7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

Save this PDF as:
Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ"

Transcript

1 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем, јер се своди на одређивање свих чинилаца броја n. Зато ће се ово разматрање односити на одређивање броја решења једначине ху = n (n N), јер се модел одређивања броја решења већине једначина заснива на моделу пребројавања броја решења управо ове једначине. ПРИМЕР 1. Колико решења (х, у) има једначина ху = р n, ако су х, у и n природни, а р прост број. РЕШЕЊЕ: Једини делиоци броја р n су 1, р, р, р 3,..., р n па дата једначина има n + 1 решење, јер х узима све вредности од 1 до р n, а у вредности p n. x ПРИМЕР. Ако је n = p α1 α 1 p... pk канонски облик природног броја онда је број решења једначине Диофантове једначине ху = n у скупу природних бројева r = ( α + 1)( α α 1). 1 k + РЕШЕЊЕ: Број х може бити ма који делилац природног броја n. Како n има тачно α + 1)( α α 1) делилаца то једначина ( 1 k + ху = n, у скупу природних бројева има r = ( α1 + 1)( α + 1) решења. ПРИМЕР 3. Одредити најмањи природан број n, тако да једначина ху = n има 10 решења. РЕШЕЊЕ: Како је r = ( α1 + 1)( α + 1) = 10, то постоји неколико могућности: 1) α = 10, α + 1 = α =... = α к + 1 = 1. Тада је n = 9 = 51. ) α = 5, α + 1 =, α =... = α к + 1 = 1. Тада је n = 4 3 =

2 7. Једноставније квадратне Диофантове једначине 7.1. Диофантова једначина ху = n 3) α =, α + 1 =5, α =... = α к + 1 = 1. Тада је n = 3 4 = 16. 4) α = 1, α + 1 = 10, α =... = α к + 1 = 1. Тада је n = 3 9. Најмањи такав природан број је n = 48. ПРИМЕР 4. Колико уређених тројки (х, у, z) природних бројева х, у и z задовољава једначину хуz = 1. РЕШЕЊЕ: Ако је х = 1, онда је уz = 1 = 3, па једначина има 3 = 6 решења. Ако је х =, онда је уz = 6 = 3, па једначина има = 4 решења. У случају х = 3, уz = 4 =, па једначина има 3 решења. Уколико је х = 4 или х = 6, тада је уz = 3 односно уz =, па једначина има по решења. И на крају, ако је х = 1, онда је уz = 1, па једначина има 1 решење. Једначина има укупно = 18 решења. ПРИМЕР 5. Колико решења у скупу природних бројева има једначина хуz = р n, ако је р прост, а n природан број. РЕШЕЊЕ: Ако је х = 1, онда је уz = р n и једначина има n + 1 решење. Уколико је х = р, онда је уz = р n-1 и једначина има n решење. Ако је х = р, онда је уz = р n- и једначина има n - 1 решење,... Уколико је х = р n, онда је уz = 1 и једначина има 1 решење. Дакле, укупно има ( n + 1)(n + ) n n + n + 1 = решења. ПРОБЛЕМИ ЗА УВЕЖБАВАЊЕ 474. Колико решења у скупу природних бројева има једначина ху = pq ако су p и q прости бројеви? 475. Колико решења у скупу природних бројева има једначина хуz = pqr ако су p, q и r прости бројеви? 7.. ДИОФАНТОВА ЈЕДНАЧИНА х - у = n (n N) Диофантова једначина х у = n, где су х, у и n природни бројеви, је веома интересантна за анализу, јер се за сваки природан број n једначина лако решава коришћењем производа. Међутим, пре општег разматрања броја решења ове једначине, треба погледати неколико конкретних примера. 95

