ιακριτά Αντίστροφα Προβλήµατα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ιακριτά Αντίστροφα Προβλήµατα"

Transcript

1 Πανεπιστήµιο Κρήτης Τµήµα Μαθηµατικών ιακριτά Αντίστροφα Προβλήµατα Σηµειώσεις του Μαθήµατος βασισµένες κυρίως στο Βιβλίο : Geophyscal Data Analyss : Dscrete Inverse Theory του Wllam Menke Μιχάλης Ταρουδάκης Καθηγητής Εαρινό εξάµηνο

2 Πρόλογος Το παρόν τεύχος των σηµειώσεων έχει ως στόχο να βοηθήσει τους φοιτητές του µαθήµατος «ιακριτά Αντίστροφα Προβλήµατα», να το παρακολουθήσουν µε τον καλύτερο δυνατό τρόπο. Βασίζονται στο Βιβλίο: Geophyscal Data Analyss : Dscrete Inverse Theory, του Wllam Menke το οποίο αποτελεί και το κύριο διδακτικό βιβλίο του µαθήµατος. Οι σηµειώσεις στην παρούσα φάση είναι πρόχειρες και περιληπτικές. Θα συµπληρωθούν στο µέλλον για να αποτελέσουν αυτοτελές εγχειρίδιο για τους φοιτητές που ενδιαφέρονται να παρακολουθήσουν το εν λόγω µάθηµα. Για την προσωρινή και περιληπτική τους µορφή ζητώ την κατανόηση των φοιτητών. Ηράκλειο, Φεβρουάριος

3 Περιεχόμενα 1. ΕΙΣΑΓΩΓΗ Ευθύ και Αντίστροφο Πρόβλημα Διατύπωση ενός αντίστροφου προβλήματος Παραδείγματα διατύπωσης απλών αντιστρόφων προβλημάτων Υπολογίζοντας παραμέτρους μίας ευθείας Υπολογίζοντας παραμέτρους μιας παραβολής Μη καταστροφικός έλεγχος υλικών με ακουστικά κύματα Ένα απλό πρόβλημα αξονικής τομογραφίας

4 1. ΕΙΣΑΓΩΓΗ 1.1 Ευθύ και Αντίστροφο Πρόβλημα Στην µαθηµατική προσοµοίωση ευθύ ονοµάζεται ένα πρόβληµα στο οποίο ζητείται ο προσδιορισµός ενός µεγέθους, συνήθως µε τη µορφή µιας συνάρτησης, όταν είναι γνωστές τόσο οι παράµετροι που διέπουν το πρόβληµα, όσο και η εξίσωση ή οι εξισώσεις που περιγράφουν τις µεταβολές του µεγέθους. Στα πλαίσια της ντετερµινιστικής θεώρησης, τα προβλήµατα αυτά είναι «Καλώς Τεθειµένα» (Well Posed) µε την έννοια ότι θα πρέπει, όταν επιλυθούν, να δίνουν µοναδική λύση της άγνωστης συνάρτησης. Στο επόµενο σχήµα περιγράφονται τα ευθέα προβλήµατα. Με τον όρο «Μοντέλο» υπονοούµε την εξίσωση ή τις εξισώσεις που διέπουν το πρόβληµα, καθώς και τη διαδικασία επίλυσής τους. Γνωστές Παράμετροι Μοντέλο Λύση (Συνάρτηση) Σχήμα 1.1 : Το ευθύ πρόβλημα. Στο αντίστροφο πρόβληµα, ζητάµε συνήθως την εκτίµηση των παραµέτρων ενός φυσικού φαινοµένου ή ενός µαθηµατικού προβλήµατος, όταν είναι γνωστές µετρήσεις µια συνάρτησης ή ενός κατάλληλου µεγέθους. Οι µετρήσεις και οι προς ανάκτηση παράµετροι συνδέονται µε το ίδιο µοντέλο που ορίζεται στο ευθύ πρόβληµα, αλλά η διαδικασία επίλυσης ξεκινά αντίστροφα (Σχήµα 1.2). Τα αντίστροφα προβλήµατα σπάνια είναι καλώς τεθειµένα, συνήθως είναι «Κακώς Τεθειµένα» (Ill Posed), και επιδέχονται από καµία έως πολλές λύσεις. Στις φυσικές επιστήµες γνωρίζοµε βέβαια ότι οι παράµετροι ενός φυσικού φαινοµένου υπάρχουν, συνεπώς µέσω της επίλυσης ενός αντιστρόφου προβλήµατος πρέπει να βρεθούν κατάλληλες εκτιµήσεις τους. Αυτό είναι και το αντικείµενο του µαθήµατος. Εκτίμηση Παραμέτρων Μοντέλο Μετρήσεις συνάρτησης Σχήμα 1.2 : Το αντίστροφο πρόβλημα. 3

