЛА КИ ША ( ) ТЕ МАТ: 80 ГО ДИ НА ДА НИ ЛА КИ ША (1935 1989) А Л Е К СА Н Д А Р Ј Е Р КОВ УВЕК О КИ ШУ, А СА ДА ЈОШ И О ПИ ТА ЊУ ЉУ БА ВИ У ЈЕ СЕН ГО ДИ НЕ 7464. ( ПО ВИ ЗА Н Т И Ј СКОМ РА Ч У Н А ЊУ ВРЕ М Е Н А), НА

Διαβάστε περισσότερα

УТИЦАЈ КЛОЗАПИНА И РИСПЕРИДОНА НА МЕТАБОЛИЧКЕ ПАРАМЕТРЕ И ФУНКЦИЈУ ЈЕТРЕ КОД ПАЦИЈЕНАТА СА ШИЗОФРЕНИЈОМ

УТИЦАЈ КЛОЗАПИНА И РИСПЕРИДОНА НА МЕТАБОЛИЧКЕ ПАРАМЕТРЕ И ФУНКЦИЈУ ЈЕТРЕ КОД ПАЦИЈЕНАТА СА ШИЗОФРЕНИЈОМ STRUČNI RAD УТИЦАЈ КЛОЗАПИНА И РИСПЕРИДОНА НА МЕТАБОЛИЧКЕ ПАРАМЕТРЕ И ФУНКЦИЈУ ЈЕТРЕ КОД ПАЦИЈЕНАТА СА ШИЗОФРЕНИЈОМ Катарина Радоњић Факултет медицинских наука Универзитета у Крагујевцу, Крагујевац CLOZAPINE

Διαβάστε περισσότερα

ОСНОВНА ЛОГИКА. Коста Дошен

ОСНОВНА ЛОГИКА. Коста Дошен ОСНОВНА ЛОГИКА Коста Дошен 2 Овa књигa je учињена слободно доступном преданошћу издавача Арона Сворца. Београд, 2013 This book is made freely available by the good offices of the publisher Aaron Swartz.

Διαβάστε περισσότερα

FIR филтар. Универзитет у Нишу Електронски факултет Катедра за Електронику. Предмет: DSP архитектутре и алгоритми Април 2010

FIR филтар. Универзитет у Нишу Електронски факултет Катедра за Електронику. Предмет: DSP архитектутре и алгоритми Април 2010 Универзитет у Нишу Електронски факултет Катедра за Електронику Предмет: DSP архитектутре и алгоритми Април 2010 FIR филтар Студенти: Жељко Банковић 12154 Ментор : Милан Ерић 12197 Миле Стојчев Милан Радосављевић

Διαβάστε περισσότερα

ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА. школска 2013/2014. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД

ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА. школска 2013/2014. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 0/04. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД Тест који треба да решиш има 0 задатака. За рад је предвиђено 0 минута. Задатке не мораш да радиш

Διαβάστε περισσότερα

Др Душан Дамиан MATLAB. (Скрипте) Београд, 2015.

Др Душан Дамиан MATLAB. (Скрипте) Београд, 2015. Др Душан Дамиан ML Скрипте Београд Матлаб УВОД Име Матлаб је настало као спој скраћеница од Mt Loto У овом програмском језику матрице су основни градивни елемент за даљи рад Скаларне величине се одређују

Διαβάστε περισσότερα

ДИНАМИЧКО УРАВНОТЕЖАВАЊЕ ОПТЕРЕЋЕЊА ЗА СИМУЛАЦИЈЕ У СТАТИЦИ

ДИНАМИЧКО УРАВНОТЕЖАВАЊЕ ОПТЕРЕЋЕЊА ЗА СИМУЛАЦИЈЕ У СТАТИЦИ Математички факултет Универзитет у Београду ДИНАМИЧКО УРАВНОТЕЖАВАЊЕ ОПТЕРЕЋЕЊА ЗА СИМУЛАЦИЈЕ У СТАТИЦИ - ДИПЛОМСКИ МАСТЕР РАД - Ментори: Проф. др Миодраг Живковић Јована Кнежевић Др Ralf-Peter Mundani