3 7. Једноставније квадратне Диофантове једначине 7.. Диофантова једначина х - у = n ПРИМЕР 6. Одредити колико решења у скупу природних бројева имају једначине : а) х у = 4 ; b) х у = 18 ; c) х у = 5. РЕШЕЊЕ: а) Kaко је х у = (х у)(х + у) = 4 = 1 4 = 1 = 3 8 = 4 6 и како су бројеви х - у и х + у исте парности, то у обзир долазе само комбинације х + у = 1, х у =, или х + у = 6, х у = 4, па су решења дате једначине (х, у) = (7, 5) или (х, у) = (5, 1). b) Слично из х у = (х у)(х + у) = 18 = 1 18 = 9 = 3 6 следи да дата једначина нема решења, јер не постоји ниједна комбинација таква да су бројеви х - у и х + у исте парности. с) Kaко је х у = (х у)(х + у) = 5 = 1 5 = 5 5 и како су бројеви х - у и х + у исте парности, то у обзир долазе комбинација х + у = 5, х у = 1, или х + у = 5, х у = 5, па је једино решење дате једначине (х, у) = (13, 1), јер друга комбинација даје решење (х, у) = (5, 0) које не одговара условима задатка, зато што у није природан број. Ако је канонски облик природног броја n = α1 α α3 p3... pk p, онда једначина х у = (х + у)(х у) = n има решења ако су бројеви х + у и х у исте парности, а то значи оба парна или оба непарна. Број n = α1 α... p k p има укупно Ѕ = (α 1 + 1)(α + 1)...(α к + 1) делилаца, од којих су N = (α + 1)(α 3 + 1)... (α к + 1) непарни. Дакле број парних делилаца је P = (α 1 + 1)(α + 1)...(α к + 1) - (α + 1)(α 3 + 1)... (α к + 1) = α 1 (α + 1)... (α к + 1). Шта се дешава са решењима дате једначине за разне вредности броја α 1 најбоље илуструје следећи пример ПРИМЕР 7. Ако је природан број n = α1 p α... p k, онда је број решења квадратне Диофантове једначине х у = n у скупу природних бројева једнак r α1 1 ( α = 5. Доказ: Разликују се три случаја: 1) Ако је α 1 = 0, онда је број n непаран и Р = 0, па су сви делиоци броја n непарни и има их тачно N. Тада је број решења једначине х у = n једнак броју парова (х + у, х у) а он је једнак половини укупног броја делилаца, јер је х + у > х - у и сваки број х + у има свој комплементаран n делилац = x y. x + y 5 [ x ] је ознака за највећи цео број који није већи од броја х. 96

4 7. Једноставније квадратне Диофантове једначине 7.. Диофантова једначина х - у = n Како N може бити паран (ако n није потпун квадрат), али и непаран N број (ако је n потпун квадрат), то може бити природан број, али и не мора бити. Зато је број решења једначине х у = n у овом случају N ( α r = = + 1)( α3, јер када је х у = n = m, пар х + у = х у = m отпада, пошто ће тада вредност у бити 0. Како је α 1-1 = 0 α1 1( α + 1)( α3-1 = 1 то је r =. ) Ако је α 1 = 1, онда је n = (m + 1), тј број n је паран, али није дељив са 4. Тада је Р = N = (α + 1)(α 3 + 1)... (α к + 1) и тада, сваки паран делилац има свој комплементаран непаран делилац (и обрнуто). То значи да бројеви х + у и х у никада нису исте парности, што истовремено значи да једначина х у = n у овом случају нема решења, тј. r = 0. Како α1 1( α + 1) ( α3 је α 1-1 = 1-1 = 0, то је r = = 0 3) Ако је α 1, онда је n број који је дељив са 4 и број парних делилаца Р = α 1 (α + 1)...(α к + 1) је веће од N = (α + 1)(α 3 + 1)... (α к + 1). Тада сваки непаран делилац има свој комплементарни парни делилац и у тим случајевима једначина х у = n нема решења, јер су бројеви х + у и х у различите парности. Једначина има решења само када су бројеви х + у и х у оба парни. Таквих делилаца има P - N = α 1 (α + 1)... (α к + 1) - (α + 1)(α 3 + 1)... (α к + 1) = (α 1-1)(α + 1)... (α к + 1). Број решења је једнак броју парова (х + у, х у) који су исте парности (оба парна). Тада P N ( α је r = = 1 1)( α, при чему се цео део узима P N јер и у овом случају број делилаца може бити паран (ако n није потпун квадрат), али и непаран број (ако је n потпун квадрат). Како је α 1 веће од 1, то је α 1 1 = α 1-1, па је број решења дате једначине α1 1( α + 1)( α3 r =. Следећи пример показује како формула дата у претходној теореми. ради за разне случајеве. 97