5 1.2 Διατύπωση ενός αντίστροφου προβλήματος Οι παράµετροι που πρέπει να υπολογιστούν σε ένα αντίστροφο πρόβληµα χαρακτηρίζονται ως «model parameters» και συµβολίζονται νε το σύµβολο m. Αντίστοιχα, οι µετρήσεις χαρακτηρίζονται ως δεδοµένα ( data ) και συµβολίζονται µε το γράµµα d. Οι παράµετροι και τα δεδοµένα µπορεί να είναι συνεχείς συναρτήσεις m( x), d( y) όπου µε x, yσυµβολίζοµε γενικά τις µεταβλητές από τις οποίες εξαρτώνται. Εάν µπορέσοµε να διαχωρίσοµε δεδοµένα και παραµέτρους µέσω κάποιου «πυρήνα» G( x, y) που θα µας υποδειχθεί από το Μοντέλο, µπορούµε να διατυπώσουµε ενδεχοµένως µία ολοκληρωτική εξίσωση της µορφής : d( y) = G( x, y) m( x) dx (1.1) η οποία επιλυόµενη ως προς m( x) θα µας δώσει τις παραµέτρους. Εάν τα δεδοµένα (µετρήσεις) έχουν γίνει, όπως συνήθως, σε διακριτά σηµεία ή χρονικές στιγµές, ορίζεται ένα διάνυσµα από τιµές d = [ d1, d2,... d ] T N που αντιπροσωπεύει τις µετρήσεις. Στην περίπτωση αυτή η εξίσωση (1.1) θα γραφεί για κάθε διακριτή τιµή µετρήσεων και ορίζει αυτό που ονοµάζοµε «Συνεχές Αντίστροφο Πρόβληµα» d = d = G( x) m( x) dx, = 1,... N (1.2) Τέλος µπορεί και οι παράµετροι να είναι διακριτές m = [ m1, m2,... m ] T M, οπότε έχοµε την γενική περίπτωση ενός διακριτού αντίστροφου προβλήµατος. Θα συνεχίσουµε θεωρώντας ότι δεδοµένα και παράµετροι είναι διακριτά µεγέθη και θα δούµε πως αυτά συνδέονται µεταξύ τους. Η γενική περίπτωση είναι να συνδέονται µέσω εξισώσεων της µορφής f ( d, m ) = 0, j= 1,... L (1.3) j που σε διανυσµατική µορφή γράφονται ως f ( d, m ) = 0. Οι ανωτέρω εκφράσεις µπορεί να είναι περίπλοκες. Στη συνέχεια πάντως θα αναφερθούµε σε ειδικές περιπτώσεις που µας δίνουν τη δυνατότητα αντιµετώπισης του αντίστροφου προβλήµατος µε λογικής µορφής δυσκολία. Έµµεση Γραµµική Μορφή Εάν η συνάρτηση f είναι γραµµική ως προς δεδοµένα και παραµέτρους, παίρνοµε µία έκφραση της µορφής : 4

6 Όπου F είναι ένας πίνακας διαστάσεων Lx(M+N). Άμεση Μορφή d f(d,m) = 0= F (1.4) m Ορισμένες φορές, μπορούμε να διαχωρίσουμε τα δεδομένα από τις παραμέτρους και να διατυπώσουμε L=N που είναι γραμμικές μεν ως προς τα δεδομένα, μη γραμμικές όμως ως προς τις παραμέτρους μέσω μιας διανυσματικής συνάρτησης g. Μπορούμε δηλαδή να γράψομε : f(d,m) = 0= d - g(m) (1.5) d = g ( m ), = 1,... N (1.6) όπου η συνάρτηση g είναι εν γένει μη γραμμική. Η ανωτέρω περίπτωση συναντάται συχνότατα σε αντίστροφα προβλήματα από τις φυσικές επιστήμες, όπου η συνάρτηση g εξαρτάται εκτός από το φυσικό μοντέλο που διέπει τη σχέση μετρήσεων-παραμέτρων και από τις συνθήκες της μέτρησης Άμεση Γραμμική Μορφή Εάν και η συνάρτηση g είναι γραμμική, ως προς τις παραμέτρους, παίρνομε την απλούστερη μορφή για τα αντίστροφα προβλήματα που είναι : f(d,m) = 0= d - Gm (1.7) όπου L=N ξανά, όπως και στην προηγούμενη περίπτωση, αλλά η συνάρτηση g εκφράζεται μέσω του πίνακα G ο οποίος είναι διαστάσεων NxM. Με άλλα λόγια, εκφράζομε το αντίστροφο πρόβλημα ως ένα γραμμικό σύστημα Ν εξισώσεων με Μ αγνώστους : M d = G m, = 1,... N (1.8) j j j= 1 Για την επιλυσιµότητα του ανωτέρω προβλήµατος θα µιλήσουµε σε άλλο σηµείο του µαθήµατος. Στο σηµείο αυτό να επισηµάνοµε ότι ο πίνακας G είναι γενικά παραλληλόγραµµος αφού δεν έχοµε κατ ανάγκη ίσο αριθµό δεδοµένων και παραµέτρων. Αρκετά αντίστροφα προβλήµατα µπορούν να αναχθούν σε προβλήµατα της µορφής

