' ' ' ' ' ' ' e G G G G. G M ' ' ' ' G '
|
|
- Σπυρίδιον Αλεξάνδρου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 µετασχηµατισµό τέτοιο ώστε επιδρώντας στο λάθος πρόβλεψης e, ( e = e) να οδηγεί σε ελαχιστοποίηση του E = e e όταν ελαχιστοποιείται το Ε, να µετασχηµατίζει τον πίνακα G στον πίνακα G που να έχει άνω τριγωνική µορφή, θα έχοµε που αναλυτικά γράφεται ως = = ( ) = = e e d Gm d Gm d G m (6.11) e G G G G. G e e e m e d.. d G22 G23 G24. G2 d 2 m G33 G34. G 3 d m. = m G d (6.12) Στην περίπτωση αυτή βλέποµε ότι οποιαδήποτε επιλογή των est m δεν επηρεάζει τις τελευταίες Ν-Μ εξισώσεις. Εποµένως µπορούµε να ζητήσοµε να µηδενίζονται οι πρώτες Μ τιµές του e, οπότε ικανοποιούνται ακριβώς οι πρώτες Μ εξισώσεις του συστήµατος που παίρνουν τη µορφή d = G m. Επί πλέον λόγω της µορφής του πίνακα G µπορούµε να λύσουµε το σύστηµα µε αντίστροφη διαδικασία o συνολικό λάθος λοιπόν είναι : 2 2 = + 1 = + 1. (6.13) E = e = d Με το µετασχηµατισµό, διαχωρίσαµε το αντίστροφο πρόβληµα σε ένα µέρος το οποίο αφορά µετρήσεις που ικανοποιούνται επακριβώς σε ένα άλλο µέρος που αφορά µετρήσεις που δεν µπορούν να ικανοποιηθούν. Η λύση επιλέγεται έτσι ώστε να ελαχιστοποιείται το λάθος πρόβλεψης συνεπώς είναι λύση ελαχίστων τετραγώνων Το μεικτά ορισμένο πρόβλημα. Σε ένα µεικτά ορισµένο πρόβληµα της µορφής Gm=d κάποιοι γραµµικοί συνδυασµοί παραµέτρων είναι υπερ-ορισµένοι κάποιοι υπο-ορισµένοι. Εάν ένα πρόβληµα είναι σε κάποιο βαθµό υποορισµένο, η εξίσωση Gm=d περιέχει πληροφορία για µερικές µόνο από τις παραµέτρους. Οι παράµετροι αυτές θεωρούµε ότι περιλαµβάνονται σε ένα υπόχωρο S ( m ) του χώρου των παραµέτρων. Για το 60
2 συµπλήρωµα του υπόχωρου αυτού ως προς το χώρο των παραµέτρων, ο πίνακας G δεν παρέχει καµµία πληροφορία. Ο υπόχωρος αυτός χαρακτηρίζεται ως S ( m ). 0 Αντίστοιχα σε ένα υπερορισµένο πρόβληµα το γινόµενο Gm µπορεί να µην µπορεί να παράγει το χώρο S( d ) ανεξά (6.15ρτητα από την επιλογή των παραµέτρων. Το πολύ να µπορεί να ικανοποιηθεί ένα µέρος των µετρήσεων που χαρακτηρίζεται ως S ( d ) σε αντίθεση µε τον υπόχωρο S ( ) 0 d που περιλαµβάνει τις µετρήσεις που δεν µπορούν να ικανοποιηθούν. Θεωρώντας τώρα παραµέτρους µετρήσεις που ανήκουν στους αντίστοιχους υπόχωρους µε τους ανωτέρω συµβολισµούς, µπορούµε να γράψουµε στη γενική περίπτωση : Το µήκος της λύσης είναι G m + m = d + d (6.14) 0 0 Το λάθος πρόβλεψης είναι L= m m= m + m m + m = m m + m m (6.15) E= [ d + d Gm ] [ d + d Gm ] = d Gm d Gm + d d (6.16) Όπου στους υπολογισµούς έχει ληφθεί υπ όψιν ότι γινόµενα διανυσµάτων που ανήκουν σε διαφορετικούς υπόχωρους είναι µηδενικά. Σε ένα µεικτά ορισµένο πρόβληµα, εκ προοιµίου πληροφορία εισάγεται για να ορίσει παραµέτρους που περιέχονται στο χώρο S ( ) 0 m το λάθος πρόβλεψης περιορίζεται στο χώρο S ( ) 0 d ικανοποιώντας τη σχέση e = d Gm = 0 επακριβώς. est Όταν το πρόβληµα είναι καθαρά υπο-ορισµένο, επιλέγοντας m 0 = 0 (που την ονοµάζουµε φυσική λύση natural soluton) οδηγούµαστε σε λύση ελαχίστου µήκους ενώ σε ένα καθαρά υπερορισµένο πρόβληµα οδηγούµαστε σε λύση ελαχίστων τετραγώνων. 61