5 7. Једноставније квадратне Диофантове једначине 7.. Диофантова једначина х - у = n ПРИМЕР 8. Одредити колико решења у скупу природних бројева имају једначине : а) х у = 45 ; b) х у = 5 ; c) х у = 34. РЕШЕЊЕ: 0 1(+ 1) (1 r = = а) Kaкo je 45 = , то је број решења једначине 3 = ( + 1)( b) Како је 5 = 0 3 5, то је број решења r = = 3 3 = (1+ 1) c) Како је 34 = , то је број решења r = = 0. ПРОБЛЕМИ ЗА УВЕЖБАВАЊЕ 476. Ако је к природан број, онда једначина х у = к k 1, има решења у скупу природних бројева Ако је р непаран прост број, онда једначина х у = р, има само једно решење у скупу природних бројева. Доказати Одредити природан број n, тако да једначине х у = n има 006 решења у скупу природних бројева Постоји ли природан број n, такав да једначина х у = 36 n има 49 решења у скупу природних бројева Доказати да једначина х у = 7 n има за сваки природан број n, више решења него једначина х у = n Одредити природан број n, тако да једначине х у = 00 и х у = 4 n имају једнак број решења у скупу природних бројева. ПРОБЛЕМИ ЗА ИСТРАЖИВАЊЕ 48. Ако је р непаран прост број, онда једначина х у = р к, где је к неки k + 1 природан број, има решења у скупу природних бројева. Доказати. 98

6 7. Једноставније квадратне Диофантове једначине 7.3. Диофантова једначина х + у = n α α p k 483. Ако је канонски облик броја n = 1 p... kонда је број решења једначине х у = n у скупу целих бројева r = α 1 ( α α 1). α 1 k Број решења једначине х у = n у скупу целих бројева је увек паран број. Доказати ДИОФАНТОВА ЈЕДНАЧИНА х + у = n (n N) Kод једначине х + y = n није могуће, као код претходна два типа једначина експлицитно извести формулу за одређивање броја решења, али у ери рачунара за то вероватно и нема потребе. Ако једначина х + у = n у скупу целих бројева има решење, број решења је коначан, јер је х n и у n. Зато је код ове једначине већа потреба утврђивање егзистенције решења, јер се елиминацијом оних једначина које немају решења у многоме посао олакшава. Анализом неколико првих природних бројева ( = 1, =, + 0 = 4, + 1 = 5, + = 8, = 9, = 10, 3 + = 13, ), уочава се да једначина има решења за неке вредности броја n који је облика 4к, 4к + 1, 4к +. Међутим, једначине х + y = 3, х + y = 7, х + y = у опште х + y = n = 4к + 3 немају решење, јер израз х + y при дељењу са 4 може имати само остатке 0, 1,. Зато се може формулисати следеће тврђење: ПРИМЕР 9. Ако је n = 4k + 3 (к Ζ), онда једначина х + y = n нема решења у скупу целих бројева. Доказати. РЕШЕЊЕ: Како је 4к + 3 непаран број, то је један од бројева х и у паран, а други непаран. Нека је х = m, a y = р + 1. Тада је х + y = 4m + 4р + 4р + 1 = 4к + 3. Следи да је 4 (m + р + р) = 4к +. Како је лева страна једнакости дељива са 4, а десна није, то једначина нема решења. Међутим, може се доказати и општије тврђење. ПРИМЕР 10. Ако је n = к (4m + 3), онда једначина х + y = n нема решења у скупу целих бројева, при чему су к и m ненегативни цели бројеви. РЕШЕЊЕ: Разликују се три случаја: 99