7 1.3 Παραδείγματα διατύπωσης απλών αντιστρόφων προβλημάτων Υπολογίζοντας παραμέτρους μίας ευθείας. Ας υποθέσοµε ότι πραγµατοποιούµε Ν µετρήσεις της θερµοκρασίας ( εδοµένα) σε διαφορετικά σηµεία µία ράβδου που γνωρίζοµε από την θερµοδυναµική ότι θα πρέπει να έχει θερµοκρασία γραµµικά µεταβαλλόµενη συναρτήσει του µήκους της (Μοντέλο). Ζητούµε να υπολογίσοµε τις παραµέτρους της ευθείας που παριστάνει τη θερµοκρασία Τ (παράµετροι) συναρτήσει του µήκους x στη ράβδο. Εποµένως το διάνυσµα των δεδοµένων θα είναι d = [ T1, T2,... T ] T N και το διάνυσµα των παραµέτρων θα είναι m = [ a, b] T όπου a, b θα είναι οι παράµετροι της εξίσωσης της ευθείας T = a+ bx που αντιπροσωπεύει το µοντέλο µας. Θα παρατηρήσει κανείς ότι για να χαράξουµε µία ευθεία χρειαζόµαστε µόνο δύο µετρήσεις. Επειδή όµως οι µετρήσεις σε ένα πραγµατικό πρόβληµα δεν γίνονται µε ακρίβεια, αλλά υπάρχουν λάθη που προέρχονται από διάφορες αιτίες, πραγµατοποιούµε περισσότερες µετρήσεις. Έτσι καταστρώνοµε το επόµενο σύστηµα εξισώσεων : που γράφεται διαφορετικά ως T = a+ bx, = 1,..., N (1.9) T1 1 x1 T 2 1 x 2 a =... b TN 1 xn (1.10) Το πρόβληµα προφανώς (για Ν>2) είναι «υπερορισµένο». Έχοµε περισσότερες εξισώσεις σε σχέση µε τους αγνώστους Υπολογίζοντας παραμέτρους μιας παραβολής. Ας υποθέσοµε τώρα ότι το φυσικό µοντέλο για το παραπάνω πρόβληµα υποδεικνύει µεταβολή της θερµοκρασίας µε το µήκος που περιγράφεται ως καµπύλη 2 ου βαθµού. 2 Τότε το µοντέλο απαιτεί εξίσωση της µορφής : T = a+ bx+ cx και εποµένως για τον ίδιο αριθµό µετρήσεων (δεδοµένων) έχοµε τώρα να υπολογίσοµε ένα διάνυσµα τριών στοιχείων m = [ a, b, c] T και οι εξισώσεις µας γράφονται T = a+ bx + cx 2, = 1,..., N (1.11) και το σύστηµα µε τη µορφή πινάκων ως : 6

8 2 T1 1 x1 x 1 2 T 2 1 x 2 x2 a. =... b..... c 2 T N 1 xn x N (1.12) Και το πρόβληµα αυτό είναι υπερορισµένο για Ν> Μη καταστροφικός έλεγχος υλικών με ακουστικά κύματα. Ένα απλό αντίστροφο πρόβληµα µηχανικής προέρχεται από την ανάγκη να υπολογιστούν ιδιότητες ενός υλικού χωρίς αυτό να σπάσει ή να ληφθούν δείγµατα από τη δοµή του. Αυτό µπορεί να γίνει µε χρήση ήχων που διαπερνούν το υλικό και καταγράφονται στην έξοδό του. Επειδή µία χαρακτηριστική ιδιότητα του υλικού που εν πολλοίς καθορίζει τη σύνθεσή του είναι η ταχύτητα διάδοσης του ήχου, θα µπορούσε να υπολογιστεί για το υλικό το µέγεθος αυτό. και µέσω αυτού να καθοριστεί η ποιότητά του. Το πείραµα χαρακτηρίζεται ως πείραµα ακουστικής τοµογραφίας και είναι βέβαια ορίζει ένα αντίστροφο πρόβληµα.. Από τη φυσική γνωρίζοµε ότι η ταχύτητα διάδοσης του ήχου c και η διανυθείσα απόσταση σε µέσες τιµές δίδονται από την απλή σχέση c= h / t όπου h είναι η διανυθείσα απόσταση και t είναι ο χρόνος, η µέτρηση του χρόνου µε γνωστό το µήκος διάδοσης µπορεί να µας δώσει την ταχύτητα (µοντέλο). Θα θεωρήσοµε λοιπόν για το παράδειγµά µας ότι έχοµε να υπολογίσοµε τις ιδιότητες 16 κυβικών τούβλων που έχουν διάσταση πλευράς h το καθένα και τα διατάσσοµε σε τέσσερεις οµάδες των τεσσάρων (Σχήµα 1.3). Σε κάθε οριζόντια γραµµή και κατακόρυφη στήλη κάνοµε µία µέτρηση ακουστικής διάδοσης ήχου στέλνοντας µία στενή δέσµη (που την περιγράφοµε ως ακτίνα) ήχου που διαδίδεται σε ευθεία γραµµή και µετρώντας το χρόνο που πέρασε. Θεωρώντας το αντίστροφο της ταχύτητας (slowness) s= 1/ c και αποδίδοντας σε κάθε τούβλο το δείκτη όπως στο σχήµα, οι 8 συνολικά µετρήσεις (4 οριζόντιες και 4 κατακόρυφες) µας δίδουν τις εξισώσεις που περιγράφονται συνοπτικά ως : T = hs + hs + hs + hs T = hs + hs + hs + hs T = hs + hs + hs + hs (1.13) και σε µορφή εξίσωσης πινάκων ως 7