3 6.3 Ανάλυση Ιδιαζουσών Τιμών (Sngular Value Decomoston) Στο κεφάλαιο αυτό θα αναφερθούµε σε µία διαδικασία που βοηθά στον καθορισµό του µηδενόχωρου συνεπώς της λύσης ενός γραµµικού αντίστροφου προβλήµατος όπως αυτή εκφράζεται από τη σχέση 6.3, µέσω κατάλληλης παραγοντοποίησης του πίνακα G Η ανάλυση Θεωρούµε τον τετραγωνικό συµµετρικό πίνακα S διαστάσεων (Ν+Μ)X(Ν+Μ) που προκύπτει από τον πίνακα G του γραµµικού αντιστρόφου προβλήµατος ως εξής : 0 G S= G 0 (6.17) Από τη Γραµµική Άλγεβρα γνωρίζοµε ότι ο πίνακας αυτός έχει Ν+Μ πραγµατικές ιδιοτιµές λ µία πλήρη οµάδα ιδιοδιανυσµάτων w που επιλύουν το πρόβληµα Sw = λw. (6.18) ιαχωρίζοντας το διάνυσµα wσε ένα µέρος διάστασης Ν ένα άλλο διάστασης Μ, γράφοµε την 6.18 αναλυτικά ως 0 G u u Sw= = λ 0 G v v (6.19) Από την παραπάνω σχέση διαπιστώνουµε ότι ισχύουν ταυτόχρονα : Gv =λu G u =λ v. (6.20) Εάν υποθέσοµε ότι έχοµε µία θετική ιδιοτιµή λ τότε η -λ είναι επίσης ιδιοτιµή µε αντίστοιχα ιδιοδιανύσµατα [ u, v ] [ u, v ]. Εάν έχοµε θετικές ιδιοτιµές, θα πρέπει να έχοµε συνολικά Ν+Μ-2 µηδενικές ιδιοτιµές. Φυσικά θα πρέπει να ισχύει ότι mn(, ) αφού δεν µπορούµε να έχοµε περισσότερες ιδιοτιµές σε σχέση µε τη διάσταση του πίνακα. Από τις 6.20 προκύπτουν εύκολα οι σχέσεις 2 G Gv =λ ι v 2 GG u =λ ι u (6.21) Εξετάζοντας τους πίνακες G G διαθέτουν αντίστοιχα Μ Ν ιδιοτιµές (µε αντίστοιχα ιδιοδιανύσµατα GG βλέποµε ότι είναι συµµετρικοί ορίζουν τα σύνολα V που έχουν τη µορφή πινάκων. Ο πίνακας είναι : 62 v u που [ u,u,...u ] (6.22) = 1 2
4 ο πίνακας V είναι V [ v, v,...v ] (6.23) = 1 2 Σε κάθε σύνολο τα ιδιοδιανύσµατα είναι ορθογώνια συνεπώς παράγουν τους χώρους S( m) S(d) αντίστοιχα. Επίσης µπορούν να κανονικοποιηθούν ώστε να ισχύει : = = VV = V V= (6.24) Με τους πίνακες αντίστοιχα. να είναι οι µοναδιαίοι πίνακες διαστάσεων Ν Μ Ορίζοντας τώρα ως Λ, τον διαγώνιο πίνακα διαστάσεων ΝΧΜ µε διαγώνια στοιχεία τις µη αρνητικές ιδιοτιµές (τις χαρακτηρίζοµε ιδιάζουσες τιµές) παρατηρώντας ότι V είναι ορθογώνιοι, παίρνοµε από την πρώτη από τις σχέσεις 6.20 : πολλαπλασιάζοντας από δεξιά µε GV=Λ (6.25) V παίρνοµε : G= ΛV (6.26) που χαρακτηρίζετα ως παραγοντοποίηση ή ανάλυση ιδιαζουσών τιµών (Sngular Value Decomoston- SVD) Ανάλυση ιδιαζουσών τιμών γενικευμένος αντίστροφος. Όπως είπαµε πιο πάνω, οι ιδιάζουσες τιµές του πίνακα G δεν µπορεί να είναι περισσότερες από το mn(, ) συνεπώς στον πίνακα Λ µπορεί να έχοµε γραµµές ή στήλες µηδενικές. Εάν Ν>Μ θα έχοµε µία γραµµή τουλάχιστον µε µηδενικά στοιχεία εάν Ν<Μ θα