7 7. Једноставније квадратне Диофантове једначине 7.3. Диофантова једначина х + у = n 1) Ако је к = 0, онда се проблем своди на пример 11. ) Ако је к = 1, онда је х + y = n = 8m + 6, па су х и у или оба парна или оба непарна. Ако су оба парна, онда је збир њихових квадрата дељив са 4, што у овом случају очигледно није. Ако су оба непарна онда је х = р + 1, а у = q + 1, па је х + y = 4р + 4р q + 4q + 1 = 8m + 6. Следи да је 4(р + р + q + q) = 8m + 4, а дељењем са 4 се добија р(р + 1) + q(q + 1) = m + 1. Како је лева страна једнакости парна (због збира производа по два узастопна броја), а десна непарна, то једначина нема решења. 3) Ако је к онда се сменом х = [к/] а, у = [к/] b ( а и b су природни бројеви) једначина своди на један од претходна два случаја (први, ако је к паран и други случај ако је к непаран број). Дакле, сада се зна да једначина х + y = n за n {3, 7, 11, 6, 14,, 1, 8, 44, 60, }, тј za n = k (4m + 3) (k Ν о, m N) нема решења у скупу целих бројева. Како бројева облика k (4m + 3) (k Ν о, m N) има бесконачно, без доказа се може констатовати да је непосредна последица претходног разматрања: ПРИМЕР 11. Постоји бесконачно много природних бројева n за које једначина х + y = n нема решења у скупу целих бројева. Међутим, важно је испитати и да ли и када дата једначина има решења. ПРИМЕР 1. Постоји бесконачно много природних бројева n за које једначина х + y = n има решења у скупу природних бројева. РЕШЕЊЕ: Ако је n = 5к (к Ν), онда је х = 3к, у = 4к једно решење једначине х + y = 5к, чиме је доказ завршен. Међутим, могу се извести и општији докази. На пример, ако је n = к (к N, к 5) онда се добија Питагорина једначина х + y = к, па су њена решења х = pq, y = p q, k = p + q (p > q ; (p,q) = 1 ; p и q су различите парности), о чему ће ускоро бити речи. ПРОБЛЕМИ ЗА УВЕЖБАВАЊЕ 485. Постоји бесконачно много природних бројева n облика 4к за које једначина х + y = n нема решења у скупу природних бројева. 100

8 7. Једноставније квадратне Диофантове једначине 7.3. Диофантова једначина х + у = n 486. Постоји бесконачно много природних бројева n облика 4к (k N) за које једначина х + y = n има решења у скупу природних бројева Постоји бесконачно много природних бројева n облика 4к + 1 (k N) за које једначина х + y = n нема решења у скупу природних бројева Постоји бесконачно много природних бројева n облика 4к + 1 (k N) за које једначина х + y = n има решења у скупу природних бројева Постоји бесконачно много природних бројева n облика 4к + (k N) за које једначина х + y = n нема решења у скупу природних бројева Постоји бесконачно много природних бројева n облика 4к + (k N) за које једначина х + y = n има решења у скупу природних бројева Доказати да једначине х + y = n и х + y = n (n N) имају једнак број решења у скупу целих бројева ДИОФАНТОВА JЕДНАЧИНА х + у + z = n (n N) Једначина овог облика је већ била предмет разматрања. 6 Из примера 36. следи да једначина х + у + z = n нема решења ако је n облика 8к 1, тј. ниједан природан број облика 8к 1 се не може приказати као збир квадрата три цела броја. Остаје да се прикаже један од могућих начина за решавања Диофантове једначине х + у + z = n ( n 8к 1). ПРИМЕР 13. Одредити целе бројеве х, у, z такве да је х + у + z = 005. РЕШЕЊЕ: Јасно је да су два од тражених бројева х, у, z парни, а трећи непаран. Нека је х = а, у = b и z = z + 1. Тада је х + у + z = 4а + 4b + 4с + 4с + 1 = 005. Даљом трансформацијом добија се а + b + с(с + 1) = 501. Како је с(с + 1) паран број, то a +b мора бити непаран број, па је један од бројева а и b паран, а други непаран. Дакле, а = d и b = е + 1, па се добија једнакост 4d + 4е + 4е + с(с + 1) = 500. Очигледно је да с(с + 1) мора бити дељиво са 4. Доња таблица приказује могуће вредности за с(с + 1) и a +b. Као потенцијална решења елиминишемо вредности с(с + 1) које нису дељиве са 4 (коментар 1) и вредности a +b које као фактор имају број облика 4к+3 на непарном степену (коментар ): 6 Видети примере 30. и

9 7. Једноставније квадратне Диофантове једначине 7.4. Диофантова једначина х +у +z = n с с(с+1) a +b Ком. 1 Ком Из табеле је јасно да дата једначина има 6 решења у скупу целих ненегативних бројева. При том свако решење, због симетричности једначине, подразумева и све пермутације добијених бројева. То значи да наредна таблица садржи само почетну пермутацију, а да се остале због учињене напомене подразумевају: a b с х У z х + у + z = = = = = =