9 T s1 T s 2. = h T s 16 (1.14) Προσέξτε ότι τώρα το γραµµικό πρόβληµα είναι υπο-ορισµένο σε αντίθεση µε τα προβλήµατα των περιπτώσεων και S R Σχήμα 1.3 Διάταξη πειράματος ακουστικής τομογραφίας. O πομπός S και ο δέκτης R διατάσσονται έτσι ώστε η ακουστική ακτίνα να σαρώνει μία γραμμή ή στήλη Ένα απλό πρόβλημα αξονικής τομογραφίας Ευρύτατη εφαρµογή έχουν τα αντίστροφα προβλήµατα στην ιατρική διαγνωστική. Η αξονική ή µαγνητική τοµογραφία βασίζουν τα αποτελέσµατά τους στην επίλυση αντιστρόφων προβληµάτων από την ηλεκτροµαγνητική κυµατική διάδοση και την θεωρία µαγνητικών πεδίων αντίστοιχα και βέβαια βοηθούνται αποτελεσµατικά από την απεικόνιση και την επεξεργασία εικόνας. Ως παράδειγµα εδώ θα δούµε πως µπορεί κατ αρχήν να διατυπωθεί ένα αντίστροφο πρόβληµα που σχετίζεται µε την αξονική τοµογραφία και πως αυτό µπορεί να γραµµικοποιηθεί. Ο διθενής όρος για την διαγνωστική τεχνική που βασίζεται στην χρήση ηλεκτροµαγνητικών κυµάτων που διαπερνούν ένα σώµα και µεταφέρουν πληροφορίες για τη σύνθεσή του είναι Computerzed Axal Tomography (CAT). Το απλό µοντέλο στο οποίο βασίζεται συσχετίζει την µετρούµενη ένταση του ηλεκτροµαγνητικού πεδίου που παράγεται από ένα κύµα (X ray) γνωστής αρχικής έντασης όταν αυτό διαπεράσει ένα σώµα, µε το συντελεστή απορρόφησης της ακτινοβολίας που είναι µία χαρακτηριστική ιδιότητα των ιστών του σώµατος. Το µοντέλο βέβαια στην πράξη είναι πιο σύνθετο αλλά η απλοποιηµένη του εκδοχή µπορεί να µας δώσει την ιδέα της διατύπωσης του αντίστροφου προβλήµατος. Σύµφωνα λοιπόν µε τα παραπάνω, η µεταβολή της έντασης της ακτινοβολίας καθώς 8

10 διαπερνά ένα σώµα είναι αντίστροφα ανάλογη της έντασης της ακτινοβολίας µε το συντελεστή αναλογίας να αντιπροσωπεύει το συντελεστή απορρόφησης, µέσω του οποίου µοντελοποιείται το σώµα. di / ds= c( x, y) I (1.15) Όπου Ι είναι η ένταση s είναι το στοιχειώδες µήκος διάδοσης σε ευθεία, c( x, y) είναι ο συντελεστής απορρόφησης που υπολογίζεται ως συνάρτηση των χωρικών µεταβλητών σε ένα επίπεδο. Για να µπορέσει η ακτινολογία να δώσει µια εικόνα του τρισδιάστατου σώµατος, η ακτινοβόληση γίνεται σε συνδυασµό πηγής και πολλών δεκτών που συνήθως βρίσκονται στην περιφέρεια ενός κύκλου µε κέντρο την πηγή. Το ακτινοβολούµενο σώµα βρίσκεται ενδιάµεσα ενώ κάθε συνδυασµός πηγής και δέκτη ορίζει ένα επίπεδο στο οποίο απεικονίζεται η ενδεχόµενη ανοµοιογένεια. Στο απλοποιηµένο παράδειγµα που θα ακολουθήσει θα θεωρήσοµε ότι το επίπεδο εκφυλίζεται σε ευθεία και εποµένως θα δεχτούµε ότι η εφαρµογή της αξονικής τοµογραφίας γίνεται σε πολλές ευθείες που ορίζονται από δύο σηµεία (πηγής και δέκτη) σύµφωνα µε το σχήµα 1.4. Ωστόσο το σώµα θα θεωρηθεί ότι βρίσκεται σε ένα επίπεδο. Εποµένως έχοµε περιορίσει τη διάσταση του πραγµατικού προβλήµατος κατά ένα. s j R c j Σχήµα 1.4 Σχηµατική διάταξη αξονικής τοµογραφίας. Η πηγή S στέλνει ηλεκτροµαγνητικά κύµατα γνωστής αρχικής έντασης I 0 που σαρώνουν το σώµα και καταγράφονται στους δέκτες R. Για τη διακριτοποίηση-γραµµικοποίηση του προβλήµατος το τετράγωνο στο σώµα αντιπροσωπεύει το στοιχείο j 9

11 Εάν λοιπόν η αρχική ένταση της δέσµης είναι I 0, η εξίσωση 1.15 επιλυόµενη δίνει για κάθε δέσµη µετρούµενη ισχύ πεδίου : I = I0 exp( c( x, y) ds), = 1,... N (1.16) beam Με βάση όσα έχοµε πει παραπάνω, το πρόβληµα θυµίζει αυτό που περιγράψαµε στην εξίσωση 1.2 και είναι ένα διακριτό ως προς τα δεδοµένα, αλλά συνεχές ως προς τις παραµέτρους ( c( x, y ) ) άµεσο αλλά µη γραµµικό πρόβληµα. Η επίλυσή του µπορεί να γίνει µε τεχνικές που θα αναφερθούν σε ανάλογο κεφάλαιο των σηµειώσεων, ωστόσο εδώ έχει σηµασία να δούµε πως µπορούµε να το απλοποιήσοµε γραµµικοποιώντας το. Αυτό µπορεί να γίνει εάν υποθέσοµε ότι ο συντελεστής απορρόφησης είναι µικρός και συνεπώς το ολοκλήρωµα στην 1.16 είναι επίσης µικρό.. Επίσης γνωρίζοµε ότι εκθετική συνάρτηση exp( x) µπορεί να προσεγγιστεί µε τους δύο πρώτους όρους του αναπτύγµατος Taylor και να πάροµε : exp( x) 1 x. Με βάση τα παραπάνω, η 1.16 µπορεί να γραφεί ως : Έτσι παίρνοµε : I = I0 (1 c( x, y) ds), = 1,... N (1.17) beam I I = = = (1.18) 0 Iι c( x, y) ds, 1,... N I0 beam Ένα ακόµη βήµα θα µας γραµµικοποιήσει πλήρως το πρόβληµα. Η διακριτοποίηση του σώµατος σε τετραγωνικά στοιχεία σταθερού συντελεστή απορρόφησης c j= 1,... M το καθένα, και η προσέγγιση του ολοκληρώµατος µε άθροισµα j (Αριθµητική Ανάλυση) εφ όσον θεωρήσοµε ότι σε κάθε στοιχείο j και κάθε δέσµη, το διανυόµενο µήκος είναι sj (Σχήµα 1.4). Η υιοθέτηση της αντιστοίχισης µε δείκτες που ακολουθήσαµε µας επιτρέπει να γράψοµε την εξίσωση (1.18) µε την προσέγγιση του ολοκληρώµατος µε άθροισµα ως : I I I = = s c, = 1,... N (1.19) M 0 j j I 0 j= 1 Προσέξτε ότι η ανωτέρω διακριτοποίηση µας οδηγεί σε ένα πρόβληµα ανάλογο µε εκείνο της ακουστικής τοµογραφίας : Κάθε δέσµη δεν διαπερνά όλα τα στοιχειώδη τετραγωνικά στοιχεία του σώµατος, αλλά µόνο αυτά που βρίσκονται στο πέρασµά της. Καταλήξαµε λοιπόν σε ένα σύστηµα Ν εξισώσεων µε Μ αγνώστους όπως και στην περίπτωση της ακουστικής τοµογραφίας. Ο πίνακας G του γραµµικού συστήµατος έχει αρκετά µηδενικά στοιχεία και αποτελείται από τα µήκη των διαδροµών των ακτίνων στο σώµα. 10