έχοµε τουλάχιστον µία στήλη µε µηδενικά στοιχεία. Συνεπώς στη γενική περίπτωση θα µπορούσαµε να γράψοµε τον πίνακα Λ στη µορφή Λ 0 Λ = (6.27) 0 0 Με τον πίνακα Λ να είναι ένας X διαγώνιος πίνακας µε µη µηδενικά στοιχεία στη διαγώνιο. Θα πρέπει να σηµειώσουµε ότι η διάταξη των ιδιοτιµών στον πίνακα Λ γίνεται κατά φθίνουσα σειρά. Λαµβάνοντας υπ όψιν τη µορφή του Λ, η ανάλυση ιδιαζουσών τιµών (6.26) παίρνει τη µορφή : G= Λ V (6.28) 63
5 µε τους πίνακες V Να αποτελούνται από τις πρώτες στήλες των V αντίστοιχα 2. Ο πίνακας G δεν περιλαµβάνει συνεπώς πληροφορία για τους υπόχωρους που παράγονται από τις υπόλοιπες στήλες των V οι οποίες παράγουν τους πίνακες 0 V 0 αντίστοιχα. Με άλλα λόγια καταφέραµε να παράγουµε το µηδενόχωρο S ( ) 0 m τα διανύσµατα του οποίου είδαµε να συµµετέχουν στη γενική λύση του αντιστρόφου προβλήµατος µε την έννοια της (6.3) αλλά παράλληλα τους υπόχωρους S ( m) S ( d) που παράγονται από τα διανύσµατα V αντίστοιχα. Η φυσική λύση στο αντίστροφο πρόβληµα µπορεί τώρα να κατασκευαστεί µέσω της ανάλυσης ιδιαζουσών τιµών. Η λύση θα πρέπει να αποτελείται από ένα διάνυσµα est m που δεν έχει στοιχεία στον S ( ) 0 στοιχεία στο S ( d ). Θεωρώντας τη λύση : m ένα λάθος πρόβλεψης που δεν έχει est 1 m = VΛ d (6.29) µπορούµε να αποδείξοµε ότι ικανοποιεί τις παραπάνω απαιτήσεις συνεπώς υιοθετείται ως η «φυσική λύση» του γραµµικού αντιστρόφου προβλήµατος. Ο πίνακας G g = VΛ που προκύπτει από τη σχέση 1 est g m = G dχαρακτηρίζεται ως «ο φυσικός γενικευµένος αντίστροφος». Ο πίνακας ανάλυσης παραµέτρων για τον εν λόγω γενικευµένο αντίστροφο υπολογίζεται από τη σχέση της µορφής R= G G= VΛ Λ V = V V (6.30) g 1 { }{ } ο πίνακας ανάλυσης δεδοµένων από τη σχέση : = GG = Λ V VΛ = (6.31) g 1 { }{ } Ο πίνακας συνδιακύµανσης για ασυσχέτιστα δεδοµένα µε ίδια διασπορά 2 σ d είναι : [ ] σ σ est g g covm = G cov d G = d{ VΛ }{ Λ } = dv{ Λ } V (6.32) Είναι προφανές ότι τα δεδοµένα (µετρήσεις) παράγονται πλήρως εάν ο υπόχωρος παράγει το χώρο των µετρήσεων δηλαδή όταν =. 2 Θυμηθείτε ότι υπάρχει διάταξη στις ιδιοτιμές συνεπώς πρέπει να υπάρξει η αντιστοίχηση των ιδιοδιανυσμάτων. 64
6 Εάν υπάρχει εκ προοιµίου πληροφορία για τις παραµέτρους µε µέση τιµή m πίνακα συνδιακύµανσης [ covm ] µπορεί να χρησιµοποιηθεί η σχέση Ο πίνακας συνδιακύµανσης παίρνει τη µορφή [ ] est g m = G d+ R m (6.33) [ ] [ ][ ][ ] est g g covm = G covd G + R covm R (6.34) Επισηµαίνεται ότι η εφαρµογή της ανάλυσης ιδιαζουσών τιµών βασίζεται στη δυνατότητα ακριβούς υπολογισµού των τιµών αυτών. Σε πολλές περιπτώσεις όταν υπάρχουν µεγάλες διαφορές µεγέθους, που σηµαίνει πρακτικά πίνακας G κακής κατάστασης, η ανάλυση δεν είναι ακριβής µε τους υπάρχοντες αλγορίθµους. Σε άλλες περιπτώσεις ιδιάζουσες τιµές κοντά στο µηδέν θεωρούνται µηδενικές, οπότε στην πραγµατικότητα επιλύεται ένα διαφορετικό πρόβληµα που προσεγγίζει το κανονικό. Άλλες λύσεις όπως για παράδειγµα η απόσβεση των µικρών ιδιοτιµών είναι επίσης εφαρµόσιµες. Η γενική λύση που είδαµε µε τη σχέση 6.3 µπορεί να θεωρηθεί ότι αποτελείται από το άθροισµα της φυσικής λύσης (µέσω της SVD) της ειδικής που παράγεται από τα διανύσµατα του µηδενόχωρου S ( m ). 0 65