10 7. Једноставније квадратне Диофантове једначине 7.4. Диофантова једначина х +у +z = n Може се запазити да су међу добијеним решењима и једина два решења једначине х + у = 005 ((, 39), (18, 41)), као и да се прво решење једначине = = 005 у ствари трансформише из решења (18, 41). ПРОБЛЕМИ ЗА УВЕЖБАВАЊЕ 49. Да ли једначина х + у + z = 006 има решења у скупу целих бројева? Доказати да једначина х + у + 3z = 007 има решење у скупу целих бројева? 494. Доказати да за сваки природан број n постоје природни бројеви х, у и z такви да је х + у z = n JЕДНАЧИНА х 1 + х х к = n (n N, n 4 ) Француски математичар Лагранж 7 je доказао да се сваки природан број n може приказати као збир квадрата четири цела броја, 8 тј. да Диофантова једначина х 1 + х + х 3 + х 4 = n има решење за сваки природан број n. 9 Дакле, остаје да се одређују конкретне репрезентације сваког природног броја у виду збира четири квадрата и пребројава колико таквих репрезентација постоји. ПРИМЕР 14. Број 005 приказати као збир квадрата четири цела броја на бар један од могућих начина. РЕШЕЊЕ: Из претходног примера може се направити неколико таквих репрезентација, без амбиције да су то и све репрезентације, при чему се репрезентације не праве додавањем нула: Лагранж - Ј. L. Lagrange ( ) Доказ ове Лагранжове теореме видети у [ 7.14.] - стр У вези са овим треба поменути и Варингов проблем који је формулисан године, којим је постављена хипотеза да се сваки природан број може написати као збир 4 квадрата, збир 9 кубова, 1 бројева четвртог степена... (Еdvard Waring , енглески математичар) 103

11 7. Једноставније квадратне Диофантове једначине 7.4. Диофантова једначина х +у +z = n = = 005 ; = = 005 ; Следећих неколико четворки нису изведене из претходног примера: = 005 ; = 005. Једначина х 1 + х х к = n (к Ν) је за к > 4, са аспекта решивости, мање атрактивна за истраживање, али би било интересантно истражити да ли постоји и каква је законитост расподеле броја решења дате једначине зависно од броја n, као и броја сабирака к. ПРОБЛЕМИ ЗА УВЕЖБАВАЊЕ 495. Број 981 приказати у облику збира четири квадрата. ЗАДАЦИ СА МАТЕМАТИЧКИХ ТАКМИЧЕЊА 496. Одредити сва разлагања броја 001 у облику збира 1997 квадрата природних бројева (СФРЈ 1979.) 497. Доказати да постоји бесконачно много тројки узастопних природних бројева од којих је сваки збир два потпуна квадрата. (пример 7 = ; 73 = ; 74 = ) (СФРЈ 1986.) 104

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно

Διαβάστε περισσότερα

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВАЉЕВО, 006 1 1. УВОД 1.1. ПОЈАМ ДИОФАНТОВЕ ЈЕДНАЧИНЕ У једној земљи Далеког истока живео је некад један краљ, који је сваке ноћи узимао нову жену и следећег

Διαβάστε περισσότερα

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије ГРАЂЕВИНСКА ШКОЛА Светог Николе 9 Београд ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА са додатком теорије - за II разред IV степен - Драгана Радовановић проф математике Београд СТЕПЕНОВАЊЕ И КОРЕНОВАЊЕ

Διαβάστε περισσότερα

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић Скупови (наставак) Релације Професор : Рака Јовановић Асиситент : Јелена Јовановић Дефиниција дуалне скуповне формуле За скуповне формулу f, која се састоји из једног или више скуповних симбола и њихових

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ

ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ Универзитет у Крагујевцу Машински факултет Краљево ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ Краљево, март 011. године 1 Публикација Збирка решених задатака за пријемни испит из математике

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

ПРИЈЕМНИ ИСПИТ. Јун 2003.

ПРИЈЕМНИ ИСПИТ. Јун 2003. Природно-математички факултет 7 ПРИЈЕМНИ ИСПИТ Јун 00.. Одредити све вредности параметра m за које су оба решења једначине x x + m( m 4) = 0 (a) реална; (b) реална и позитивна. Решење: (а) [ 5, + (б) [

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2016/17. бр. LI-4

МАТЕМАТИЧКИ ЛИСТ 2016/17. бр. LI-4 МАТЕМАТИЧКИ ЛИСТ 06/7. бр. LI-4 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред. а) 50 4 = 00; б) 0 5 = 650; в) 0 6 = 6; г) 4 = 94; д) 60 : = 0; ђ) 0 : = 40; е) 648 :

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

М лади. атематичар БРОЈ 25. ГОДИНА XXV ЈУН 2012.