ιακριτά Αντίστροφα Προβλήµατα

ιακριτά Αντίστροφα Προβλήµατα Πανεπιστήµιο Κρήτης Τµήµα Μαθηµατικών ιακριτά Αντίστροφα Προβλήµατα Σηµειώσεις του Μαθήµατος βασισµένες κυρίως στο Βιβλίο : Geophyscal Data Analyss : Dscrete Inverse heory του Wllam Menke Μιχάλης Ταρουδάκης

Διαβάστε περισσότερα

3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ

3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. Διαφορά μετρήσεων από εκτιμήσεις μετρήσεων. Όταν επιλύοµε ένα αντίστροφο πρόβληµα υπολογίζοµε ένα διάνυσµα παραµέτρων est m το οποίο αντιπροσωπεύει

Διαβάστε περισσότερα

1.4 Λύσεις αντιστρόφων προβλημάτων.

1.4 Λύσεις αντιστρόφων προβλημάτων. .4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης

Διαβάστε περισσότερα

3.9 Πίνακας συνδιακύμανσης των παραμέτρων

3.9 Πίνακας συνδιακύμανσης των παραμέτρων Στην περίπτωσή µας έχοµε p= 1περιορισµό της µορφής : που γράφεται ως : ' = m + m z ' (3.47) 1 m Fm 1 = [1 z '] = [ '] = h m. (3.48) Η εξίσωση 3.46 στην περίπτωση αυτή χρησιµοποιώντας τους πίνακες που είδαµε

Διαβάστε περισσότερα

3.6 Μεικτά ορισμένα προβλήματα. 2. Γράφοµε τις ανωτέρω σχέσεις για q= 1,... Mσε διανυσµατική µορφή : G λ (3.30)

3.6 Μεικτά ορισμένα προβλήματα. 2. Γράφοµε τις ανωτέρω σχέσεις για q= 1,... Mσε διανυσµατική µορφή : G λ (3.30) . Γράφοµε τις ανωτέρω σχέσεις για q=,... Mσε διανυσµατική µορφή : = G λ (3.30) 3. Επειδή ισχύει παράλληλα και d = G, αντικαθιστώντας το από την 3.30 στην αρχική εξίσωση παίρνοµε : d= G G λ / (3.3) 4. Εάν

Διαβάστε περισσότερα

3.1 Η Αρχή της υπέρθεσης (ή της επαλληλίας)

3.1 Η Αρχή της υπέρθεσης (ή της επαλληλίας) ΚΕΦ. 3 Γενικές αρχές της κυματικής 3.1-1 3.1 Η Αρχή της υπέρθεσης (ή της επαλληλίας) 3.1.1 Γενική διατύπωση 3.1. Εύρος ισχύος της αρχής της υπέρθεσης 3.1.3 Μαθηματικές συνέπειες της αρχής της υπέρθεσης

Διαβάστε περισσότερα

HY 571 - Ιατρική Απεικόνιση. ιδάσκων: Kώστας Μαριάς

HY 571 - Ιατρική Απεικόνιση. ιδάσκων: Kώστας Μαριάς HY 571 - Ιατρική Απεικόνιση ιδάσκων: Kώστας Μαριάς 7. Υπολογιστική τοµογραφία Η ανάγκη απεικόνισης στις 3- ιαστάσεις Στην κλασική ακτινολογία η τρισδιάστατη ανθρώπινη ανατοµία προβάλλεται πάνω στο ακτινογραφικό

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ 5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΟΦΑΕΙΑΣ 5. Η συνάρτηση μέγιστης πιθανοφάνειας Έστω µία τυχαία µεταβλητή η οποία αντιπροσωπεύει την µέτρηση κάποιας συγκεκριµένης ποσότητας µε πραγµατική αλλά άγνωστη τιµή θ σε ένα