Διαβάστε περισσότερα

Решавање рачунских задатака из наставних јединица: Равномерно и pавномерно променљиво праволинијско кретање

Решавање рачунских задатака из наставних јединица: Равномерно и pавномерно променљиво праволинијско кретање УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Решавање рачунских задатака из наставних јединица: Равномерно и pавномерно променљиво праволинијско кретање Mентор: Др Маја Стојановић Кандидат: Невена

Διαβάστε περισσότερα

Метод и кључни налази

Метод и кључни налази 55 54 Мапа у Србији Мапа у Србији Метод и кључни налази Републички завод за статистику 1 2 Мапа у Србији ЗАХВАЛНИЦА АУТОРА Овај извештај је резултат заједничког рада Републичког завода за статистику (РЗС)

Διαβάστε περισσότερα

Улога и место слободног софтвера у библиотекама и јавном сектору

Улога и место слободног софтвера у библиотекама и јавном сектору Улога и место слободног софтвера у библиотекама и јавном сектору Цветана Крстев У овом раду даћемо уз краћи историјски приказ настанка појма слободног софтвера, његову дефиницију и представићемо различите

Διαβάστε περισσότερα

ПРИСТУПНЕ МРЕЖЕ И УРЕЂАЈИ

ПРИСТУПНЕ МРЕЖЕ И УРЕЂАЈИ Драган Товаришић, дипл.инж.ел. Скрипта за предавања из предмета ПРИСТУПНЕ МРЕЖЕ И УРЕЂАЈИ за IV разред смера Електротехничар телекомуникација Суботица, 2010.год. ПРИСТУПНЕ МРЕЖЕ И УРЕЂАЈИ Page 1 1. ПОЈАМ

Διαβάστε περισσότερα

СИСТЕМ МЕНАЏМЕНТА ЕНЕРГИЈЕ У ПРЕРАЂИВАЧКОЈ ИНДУСТРИЈИ У СРБИЈИ

СИСТЕМ МЕНАЏМЕНТА ЕНЕРГИЈЕ У ПРЕРАЂИВАЧКОЈ ИНДУСТРИЈИ У СРБИЈИ УНИВЕРЗИТЕТ У БЕОГРАДУ ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА Бојана В. Јовановић СИСТЕМ МЕНАЏМЕНТА ЕНЕРГИЈЕ У ПРЕРАЂИВАЧКОЈ ИНДУСТРИЈИ У СРБИЈИ Докторска дисертација Београд, 2016. UNIVERSITY OF BELGRADE FACULTY

Διαβάστε περισσότερα

СТА ВО ВИ УЧЕ НИ КА ОСНОВНИХ И СРЕД ЊИХ ШКО ЛА О ПРЕД МЕ ТУ ЛИКОВНА КУЛ ТУ РА

СТА ВО ВИ УЧЕ НИ КА ОСНОВНИХ И СРЕД ЊИХ ШКО ЛА О ПРЕД МЕ ТУ ЛИКОВНА КУЛ ТУ РА Ви со ка шко ла стру ков них сту ди ја за вас пи та че и по слов не ин фор ма ти ча ре Сир ми јум, Срем ска Ми тро ви ца DOI 10.5937/kultura1547242K УДК 316.644-057.874:73/76(497.11) 371.3::73/76(497.11)

Διαβάστε περισσότερα

Реализована вежба на протоборду изгледа као на слици 1.

Реализована вежба на протоборду изгледа као на слици 1. Вежбе из електронике Вежба 1. Kондензатор три диоде везане паралелно Циљ вежбе је да ученици повежу струјно коло са три диоде везане паралелно од којих свака има свој отпорник. Вежба је успешно реализована

Διαβάστε περισσότερα

2.1. Права, дуж, полуправа, раван, полураван

2.1. Права, дуж, полуправа, раван, полураван 2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.