М лади. атематичар БРОЈ 25. ГОДИНА XXV ЈУН 2012. М лади атематичар БРОЈ 25. ГОДИНА XXV ЈУН 2012. БРОЈ 25. ГОДИНА XXV ЈУН 2012. Пјер де Ферма Пјер де Ферма француски математичар баскијског порекла.рођен је 17. августа 1601. у Бомон-де-Ломању, југозапад

Διαβάστε περισσότερα

Скрипта ријешених задатака са квалификационих испита 2010/11 г.

Скрипта ријешених задатака са квалификационих испита 2010/11 г. Скрипта ријешених задатака са квалификационих испита 00/ г Универзитет у Бањој Луци Електротехнички факултет Др Момир Ћелић Др Зоран Митровић Иван-Вања Бороја Садржај Квалификациони испит одржан 9 јуна

Διαβάστε περισσότερα

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити. IV разред 1. Колико ће година проћи од 1. јануара 2015. године пре него што се први пут догоди да производ цифара у ознаци године буде већи од збира ових цифара? 2. Свако слово замени цифром (различита

Διαβάστε περισσότερα

IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим.

IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим. IV разред 1. Дешифруј ребус A + BA + CBA + DCBA = 2016. Иста слова замени једнаким цифрама, а различита различитим. 2. Производ два броја је 2016. Ако се један од њих повећа за 7, производ ће бити 2457.

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5 05.03.011 - III РАЗРЕД 1. Нацртај 4 праве a, b, c и d, ако знаш да је права а нормална на праву b, права c нормалана на b, а d паралелнa са а. Затим попуни табелу стављајући знак (ако су праве нормалне)

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3 МАТЕМАТИЧКИ ЛИСТ 07/8. бр. LII- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ . III разред. Обим правоугаоника је 6cm + 4cm = cm + 8cm = 0cm. Обим троугла је 7cm + 5cm + cm =

Διαβάστε περισσότερα

Универзитет у Београду Математички факултет. Virtual Library of Faculty of Mathematics - University of Belgrade. Мастер рад

Универзитет у Београду Математички факултет. Virtual Library of Faculty of Mathematics - University of Belgrade. Мастер рад Универзитет у Београду Математички факултет Мастер рад Тема: Проблеми засновани на познатим темама из историје математике Ментор: Небојша Икодиновић, доцент Комисија:. Зоран Петровић, ван. проф. Студент:

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-4

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-4 МАТЕМАТИЧКИ ЛИСТ 0/5. бр. XLIX- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред. а) 70 5 = 50; б) 0 = 80; в) 0 = 9; г) 5 = 850; д) 60 : = 0; ђ) 0 : 8 = 0; е) 86 : = ;

Διαβάστε περισσότερα

Cook-Levin: SAT је NP-комплетан. Теодор Најдан Трифунов 305M/12

Cook-Levin: SAT је NP-комплетан. Теодор Најдан Трифунов 305M/12 Cook-Levin: SAT је NP-комплетан Теодор Најдан Трифунов 305M/12 1 Основни појмови Недетерминистичка Тјурингова машина (НТМ) је уређена седморка M = (Q, Σ, Γ, δ, q 0,, ) Q коначан скуп стања контролног механизма

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Упутство за избор домаћих задатака

Упутство за избор домаћих задатака Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ МЕТОДЕ ЊИХОВОГ РЕШАВАЊА

МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ МЕТОДЕ ЊИХОВОГ РЕШАВАЊА ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ ДРЖАВНИ СЕМИНАР О НАСТАВИ МАТЕМАТИКЕ И РАЧУНАРСТВА У ОСНОВНИМ И СРЕДЊИМ ШКОЛАМА Број: 250 Компетенцијa: K1 Приоритети: 1 ТЕМА: МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ МЕТОДЕ ЊИХОВОГ РЕШАВАЊА

МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ МЕТОДЕ ЊИХОВОГ РЕШАВАЊА ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ ДРЖАВНИ СЕМИНАР О НАСТАВИ МАТЕМАТИКЕ И РАЧУНАРСТВА У ОСНОВНИМ И СРЕДЊИМ ШКОЛАМА Број: 242 Компетенцијa: K1 Приоритети: 1 ТЕМА: МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ

Διαβάστε περισσότερα

МАСТЕР РАД УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ. Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ

МАСТЕР РАД УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ. Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ МАСТЕР РАД Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ МЕНТОР: КАНДИДАТ: Проф. др Драгољуб Кечкић Милинко Миловић

Διαβάστε περισσότερα

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2/13 Diffie-Hellman размена кључева први алгоритам са јавним

Διαβάστε περισσότερα

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

атематичар БРОЈ 24. ГОДИНА XXIV ЈУН 2011.