6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ
6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ 6. Διανυσματικοί χώροι παραμέτρων και μετρήσεων. Θα δανειστούµε για µία ακόµη φορά έννοιες της Γραµµικής Άλγεβρας προκειµένου να δούµε πως µπορούµε να χειριστούµε
Διαβάστε περισσότερα3.9 Πίνακας συνδιακύμανσης των παραμέτρων
Στην περίπτωσή µας έχοµε p= 1περιορισµό της µορφής : που γράφεται ως : ' = m + m z ' (3.47) 1 m Fm 1 = [1 z '] = [ '] = h m. (3.48) Η εξίσωση 3.46 στην περίπτωση αυτή χρησιµοποιώντας τους πίνακες που είδαµε
Διαβάστε περισσότερα3.6 Μεικτά ορισμένα προβλήματα. 2. Γράφοµε τις ανωτέρω σχέσεις για q= 1,... Mσε διανυσµατική µορφή : G λ (3.30)
. Γράφοµε τις ανωτέρω σχέσεις για q=,... Mσε διανυσµατική µορφή : = G λ (3.30) 3. Επειδή ισχύει παράλληλα και d = G, αντικαθιστώντας το από την 3.30 στην αρχική εξίσωση παίρνοµε : d= G G λ / (3.3) 4. Εάν
Διαβάστε περισσότερα3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ
3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. Διαφορά μετρήσεων από εκτιμήσεις μετρήσεων. Όταν επιλύοµε ένα αντίστροφο πρόβληµα υπολογίζοµε ένα διάνυσµα παραµέτρων est m το οποίο αντιπροσωπεύει
Διαβάστε περισσότερα7. ΜΗ ΓΡΑΜΜΙΚΑ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ
7. ΜΗ ΓΡΑΜΜΙΚΑ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ 7. Παραμετροποίηση αντιστρόφων προβλημάτων Τα διακριτά αντίστροφα προβλήµατα όπως έχουµε δει αντιµετωπίζουν σχέσεις παραµέτρων ενός φυσικού προβλήµατος και µετρήσεις
Διαβάστε περισσότεραΙδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα
Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που
Διαβάστε περισσότεραΣτοχαστικά Σήµατα και Εφαρµογές
Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία
Διαβάστε περισσότεραΚίνηση στερεών σωμάτων - περιστροφική
Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων
Διαβάστε περισσότερα5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ
5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΟΦΑΕΙΑΣ 5. Η συνάρτηση μέγιστης πιθανοφάνειας Έστω µία τυχαία µεταβλητή η οποία αντιπροσωπεύει την µέτρηση κάποιας συγκεκριµένης ποσότητας µε πραγµατική αλλά άγνωστη τιµή θ σε ένα
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις
Διαβάστε περισσότεραx 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.
Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε
Διαβάστε περισσότερα1.4 Λύσεις αντιστρόφων προβλημάτων.