Διαβάστε περισσότερα

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 6 Ολοκληρώµατα διανυσµατικών συναρτήσεων Υπάρχουν διαφόρων ειδών ολοκληρώµατα διανυσµάτων, ανάλογα µε τη µορφή που έχει η ολοκληρωτέα

Διαβάστε περισσότερα

Άσκηση Η15. Μέτρηση της έντασης του μαγνητικού πεδίου της γής. Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο)

Άσκηση Η15. Μέτρηση της έντασης του μαγνητικού πεδίου της γής. Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο) Άσκηση Η15 Μέτρηση της έντασης του μαγνητικού πεδίου της γής Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο) Το γήινο μαγνητικό πεδίο αποτελείται, ως προς την προέλευσή του, από δύο συνιστώσες, το μόνιμο μαγνητικό

Διαβάστε περισσότερα

ιάδοση κυµάτων σε διηλεκτρικά. Απορρόφυση ακτινοβολίας. Μέρος 1ον : ιάδοση κυµάτων σε διηλεκτρικά.

ιάδοση κυµάτων σε διηλεκτρικά. Απορρόφυση ακτινοβολίας. Μέρος 1ον : ιάδοση κυµάτων σε διηλεκτρικά. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 53 ιάδοση κυµάτων σε διηλεκτρικά. Απορρόφυση ακτινοβολίας. 5. Άσκηση 5 5.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ .0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του.

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο

Διαβάστε περισσότερα

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional). 3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το ατοµικό πρότυπο του Bohr καθώς και τα µειονεκτήµατά του. Να υπολογίζει την ενέργεια που εκπέµπεται ή απορροφάται

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής Η/Μ ΚΥΜΑΤΑ 1. Τα ηλεκτροµαγνητικά κύµατα: Ερωτήσεις Πολλαπλής επιλογής α. είναι διαµήκη. β. υπακούουν στην αρχή της επαλληλίας. γ. διαδίδονται σε όλα τα µέσα µε την ίδια ταχύτητα. δ. Δημιουργούνται από

Διαβάστε περισσότερα

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής αρκεί να γράψετε

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων ΘΕ ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες που αφορούν την

Διαβάστε περισσότερα

Επίλυση Προβληµάτων Αρχικών / Συνοριακών Τιµών Μεταδόσεως Θερµότητας

Επίλυση Προβληµάτων Αρχικών / Συνοριακών Τιµών Μεταδόσεως Θερµότητας Επίλυση Προβληµάτων Αρχικών / Συνοριακών Τιµών Μεταδόσεως Θερµότητας Τα προβλήµατα µεταδόσεως θερµότητας (ή θερµικής αγωγιµότητας heat conduction), µε την υπόθεση ισχύος του νόµου Fourier, διέπονται από

Διαβάστε περισσότερα

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Στις φυσικές επιστήµες για να λύσουµε προβλήµατα ακολουθούµε συνήθως τα εξής βήµατα: 1. Μαθηµατική διατύπωση. Για να διατυπώσουµε µαθηµατικά ένα πρόβληµα

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 5 ΙΟΥΛΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις

Διαβάστε περισσότερα

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1 ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ 1. ΟΡΙΣΜΟΙ Το φως είναι ένα σύνθετο κύμα. Με εξαίρεση την ακτινοβολία LASER, τα κύματα φωτός δεν είναι επίπεδα κύματα. Κάθε κύμα φωτός είναι ένα ηλεκτρομαγνητικό κύμα στο οποίο τα διανύσματα

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό.

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 91 9. Άσκηση 9 ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. 9.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε τα φαινόµενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων.

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων. Πανεπιστήµιο Κύπρου Το µάθηµα περιλαµβάνει Αριθµητικές και Υπολογιστικές Μεθόδους για Μηχανικούς, µε έµφαση στις µεθόδους: αριθµητικής ολοκλήρωσης/παραγώγισης, αριθµητικών πράξεων µητρώων, λύσεων µητρώων

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΑΝΩ ΣΤΑ ΕΓΚΑΡΣΙΑ ΚΥΜΑΤΑ

ΑΣΚΗΣΕΙΣ ΠΑΝΩ ΣΤΑ ΕΓΚΑΡΣΙΑ ΚΥΜΑΤΑ ΑΣΚΗΣΕΙΣ ΠΑΝΩ ΣΤΑ ΕΓΚΑΡΣΙΑ ΚΥΜΑΤΑ ΑΣΚΗΣΗ : Κύμα διαδίδεται κατά μήκος χορδής με ταχύτητα 8. Ποια θα είναι η ταχύτητα αν αντικατασταθεί η χορδή από μία άλλη που είναι φτιαγμένη από το ίδιο υλικό και βρίσκεται

Διαβάστε περισσότερα

NTÙÍÉÏÓ ÃÊÏÕÔÓÉÁÓ - ÖÕÓÉÊÏÓ www.geocities.com/gutsi1 -- www.gutsias.gr

NTÙÍÉÏÓ ÃÊÏÕÔÓÉÁÓ - ÖÕÓÉÊÏÓ www.geocities.com/gutsi1 -- www.gutsias.gr Έστω µάζα m. Στη µάζα κάποια στιγµή ασκούνται δυο δυνάµεις. ( Βλ. σχήµα:) Ποιά η διεύθυνση και ποιά η φορά κίνησης της µάζας; F 1 F γ m F 2 ιατυπώστε αρχή επαλληλίας. M την της Ποιό φαινόµενο ονοµάζουµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΙΓΜΑΤΙΚΗ Ι ΑΣΚΑΛΙΑ «ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΟΡΙΖΟΥΣΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ» 1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟΣ 1 : Γραµµική εξίσωση λέγεται κάθε

Διαβάστε περισσότερα

Περιεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων...

Περιεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων... Περιεχόμενα Ανάλυση προβλήματος 1. Η έννοια πρόβλημα...13 2. Επίλυση προβλημάτων...17 Δομή ακολουθίας 3. Βασικές έννοιες αλγορίθμων...27 4. Εισαγωγή στην ψευδογλώσσα...31 5. Οι πρώτοι μου αλγόριθμοι...54

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό.

Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό. Βασικές Εξισώσεις Σχεδιασμού (ΣΔΟΥΚΟΣ 2-, 2-) t = n i dn i V n i R και V = n i dn i t n i R Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( , c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 28/2/12

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( , c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 28/2/12 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ε. Γαλλόπουλος ΤΜΗΥΠ Πανεπιστήµιο Πατρών ιαφάνειες διαλέξεων 28/2/12 Μαθηµατική Οµάδα Οµάδα είναι ένα σύνολο F µαζί µε µία πράξη + : F F F έτσι ώστε (Α1) α + (β + γ) = (α + β) + γ για

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας.

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 21 Μαίου 2009 Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Επίσης γράψετε το password σας. Στο τέλος της εξέτασης θα πρέπει

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ ΜΑΘΗΜΑ : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Πρώτα απ όλα θέλουμε να βρούμε και να εξηγήσουμε έναν ορισμό που να ταιριάζει όσο το δυνατό καλύτερα στα φυσικά φαινόμενα Και η πεποίθησή μας θα ενισχυθεί

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ, ΕΣΠΙ 1

ΛΟΓΙΣΜΟΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ, ΕΣΠΙ 1 ΛΟΓΙΣΜΟΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ, ΕΣΠΙ 1 ΣΥΝΑΡΤΗΣΕΙΣ Η έννοια της συνάρτησης είναι θεμελιώδης στο λογισμό και διαπερνά όλους τους μαθηματικούς κλάδους. Για το φοιτητή είναι σημαντικό να κατανοήσει πλήρως αυτή

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ψψαριαα0001.jpg ψψαριαα0001.jpg Κ.-Α. Θ. Θωμά

ψψαριαα0001.jpg ψψαριαα0001.jpg Κ.-Α. Θ. Θωμά Οι διαφάνειες που ακολουθούν είναι βοηθητικές για το μάθημα της Φυσικής που διδάσκεται στους φοιτητές του Βιολογικού Τμήματος του Πανεπιστημίου Πατρών. Επειδή, στο καλωσόρισμα, ακόμη και όταν πρόκειται

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 6 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Στις ερωτήσεις 1- να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα, που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα µε την

Διαβάστε περισσότερα

4. ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΣΕ ΜΟΝΟ ΙΑΣΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ. φ για την εφαρµογή της µεθόδου Galerkin δεν

4. ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΣΕ ΜΟΝΟ ΙΑΣΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ. φ για την εφαρµογή της µεθόδου Galerkin δεν . ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΣΕ ΜΟΝΟ ΙΑΣΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ Η επιλογή των συναρτήσεων βάσης ( ) φ για την εφαρµογή της µεθόδου Galrkn δεν είναι τόσο απλή, και στην γενική περίπτωση είναι µία δύσκολη διαδικασία.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Κεφάλαιο 1 ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Στις θετικές επιστήμες και στις τεχνολογικές τους εφαρμογές συναντάμε συχνά μεγέθη που χαρακτηρίζονται μόνο από το μέτρο τους: τη μάζα,

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτοµατισµού Σεµινάριο Αυτοµάτου Ελέγχου Ειδικά θέµατα Ανάλυσης συστηµάτων Σύνθεσης συστηµάτων ελέγχου Μελέτης στοχαστικών συστηµάτων. Καλλιγερόπουλος Σεµινάριο Αυτοµάτου Ελέγχου Ανάλυση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. ιατήρηση ορµής

ΚΕΦΑΛΑΙΟ 4. ιατήρηση ορµής ΚΕΦΑΛΑΙΟ 4 ιατήρηση ορµής Ας θεωρήσοµε δυο υλικά σηµεία και µε µάζες και αντιστοίχως που βρίσκονται την τυχούσα χρονική στιγµή στις αντίστοιχες διανυσµατικές ακτίνες και και έχουν αντίστοιχες ταχύτητες

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα ΠεριεχόµεναΚεφαλαίου 31 Τα µεταβαλλόµενα ηλεκτρικά πεδία παράγουν µαγνητικά πεδία. Ο Νόµος του Ampère-Ρεύµα µετατόπισης Νόµος του Gauss s στο µαγνητισµό

Διαβάστε περισσότερα

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες) Q3-1 Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Σε αυτό το πρόβλημα θα ασχοληθείτε με τη Φυσική

Διαβάστε περισσότερα

Υπλογιστικός Αξονικός Τοµογράφος

Υπλογιστικός Αξονικός Τοµογράφος Υπλογιστικός Αξονικός Τοµογράφος Υπολογιστικός Αξονικός Τοµογράφος Η Υπολογιστική Τοµογραφία ή Αξονική Τοµογραφία, έχει διεθνώς επικρατήσει από τα αρχικά των αγγλικών λέξεων Computed Tomography. Θεωρείται

Διαβάστε περισσότερα

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1. 1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

ΒΙΟΦΥΣΙΚΗ. Αλληλεπίδραση ιοντίζουσας ακτινοβολίας και ύλης.