атематичар БРОЈ 24. ГОДИНА XXIV ЈУН 2011. М лади атематичар БРОЈ 24. ГОДИНА XXIV ЈУН 20. БРОЈ 24. ГОДИНА XXIV ЈУН 20. Давид Хилберт Познати немачки математичар Давид Хилберт (2.0.862-4.02.94) након завршене гимназије у родном граду Kонигсберг

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ

ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ Универзитет у Источном Сарајеву Електротехнички факултет НАТАША ПАВЛОВИЋ ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ Источно Сарајево,. године ПРЕДГОВОР Збирка задатака је првенствено намијењена

Διαβάστε περισσότερα

МАСТЕР РАД. Увођење полинома у старијим разредима основне школе. Математички факултет. Универзитет у Београду. Студент: Милица Петровић.

МАСТЕР РАД. Увођење полинома у старијим разредима основне школе. Математички факултет. Универзитет у Београду. Студент: Милица Петровић. Математички факултет Универзитет у Београду МАСТЕР РАД Увођење полинома у старијим разредима основне школе Студент: Милица Петровић Београд, 2016. Ментор: проф. др Александар Липковски, ред. проф. Чланови

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

ЗАШТИТА ПОДАТАКА. Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева

ЗАШТИТА ПОДАТАКА. Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2 Diffie-Hellman размена кључева први алгоритам са јавним кључем

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

У н и в е р з и т е т у Б е о г р а д у Математички факултет. Семинарски рад. Методологија стручног и научног рада. Тема: НП-тешки проблеми паковања

У н и в е р з и т е т у Б е о г р а д у Математички факултет. Семинарски рад. Методологија стручног и научног рада. Тема: НП-тешки проблеми паковања У н и в е р з и т е т у Б е о г р а д у Математички факултет Семинарски рад из предмета Методологија стручног и научног рада Тема: НП-тешки проблеми паковања Професор: др Владимир Филиповић Студент: Владимир

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 017/018. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

ТЕЗИ ОПШТА В Ш Т 1 - Е М Ј Е Д Н А Ч И Н «Л Р В О Г А Р Ш ФИЛ030ФСК0Г ФАКУЛТЕТА УНИВЕРЗИТЕТА У A Ù y'..' Х СИМЕ М. МАРКОВИЋА ПРИМЉЕНА ЗА

ТЕЗИ ОПШТА В Ш Т 1 - Е М Ј Е Д Н А Ч И Н «Л Р В О Г А Р Ш ФИЛ030ФСК0Г ФАКУЛТЕТА УНИВЕРЗИТЕТА У A Ù y'..' Х СИМЕ М. МАРКОВИЋА ПРИМЉЕНА ЗА ОПШТА В Ш Т 1 - Е М Ј Е Д Н А Ч И Н «Л Р В О Г А Р Ш ТЕЗИ СИМЕ М. МАРКОВИЋА ПРИМЉЕНА ЗА Д О КТО РСКИ и с п и т НА СЕДНИЦИ ФИЛ030ФСК0Г ФАКУЛТЕТА УНИВЕРЗИТЕТА У БЕОГРАДУ ОД 5. ЈУНА 1913. ГОД. ПРЕМА РЕфЕРАТУ

Διαβάστε περισσότερα

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/

Διαβάστε περισσότερα

1. УВОД 1.1. ЗАШТО ИНДИВИДУАЛИЗАЦИЈА НАСТАВЕ МАТЕМАТИКЕ? ''Настава математике није наука. Она је уметност'' Ђерђ Поја - ''Математичко откриће''

1. УВОД 1.1. ЗАШТО ИНДИВИДУАЛИЗАЦИЈА НАСТАВЕ МАТЕМАТИКЕ? ''Настава математике није наука. Она је уметност'' Ђерђ Поја - ''Математичко откриће'' ''Настава математике није наука. Она је уметност'' Ђерђ Поја - ''Математичко откриће'' 1. УВОД Зашто су краљевићи и царевићи од античких па до наших времена имали своје приватне учитеље математике? Зашто

Διαβάστε περισσότερα

Испитвање тока функције

Испитвање тока функције Милош Станић Техничка школа Ужицe 7/8 Испитвање тока функције Испитивање тока функције y f подразумева да се аналитичким путем дође до сазнања о понашању функције, као и њеним значајним тачкама у координантном

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

Тангента Нека је дата крива C са једначином y = f (x)

Тангента Нека је дата крива C са једначином y = f (x) Dbić N Извод као појам се први пут појављује крајем XVII вијека у вези са израчунавањем неравномјерних кретања. Прецизније, помоћу извода је било могуће увести појам тренутне брзине праволинијског кретања.