.4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης
Διαβάστε περισσότεραΓραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος
6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου
Διαβάστε περισσότερα!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα
Συστήματα με Ν βαθμούς ελευθερίας ΦΥΣ 211 - Διαλ.25 1 Ø Συστήµατα µε Ν βαθµούς ελευθερίας που βρίσκονται κοντά σε µια θέση ισσορροπίας τους συµπεριφέρονται σαν Ν ανεξάρτητοι αρµονικοί ταλαντωτές Γιατί
Διαβάστε περισσότερα1 Αριθµητική Γραµµική Άλγεβρα: Ασκήσεις
Αριθµητική Γραµµική Άλγεβρα: Ασκήσεις. Να επιλυθεί το σύστηµα µε απαλοιφή Gauss: 3x 2x 3 +x 4 = 2x + +x 3 +3x 4 = 6 x +3 +2x 3 +4x 4 = 2x 2 +3x 3 2x 4 = 7 [ΑΠΑΝΤΗΣΗ:x 4 = 0, =, x 3 = 3, x = 2] 2. Να επιλυθεί
Διαβάστε περισσότερα8.1 Διαγωνοποίηση πίνακα
Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και
Διαβάστε περισσότεραΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).
ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο
ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάσαµε την κίνηση ενός υλικού σηµείου υπό την επίδραση µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού σηµείου έχοµε ένα στερεό σώµα.
Διαβάστε περισσότεραΓραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΓραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10
Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Οι πρώτες δύο ασκήσεις αναφέρονται στις έννοιες γραµµική ανεξαρτησία, γραµµικός
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( Ιουλίου 009 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ I. (εκδχ. Α. Σωστό ή Λάθος: α Αν A,B R n n είναι αντιστρέψιµα, τότε το ίδιο ισχύει και για το AB. ϐ Αν A R n n, τότε A AA. γ Αν A R και συµµετρικό
Διαβάστε περισσότεραΕπίλυση Γραµµικών Συστηµάτων
Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n
Διαβάστε περισσότεραΚεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα
Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Ορισµοί Ιδιοτιµές και Ιδιοδιανύσµατα Έστω Α ένας πίνακας µε πραγµατικά στοιχεία Ο πραγµατικός ή µιγαδικός αριθµός λ καλείται ιδιοτιµή του πίνακα Α εάν υπάρχει µη
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τµήµα Εφαρµοσµένων Μαθηµατικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τµήµα Εφαρµοσµένων Μαθηµατικών «Γραµµική Άλγεβρα Ι» (ΕΜ111) Χειµερινό Εξάµηνο 2006-2007, ιδάσκων: Ι. Τσαγράκης 5 Ο ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ Άσκηση 1: Έστω V ένας διανυσµατικός χώρος επί
Διαβάστε περισσότεραΓραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότερα1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό
1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 12 Απριλίου 2019 Αν
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html ευτέρα 23 Απριλίου 2018 Αν C
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις
Διαβάστε περισσότεραΤετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1
Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας
Διαβάστε περισσότεραΤετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1
Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Για συνάρτηση μιας
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/aeligia/linearalgerai/lai07/lai07html Παρασκευή Νοεµβρίου 07 Ασκηση Αν
Διαβάστε περισσότεραΕισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί
Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα
Διαβάστε περισσότεραΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας
Διαβάστε περισσότερα[ ] και το διάνυσµα των συντελεστών:
Μηχανική ΙΙ Τµήµα Ιωάννου-Απόστολάτου 8 Μαϊου 2001 Εσωτερικά γινόµενα διανυσµάτων µέτρο διανύσµατος- ορθογώνια διανύσµατα Έστω ένας διανυσµατικός χώρος V, στο πεδίο των µιγαδικών αριθµών Τα στοιχεία του
Διαβάστε περισσότεραΓραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΠαρουσίαση 1 ΙΑΝΥΣΜΑΤΑ
Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii9/laii9html Παρασκευή 9 Μαρτίου 9 Ασκηση Εστω (E,,
Διαβάστε περισσότεραΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ
ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α
Διαβάστε περισσότεραΜέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)
Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Στην πράξη, για πολύ σημαντικές εφαρμογές, γίνονται μετρήσεις τιμών μιας ποσότητας σε μια κλινική, για μια σφυγμομέτρηση,
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 29 Μαρτίου 2019 Ασκηση
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και
Διαβάστε περισσότεραΕπίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58
Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας
Διαβάστε περισσότερα{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)
Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,
Διαβάστε περισσότεραΕπίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων
Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων. Γραμμικοί Μετασχηματισμοί Ανυσμάτων Θεωρούμε χώρο δύο διαστάσεων και συμβατικά ένα ορθογώνιο σύστημα αξόνων για την περιγραφή κάθε ανύσματος του χώρου
Διαβάστε περισσότερα0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,
I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +
Διαβάστε περισσότεραΚεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα
Κεφάλαιο 6 Ορισμοί Έστω Α ένας πίνακας με πραγματικά στοιχεία Ο πραγματικός ή μιγαδικός αριθμός λ καλείται ιδιοτιμή του πίνακα Α εάν υπάρχει μη μηδενικό διάνυσμα v με πραγματικά ή μιγαδικά στοιχεία τέτοιο
Διαβάστε περισσότεραΤα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου
ΤΥΠΟΛΟΓΙΟ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ο ανάστροφος πίνακας του [ j ] σημειώνεται με [ j ] (δηλαδή οι γραμμές γίνονται στήλες αντίστροφα Ιδιότητες: ( ( B B ( R ( B B Ο αντίστροφος ενός τετραγωνικού πίνακα [ j ]
Διαβάστε περισσότερα5.9 ΘΕΤΙΚΑ ΟΡΙΣΜΕΝΟΙ ΠΙΝΑΚΕΣ ΚΑΙ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ
ΠΙΝΑΚΕΣ ΚΑΙ ΓΡΑΜΜΙΚΟΙ ΤΕΛΕΣΤΕΣ Α Β Δ J 1 =A+Γ και J 3 = Β Γ Ε Δ Ε Ζ d + c x + a + b y ac+ bd x y = R A έχουμε: 1 1 1 1 Για την εξίσωση ( ) ( ) ( ) ( ) A, B,, 0, E 0, Z A = c + d = ac+ bd Γ= a + b Δ= =
Διαβάστε περισσότερα5.1 Ιδιοτιµές και Ιδιοδιανύσµατα
Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ech and Math wwwtechandmathgr ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Νοεµβρίου 006 Ηµεροµηνία Παράδοσης της
Διαβάστε περισσότεραΚανονικ ες ταλαντ ωσεις
Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια
Διαβάστε περισσότεραΓραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ορθοκανονικοποίηση, Ορίζουσες, Ιδιοτιμές και Ιδιοδιανύσματα Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής
Διαβάστε περισσότερα1.i) 1.ii) v 2. v 1 = (2) (1) + ( 2) ( 1) + (-2) (2) + (0) (-4) v 3. Βρίσκουµε πρώτα µία ορθογώνια βάση: u 1. . u 1 u. u 2
http://elearn.maths.gr/, maths@maths.gr, Τηλ: 979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 7-8: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.5) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/07 Διδάσκων: Ι. Λυχναρόπουλος Προσδιορίστε το c R ώστε το διάνυσμα (,, 6 ) να ανήκει στο
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες
Διαβάστε περισσότερα4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { }
http://elearn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση
Διαβάστε περισσότεραΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση
ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση. Ο πίνακας Μ μπορεί να ληφθεί χωρίς καμμία έλλειψη γενικότητας ως
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)
Διαβάστε περισσότεραΓραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης
Γραµµικη Αλγεβρα Ι Ακαδηµαϊκο Ετος 2011-2012 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml 21-2 - 2012
Διαβάστε περισσότεραΓραµµική Αλγεβρα. Ενότητα 7 : Γραµµικοί Μετασχηµατισµοί. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 7 : Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως
Διαβάστε περισσότεραΠεριεχόμενα. Πρόλογος 3
Πρόλογος Η χρησιμότητα της Γραμμικής Άλγεβρας είναι σχεδόν αυταπόδεικτη. Αρκεί μια ματιά στο πρόγραμμα σπουδών, σχεδόν κάθε πανεπιστημιακού τμήματος θετικών επιστημών, για να διαπιστώσει κανείς την παρουσία
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 9/6/08 Διδάσκων: Ι. Λυχναρόπουλος Έστω A= k και w = 3 0. Να βρεθεί η τιμή του k για την οποία
Διαβάστε περισσότεραιακριτά Αντίστροφα Προβλήµατα