Διαβάστε περισσότερα

брзина којом наелектрисања пролазе кроз попречни пресек проводника

брзина којом наелектрисања пролазе кроз попречни пресек проводника Струја 1 Електрична струја Кад год се наелектрисања крећу, јавља се електрична струја Струја је брзина којом наелектрисања пролазе кроз попречни пресек проводника ΔQ I Δtt Јединица за струју у SI систему

Διαβάστε περισσότερα

ГЛАСНИК СРПСКОГ ГЕОГРАФСKОГ ДРУШТВА BULLETIN OF THE SERBIAN GEOGRAPHICAL SOCIETY ГОДИНА СВЕСКА LXXXVII- Бр. 2 YEAR 2007 TOME LXXXVII - N о 2

ГЛАСНИК СРПСКОГ ГЕОГРАФСKОГ ДРУШТВА BULLETIN OF THE SERBIAN GEOGRAPHICAL SOCIETY ГОДИНА СВЕСКА LXXXVII- Бр. 2 YEAR 2007 TOME LXXXVII - N о 2 ГЛАСНИК СРПСКОГ ГЕОГРАФСKОГ ДРУШТВА BULLETIN OF THE SERBIAN GEOGRAPHICAL SOCIETY ГОДИНА 2007. СВЕСКА LXXXVII- Бр. 2 YEAR 2007 TOME LXXXVII - N о 2 Оригиналан научни рад UDC 911.372.7 БРАНИСЛАВ БАЈАТ ДРАГАН

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

ОСНОВНЕ СТРУКОВНЕ СТУДИЈЕ ДРУГА ГОДИНА СТУДИЈА

ОСНОВНЕ СТРУКОВНЕ СТУДИЈЕ ДРУГА ГОДИНА СТУДИЈА ХИГИЈЕНА СА ЕПИДЕМИОЛОГИЈОМ ОСНОВНЕ СТРУКОВНЕ СТУДИЈЕ ДРУГА ГОДИНА СТУДИЈА школска 2016/2017 Предмет: ХИГИЈЕНА СА ЕПИДЕМИОЛОГИЈОМ Предмет се вреднује са 3 ЕСПБ. Недељно има 2 часа активне наставе (1 час

Διαβάστε περισσότερα

Статистика. Ђорђе М. Кадијевић. Лични сајт: www. mi.sanu.ac.rs/~djkadij. Контакт: Основне информације

Статистика. Ђорђе М. Кадијевић. Лични сајт: www. mi.sanu.ac.rs/~djkadij. Контакт: Основне информације 3/1/014 Статистика Ђорђе М. Кадијевић Лични сајт: www. mi.sanu.ac.rs/~djkadij Контакт: djkmegatrend@megatrend.edu.rs На врху поруке обавезно навести - име и презиме, - број индекса, - о ком се предмету

Διαβάστε περισσότερα

Поређење биохуморалних и морфолошких параметара код акутног панкреатитиса

Поређење биохуморалних и морфолошких параметара код акутног панкреатитиса DOI: 10.2298/SARH1402029T ОРИГИНАЛНИ РАД / ORIGINAL ARTICLE UDC: 616.37-002-07 29 Поређење биохуморалних и морфолошких параметара код акутног панкреатитиса Томислав Тасић 1, Саша Гргов 1, Александар Нагорни

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 2 ТРОФАЗНИ ПУНОУПРАВЉИВИ МОСТНИ ИСПРАВЉАЧ СА ТИРИСТОРИМА 1. ТЕОРИЈСКИ УВОД

Διαβάστε περισσότερα

3.5. Пливање и тоњење тела

3.5. Пливање и тоњење тела Физика 7. разред 3.5. Пливање и тоњење тела Из искуства знамо да нека тела, кад их потопимо у воду и пустимо - потону ( камен, ексер, кликер,новчић... ), док друга испливају ( оловка, лопта, запушач од

Διαβάστε περισσότερα

Производња пила, хемолизина и сидерофора код уринарних изолата Escherichia coli

Производња пила, хемолизина и сидерофора код уринарних изолата Escherichia coli 634 Srp Arh Celok Lek. 2013 Sep-Oct;141(9-10):634-639 DOI: 10.2298/SARH1310634M ОРИГИНАЛНИ РАД / ORIGINAL ARTICLE UDC: 612.015.1 Производња пила, хемолизина и сидерофора код уринарних изолата Escherichia

Διαβάστε περισσότερα