Διαβάστε περισσότερα

Решења задатака са првог колоквиjума из Математике 1Б II група задатака

Решења задатака са првог колоквиjума из Математике 1Б II група задатака Решења задатака са првог колоквиjума из Математике Б II група задатака Пре самих решења, само да напоменем да су решења детаљно исписана у нади да ће помоћи студентима у даљоj припреми испита, као и да

Διαβάστε περισσότερα

СКУПОВИ СКУП ПРИРОДНИХ БРОЈЕВА-ОБНАВЉАЊЕ

СКУПОВИ СКУП ПРИРОДНИХ БРОЈЕВА-ОБНАВЉАЊЕ СКУПОВИ 1. Запиши цифрама следеће бројеве: 1) двадесет три хиљаде шестсто педесет осам; 2) осам милијарди; 3) милион двадесет; 4) три милиона петнаест хиљада шест; 5) седамнаест хиљада један; 6) шестсто

Διαβάστε περισσότερα

В е р и ж н и р а з л о м ц и. -примери и примене-

В е р и ж н и р а з л о м ц и. -примери и примене- УНИВЕРЗИТЕТ У БЕОГРАДУ Математички факултет Мастер рад: В е р и ж н и р а з л о м ц и -примери и примене- Ментор: професор др Зоран Петровић Кандидат: Јелена Видић индекс 04/00 САДРЖАЈ I Увод...3 II Еуклидов

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

Нумеричко решавање парцијалних диференцијалних једначина и интегралних једначина

Нумеричко решавање парцијалних диференцијалних једначина и интегралних једначина Нумеричко решавање парцијалних диференцијалних једначина и интегралних једначина Метода мреже за Дирихлеове проблеме Метода мреже се приближно решавају диференцијалне једначине тако што се диференцијална

Διαβάστε περισσότερα

Примена првог извода функције

Примена првог извода функције Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први

Διαβάστε περισσότερα

ТРЕЋЕ ОТВОРЕНО ПРВЕНСТВО СРБИЈЕ У РЕШАВАЊУ ОПТИМИЗАТОРА 29. НОВЕМБАР ДЕЦЕМБАР ГОДИНЕ

ТРЕЋЕ ОТВОРЕНО ПРВЕНСТВО СРБИЈЕ У РЕШАВАЊУ ОПТИМИЗАТОРА 29. НОВЕМБАР ДЕЦЕМБАР ГОДИНЕ ТРЕЋЕ ОТВОРЕНО ПРВЕНСТВО СРБИЈЕ У РЕШАВАЊУ ОПТИМИЗАТОРА 29. НОВЕМБАР - 12. ДЕЦЕМБАР 2010. ГОДИНЕ http://puzzleserbia.com/ ДРУГА НЕДЕЉА (6.12. - 12.12.) 7. СУДОКУ АЈНЦ 8. ПЕНТОМИНО УКРШТЕНИЦА 9. ШАХОВСКЕ

Διαβάστε περισσότερα

Од површине троугла до одређеног интеграла

Од површине троугла до одређеног интеграла Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.i.ac.rs/mii Математика и информатика (4) (5), 49-7 Од површине троугла до одређеног интеграла Жарко Ђурић Париске комуне 4-/8, Врање

Διαβάστε περισσότερα

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( ) Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P

Διαβάστε περισσότερα

ЗАВОД ЗА УЏБЕНИКЕ БЕОГРАД

ЗАВОД ЗА УЏБЕНИКЕ БЕОГРАД ОЛИВЕРА ТОДОРОВИЋ СРЂАН ОГЊАНОВИЋ MATEMATИKA УЏБЕНИК за први разред основне школе1 ЗАВОД ЗА УЏБЕНИКЕ БЕОГРАД 1 ПРЕДМЕТИ У ПРОСТОРУ И ОДНОСИ МЕЂУ ЊИМА... 7 1. Горе, доле, изнад, испод... 8 2. Лево, десно...

Διαβάστε περισσότερα