Πανεπιστήµιο Κρήτης Τµήµα Μαθηµατικών ιακριτά Αντίστροφα Προβλήµατα Σηµειώσεις του Μαθήµατος βασισµένες κυρίως στο Βιβλίο : Geophyscal Data Analyss : Dscrete Inverse heory του Wllam Menke Μιχάλης Ταρουδάκης
Διαβάστε περισσότεραΚεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα
Σελίδα από 5 Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα 9. Ορισµοί... 9. Ιδιότητες...7 9. Θεώρηµα Cayley-Hamilto...4 9.. Εφαρµογές του Θεωρήµατος Cayley-Hamilto...6 9.4 Ελάχιστο Πολυώνυµο...5 Ασκήσεις του
Διαβάστε περισσότεραΧαρακτηριστική Εξίσωση Πίνακα
Έστω ο n nτετραγωνικός πίνακας A της μορφής a L a M O M an L a όπου aij, i n, j n πραγματικές σταθερές Ονομάζουμε χαρακτηριστική εξίσωση του πίνακα A την εξίσωση A λi, όπου I ο n n μοναδιαίος πίνακας και
Διαβάστε περισσότεραΓραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΟρίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε
Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος =, όπου ~ N ( 0, και όλα τα μεταξύ τους ανεξάρτητα Τότε = (,, = ( 0, ( 0, f x f
Διαβάστε περισσότεραΔιανύσµατα στο επίπεδο
Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή
Διαβάστε περισσότεραΕπιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη)
Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη) Ασχολoύνται με την κατασκευή μαθηματικών μοντέλων και με τεχνικές ποσοτικής ανάλυσης και τη χρήση υπολογιστών για την ανάλυση και την επίλυση επιστημονικών
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση
Διαβάστε περισσότεραΠροσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών
Μηχανική ΙΙ Τµήµα Ιωάννου-Αποστολάτου 6 Μαϊου 2001 Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών Θεωρούµε ότι 6 ίσες µάζες συνδέονται µε ταυτόσηµα
Διαβάστε περισσότεραΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,
ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση
Διαβάστε περισσότεραΑσκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις
Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου
Διαβάστε περισσότεραΓραµµική Αλγεβρα. Ενότητα 4 : Ορθογωνιότητα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 4 : Ορθογωνιότητα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ = U1SV 1 V 2 A = [U1 U2] S = diag(σ 1,...,σ r ) R r r. και σ 1 σ r > 0. Ειδικότερα,
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ε Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 22/5/2012 ιάσπαση SVD ιάσπαση SVD Θεώρηµα Εστω το µητρώο A R m n τάξης
Διαβάστε περισσότερα= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις
1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'
Διαβάστε περισσότεραΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών
Διαβάστε περισσότεραΓραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΕΡΓΑΣΙΑ 6 - ΛΥΣΕΙΣ Άσκηση. (6 µον.) Ελέγξτε ποια από τα επόµενα σύνολα είναι διανυσµατικοί χώροι
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)
Διαβάστε περισσότεραΈντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότεραΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ
1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού
Διαβάστε περισσότερα============================================================== Σχηµατίζουµε τον πίνακα µε στήλες τα διανύσµατα v1,v2,v3,u1,u2:
http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ -: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Τα κάτωθι προβλήµατα προέρχονται από τα κεφάλαια, και του συγγράµµατος «Γραµµική Άλγεβρα». Η ηµεροµηνία παράδοσης
Διαβάστε περισσότεραΤαξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.
Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και
Διαβάστε περισσότεραΣτοχαστικά Σήματα και Τηλεπικοινωνιές
Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 2: Ανασκόπηση Στοιχείων Γραμμικής Άλγεβρας Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση/υπενθύμιση
Διαβάστε περισσότεραΠΛΗ 12 - Ιδιοτιμές και ιδιοδιανύσματα
5 Ιδιοτιμές και ιδιοδιανύσματα Χαρακτηριστικό πολυώνυμο Έστω ο πίνακας Α: Αν από τα στοιχεία της κυρίας διαγωνίου α,α αφαιρέσουμε τον αριθμό λ, τότε προκύπτει ο πίνακας: του οποίου η ορίζουσα είναι η εξής:
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από
Διαβάστε περισσότερα