ΒΙΟΦΥΣΙΚΗ. Αλληλεπίδραση ιοντίζουσας ακτινοβολίας και ύλης. ΒΙΟΦΥΣΙΚΗ Αλληλεπίδραση ιοντίζουσας ακτινοβολίας και ύλης http://eclass.uoa.gr/courses/md73/ Ε. Παντελής Επικ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών. Εργαστήριο προσομοίωσης 10-746

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Τρέχοντα Κύματα Κύμα ονομάζεται η διάδοση μιας διαταραχής σε όλα τα σημεία του ελαστικού μέσου με ορισμένη ταχύτητα. Κατά τη διάδοση ενός κύματος

Διαβάστε περισσότερα

ιόδευση των πληµµυρών

ιόδευση των πληµµυρών ιόδευση των πληµµυρών Με τον όρο διόδευση εννοούµε τον υπολογισµό του πληµµυρικού υδρογραφήµατος σε µια θέση Β στα κατάντη ενός υδατορρεύµατος, όταν αυτό είναι γνωστό σε µια θέση Α στα ανάντη ή αντίστοιχα

Διαβάστε περισσότερα

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας»

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Εισαγωγή Επιστημονική μέθοδος Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Διατύπωση αξιωματική της αιτίας μια κίνησης

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

' ' ' ' ' ' ' e G G G G. G M ' ' ' ' G '

' ' ' ' ' ' ' e G G G G. G M ' ' ' ' G ' µετασχηµατισµό τέτοιο ώστε επιδρώντας στο λάθος πρόβλεψης e, ( e = e) να οδηγεί σε ελαχιστοποίηση του E = e e όταν ελαχιστοποιείται το Ε, να µετασχηµατίζει τον πίνακα G στον πίνακα G που να έχει άνω τριγωνική

Διαβάστε περισσότερα

Ανάλυση μετρήσεων εικονικού πειράματος. Τελική εργασία εργαστηρίου φυσικής ΙΙ. Μέτρηση κατανομής ηλεκτρικού πεδίου.

Ανάλυση μετρήσεων εικονικού πειράματος. Τελική εργασία εργαστηρίου φυσικής ΙΙ. Μέτρηση κατανομής ηλεκτρικού πεδίου. Ανάλυση μετρήσεων εικονικού πειράματος. Τελική εργασία εργαστηρίου φυσικής ΙΙ. Βασικά στοιχεία εργασίας. Ονοματεπώνυμο φοιτητή : Ευστάθιος Χατζηκυριακίδης. Αριθμός μητρώου : Ημερομηνία εκτέλεσης : 03/06/2008-07/06/2008.

Διαβάστε περισσότερα

3η Εργαστηριακή Άσκηση: Εύρεση χαρακτηριστικής και συντελεστή απόδοσης κινητήρα συνεχούς ρεύµατος

3η Εργαστηριακή Άσκηση: Εύρεση χαρακτηριστικής και συντελεστή απόδοσης κινητήρα συνεχούς ρεύµατος Ονοµατεπώνυµο: Αριθµός Μητρώου: Εξάµηνο: Υπογραφή Εργαστήριο Ηλεκτροµηχανικών Συστηµάτων Μετατροπής Ενέργειας 3η Εργαστηριακή Άσκηση: Εύρεση χαρακτηριστικής και συντελεστή απόδοσης κινητήρα συνεχούς ρεύµατος

Διαβάστε περισσότερα

Μηχανική ΙI. Λαγκρανζιανή συνάρτηση. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 3/2001

Μηχανική ΙI. Λαγκρανζιανή συνάρτηση. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 3/2001 Τµήµα Π Ιωάννου & Θ Αποστολάτου 3/2001 Μηχανική ΙI Λαγκρανζιανή συνάρτηση Είδαµε στο προηγούµενο κεφάλαιο ότι ο δυναµικός νόµος του Νεύτωνα είναι ισοδύναµος µε την απαίτηση η δράση ως το ολοκλήρωµα της

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 Εκπομπή και απορρόφηση ακτινοβολίας ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ Στέλιος Τζωρτζάκης 1 3 4 Ηλεκτρομαγνητικά πεδία Απορρόφηση είναι Σε αυτή τη διαδικασία το ηλεκτρόνιο

Διαβάστε περισσότερα

Περίθλαση από ακµή και από εµπόδιο.

Περίθλαση από ακµή και από εµπόδιο. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]:

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Θέμα 1 ο ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Στα ερωτήματα 1 5 του πρώτου θέματος, να μεταφέρετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα της απάντησης που θεωρείτε

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

6.10 Ηλεκτροµαγνητικά Κύµατα

6.10 Ηλεκτροµαγνητικά Κύµατα Πρόταση Μελέτης Λύσε απο τον Α τόµο των Γ. Μαθιουδάκη & Γ.Παναγιωτακόπουλου τις ακόλουθες ασκήσεις : 11.1-11.36, 11.46-11.50, 11.52-11.59, 11.61, 11.63, 11.64, 1.66-11.69, 11.71, 11.72, 11.75-11.79, 11.81

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 25 ΜΑΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ. Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών

ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ. Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ Διαγνωστικές και θεραπευτικές εφαρμογές ακτινοβολιών : Κεφάλαιο 11 ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

2. Η μονάδα μέτρησης της στροφορμής στο σύστημα S.I. είναι. m s. δ. 1 J s. Μονάδες 5. m s

2. Η μονάδα μέτρησης της στροφορμής στο σύστημα S.I. είναι. m s. δ. 1 J s. Μονάδες 5. m s ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 15 ΣΕΠΤΕΜΒΡΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα