Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου"

Transcript

1 ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες Παρασκευόπουλος [5]: Εφαρµογές, Κεφάλαιο 3 DiSefano [995]: Chapers 3 & 6 Tewari [5]: Chaper : Secions. -.,.6-.7

2 ΚΕΣ : Αυτόµατος Έλεγχος Εισαγωγή Με τον όρο περιγραφή ενός Σ.Α.Ε εννοούµε, γενικά, µια µαθηµατική σχέση που συνδέει φυσικές ποσότητες και στοιχεία ενός συστήµατος. Η µαθηµατική αυτή σχέση συνθέτει το µαθηµατικό µοντέλο ή πρότυπο του συστήµατος Μαθηµατικό µοντέλο ενός συστήµατος είναι µια µαθηµατική έκφραση που συσχετίζει την είσοδο, το σύστηµα και την έξοδο µε τέτοιο τρόπο ώστε να µας δίνει τη δυνατότητα υπολογισµού της εξόδου του συστήµατος κάτω από οποιαδήποτε διέγερση Από τα παραπάνω προκύπτει ότι το µαθηµατικό µοντέλο δεν είναι µια οποιαδήποτε σχέση αλλά εκείνη η σχέση που µας δίνει τη δυνατότητα ανάλυσης του συστήµατος, δηλαδή του προσδιορισµού της απόκρισης του για οποιαδήποτε διέγερση Ο προσδιορισµός του µαθηµατικού µοντέλου µπορεί να αφορά τη(ν): Κατάστρωση των εξισώσεων του συστήµατος, δηλαδή µε γνωστό το σύστηµα (φυσικά στοιχεία που το απαρτίζουν) χρησιµοποιούµε τις επιµέρους µοντελοποιήσεις των στοιχείων για τη δηµιουργία του συνολικού µοντέλου του συστήµατος. Παράδειγµα: Ένα ηλεκτρικό ή ηλεκτρονικό κύκλωµα Αναγνώριση συστήµατος, δηλαδή το σύστηµα είναι άγνωστο (µαύρο κουτί) ή αποτελείται από πολλά φυσικά στοιχεία ώστε να καταστρωθούν οι εξισώσεις περιγραφής του (π.χ το σύστηµα αεροσκάφος) ΚΕΣ : Αυτόµατος Έλεγχος Αναγνώριση συστήµατος Το επόµενο σχήµα περιγράφει µια συνηθισµένη διάταξη που χρησιµοποιείται για την αναγνώριση συστηµάτων και τη δηµιουργία προσοµοιωτών (simulaor Τόσο το σύστηµα όσο και το µαθηµατικό µοντέλο διεγείρονται από την ίδια διέγερση και σχηµατίζεται η διαφορά e( των δύο αποκρίσεων y ( και y ( Το µαθηµατικό µοντέλο τροποποιείται διαρκώς µέχρι η ποσότητα J να ελαχιστοποιηθεί e ( d

3 ΚΕΣ : Αυτόµατος Έλεγχος Έχουν προταθεί διάφορα είδη µαθηµατικών µοντέλων για την περιγραφή Σ.Α.Ε. Κάθε είδος έχει τα πλεονεκτήµατα και µειονεκτήµατα του. Τα τέσσερα πιο δηµοφιλή είναι: Ολοκληρωδιαφορικές εξισώσεις (Ο..Ε) υνατότητα περιγραφής κάθε είδους συστήµατος (γραµµικό ή µη, χρονικά αναλλοίωτο ή µη κλπ.) υσκολία ανάλυσης λόγω της δυσκολίας επίλυσης των διαφορικών εξισώσεων Συναρτήσεις µεταφοράς Εφαρµόζεται σε ΓΧΑ συστήµατα χωρίς αρχικές συνθήκες. Ευκολία ανάλυσης (αλγεβρικές εξισώσεις) -Κλασική µεθοδολογία ανάλυσης Σ.Α.Ε Πόλοι-µηδενικά Εφαρµόζεται σε ΓΧΑ συστήµατα Κατάλληλη µεθοδολογία για απλοποίηση µαθηµατικών µοντέλων συστηµάτων Κλασική µεθοδολογία ανάλυσης Σ.Α.Ε Εξισώσεις κατάστασης Είδη Μαθηµατικών Μοντέλων υνατότητα περιγραφής κάθε είδους συστήµατος υνατότητα περιγραφής Σ.Α.Ε πολλών εισόδων πολλών εξόδων Ευκολία προγραµµατισµού σε Η/Υ Σύγχρονη µεθοδολογία ανάλυσης ΚΕΣ : Αυτόµατος Έλεγχος Ολοκληρωδιαφορικές Εξισώσεις Οι ολοκληρωδιαφορικές (Ο..Ε) είναι γραµµικά ανεξάρτητες εξισώσεις που περιέχουν παραγώγους (η/και διαφορικά) και ολοκληρώµατα: υνατότητα περιγραφής κάθε είδους συστήµατος (γραµµικό ή µη, χρονικά αναλλοίωτο ή µη κλπ.) Οι γραµµικές εξισώσεις καταστρώνονται µε τη βοήθεια κάποιων φυσικών νόµων (π.χ Νόµοι Kirchoff για ηλεκτρικά κυκλώµατα, νόµος δυνάµεων D Alamber για µηχανικά συστήµατα κλπ) Οι γραµµικές διαφορικές εξισώσεις έχουν τη µορφή: n i i i d y( a i d m b j j j d d j 3

4 ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα Το ηλεκτρικό κύκλωµα του σχήµατος περιγράφεται από την Ο..Ε: Η κατάστρωση της εξίσωσης προέκυψε από εφαρµογή του νόµου τάσεων του Kirchoff και τα απλά µοντέλα di( L + i( ) d + Ri v( d C τ τ για τον αντιστάτη, V R (i R (*R πηνίο, dil( VL( L d πυκνωτή VC ( ic ( τ ) dτ C ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα (II) Να καταστρωθούν οι Ο..Ε για ηλεκτρικό κύκλωµα του σχήµατος: C Η κατάστρωση των εξισώσεων προέκυψε από εφαρµογή του νόµου τάσεων του Kirchoff στους δύο βρόχους. Ri ( + i( ) d i( ) d v( C τ τ C τ τ di ( i ( τ ) dτ + Ri ( + L + i( τ ) dτ d C 4

5 ΚΕΣ : Αυτόµατος Έλεγχος Συναρτήσεις Μεταφοράς Η συνάρτηση µεταφοράς Η( είναι µια µαθηµατική σχέση στο πεδίο της µιγαδικής συχνότητας. Ισχύει για Γ.Χ.Α µε µηδενικές αρχικές συνθήκες. Η συνάρτηση µεταφοράς ενός Γ.Χ.Α ορίζεται ως λόγος του µετασχηµατισµού Laplace της εξόδου y( προς τον µετασχηµατισµό Laplace της εισόδου. [ y( ] Y ( [ ( ] U( L H ( L u Η συνάρτηση µεταφοράς έχει τη γενική µορφή του λόγου δύο πολυωνύµων m m b( bms + bm s bs + b H ( n n a( s + an s as + a Ισοδύναµη περιγραφή µε τη συνάρτηση µεταφοράς παρέχει η κρουστική απόκριση h( µόνο που η περιγραφή µέσω της κρουστικής απόκρισης είναι στο πεδίο του χρόνου H κρουστική απόκριση ενός Γ.Χ.Α µε µηδενικές αρχικές συνθήκες είναι η έξοδος του συστήµατος όταν η είσοδος είναι η κρουστική συνάρτηση δ(. Ισχύει h( L H ( [ ] ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα Το ηλεκτρικό κύκλωµα του σχήµατος περιγράφεται από την Ο..Ε: Η κατάστρωση της εξίσωσης προέκυψε από εφαρµογή του νόµου τάσεων του Kirchoff και τα απλά µοντέλα di( L + i( ) d + Ri v( d C τ τ για τον αντιστάτη, V R (i R (*R πηνίο, dil( VL( L d πυκνωτή VC ( ic ( τ ) dτ C 5

6 ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα (II) Να ευρεθεί η συνάρτηση µεταφοράς για ηλεκτρικό κύκλωµα του σχήµατος (έξοδος το ρεύµα στο πηνίο): Η κατάστρωση των εξισώσεων προέκυψε από εφαρµογή του νόµου τάσεων του Kirchoff στους δύο βρόχους χρησιµοποιώντας τα µοντέλα στο πεδίο της µιγαδικής συχνότητας. R I( + I( I ( V ( I ( + RI ( + LsI ( + I ( Cs Cs Cs Cs I( H ( V ( R LCs + ( R R C + L) s + R + R ΚΕΣ : Αυτόµατος Έλεγχος Πόλοι - Μηδενικά Όπως έχει ήδη αναφερθεί η συνάρτηση µεταφοράς H( ενός συστήµατος έχει τη γενική µορφή του λόγου δύο πολυωνύµων m m b( bms + bm s bs + b H ( n n a( s + an s as + a Οι ρίζες του -p i πολυωνύµου a( ονοµάζονται πόλοι του συστήµατος και οι ρίζες του -z i πολυωνύµου b( ονοµάζονται µηδενικά του συστήµατος. Η θέση των πόλων του συστήµατος µας δίνουν πολύ σηµαντικές πληροφορίες για το σύστηµα (π.χ για την ευστάθεια του) Εκφράζοντας τη συνάρτηση µεταφοράς µε τη µορφή γινοµένου πόλων µηδενικών µπορούµε να έχουµε εικόνα αλληλο-εξουδετέρωσης πόλων m µηδενικών. ( s + z i) m m bms + bm s bs + b i H ( K n n n s + an s as + a ( s + p ) i Με αυτό τον τρόπο µπορούµε να προσεγγίσουµε το σύστηµα µε ένα µαθηµατικό µοντέλο µικρότερης τάξης i 6

7 ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα Το ηλεκτρικό κύκλωµα του σχήµατος περιγράφεται από την συνάρτηση µεταφοράς (έξοδος θεωρείται η τάση στα άκρα του πυκνωτή): VC ( H ( V ( LCs + RCs + Αν οι τιµές των στοιχείων είναι: RΩ, CnF, LmH, να βρεθεί το µαθηµατικό µοντέλο του συστήµατος στη µορφή πόλων µηδενικών. ΑΠ. VC ( H ( V ( 9 5 s + s ( s + (.5 + j3.5) )( s + (.5 j3.5) ) 9 Magniude - - ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα (συν.) Η απόκριση συχνότητας του προηγούµενου κυκλώµατος φαίνεται στο διπλανό σχήµα Frequency (rad/ Phase (degree Frequency (rad/ 7

8 ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα (συν.) Sep Response Η βηµατική απόκριση του προηγούµενου κυκλώµατος φαίνεται στο διπλανό σχήµα. Ampliude Time (sec).8. x Impulse Response x 3 ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα (συν.) Η κρουστική απόκριση του προηγούµενου κυκλώµατος φαίνεται στο διπλανό σχήµα Ampliude Time (sec).8. x -3 8

9 ΚΕΣ : Αυτόµατος Έλεγχος Εξισώσεις Κατάστασης Οι εξισώσεις κατάστασης είναι µια περιγραφή στο πεδίο του χρόνου ηοποία µπορεί να χρησιµοποιηθεί για µια µεγάλη γκάµα συστηµάτων όπως γραµµικά, µη γραµµικά, χρονικά αναλλοίωτα ή µη, µε ή χωρίς αρχικές συνθήκες Κατάσταση ονοµάζουµε ένα σύνολο εσωτερικών µεταβλητών του συστήµατος η παρακολούθηση των οποίων στον χρόνο µας δίνει περιγράφει το σύστηµα. Ορισµός: Οι µεταβλητές κατάστασης x (, x (,, x n ( ενός συστήµατος ορίζονται ως ένας (ελάχιστος) αριθµός µεταβλητών τέτοιων ώστε αν γνωρίζουµε τις τιµές τους για οποιαδήποτε χρονική στιγµή, τη συνάρτηση εισόδου που εφαρµόζεται στο σύστηµα για, και το µαθηµατικό νόµο που συνδέει την είσοδο, τις µεταβλητές κατάστασης και το σύστηµα, να καθίσταται δυνατός ο προσδιορισµός της κατάστασης του συστήµατος για οποιαδήποτε χρονική στιγµή. ΚΕΣ : Αυτόµατος Έλεγχος Εξισώσεις Κατάστασης (ΙΙ) Έστω το σύστηµα πολλών εισόδων πολλών εξόδων του σχήµατος. Μπορούµε να εκφράσουµε τις m εισόδους, p εξόδους και n µεταβλητές κατάστασης ως διανύσµατα: y( u ( y ( um( ) y( y p ( x ( x( x( xn( ) ) ) Οι εξισώσεις κατάστασης ενός συστήµατος είναι ένα σύστηµα n διαφορικών εξισώσεων πρώτης τάξης που συνδέει το διάνυσµα εισόδου µε το διάνυσµα κατάστασης x( και έχει τη µορφή: x &( f x(, [ ] όπου f είναι µια στήλη µε n στοιχεία. Η συνάρτηση f είναι γενικά µια πεπλεγµένη µη γραµµική συνάρτηση των x( και Το διάνυσµα εξόδου y( συνδέεται µε τα διανύσµατα εισόδου και κατάστασης x( µε την εξίσωση εξόδου: [ x(, )] y ( g 9

10 ΚΕΣ : Αυτόµατος Έλεγχος Εξισώσεις Κατάστασης (ΙΙΙ) όπου g είναι µια στήλη µε p στοιχεία. Η συνάρτηση g είναι γενικά µια πεπλεγµένη µη γραµµική συνάρτηση των x( και Οι αρχικές συνθήκες των εξισώσεων κατάστασης είναι οι τιµές του διανύσµατος κατάστασης x( για ( ισούται συνήθως µε ) και συµβολίζονται ως εξής: x( ) x( ) x( ) x xn( ) Οι εξισώσεις κατάστασης, η εξίσωση εισόδου και οι αρχικές συνθήκες συνθέτουν την περιγραφή ενός δυναµικού συστήµατος στο χώρο κατάστασης: [ x(, )] [ x(, )] x &( f y ( g x ( x ) ΚΕΣ : Αυτόµατος Έλεγχος Περιγραφή γραµµικών συστηµάτων µε εξισώσεις κατάστασης Αν ένα γραµµικό µη χρονικά µεταβαλλόµενο σύστηµα µπορεί να περιγραφεί από ένα σύστηµα συνήθων διαφορικών εξισώσεων, τότε οι εξισώσεις κατάστασης παίρνουν την ειδική µορφή: x &( Ax( + B y ( Cx( + D x ( ) x Ο πίνακας Α έχει διαστάσεις nxn και ονοµάζεται πίνακας του συστήµατος, ο πίνακας Β έχει διαστάσεις nxm και ονοµάζεται πίνακας εισόδου, ο πίνακας C έχει διαστάσεις pxn και ονοµάζεται πίνακας εξόδου, ο πίνακας D έχει διαστάσεις pxm και ονοµάζεται απευθείας πίνακας. a a... an b b... b m c c... cn d d... dm a a... an A b b... bm B c c... cn C d d... dm D : : : : : : : : : : : : an an... ann bn bn... bnm c p c p... c pn d p d p... d pm

11 ΚΕΣ : Αυτόµατος Έλεγχος Περιγραφή γραµµικών συστηµάτων χρονικά µεταβαλλόµενων Αν ένα γραµµικό χρονικά µεταβαλλόµενο σύστηµα µπορεί να περιγραφεί από ένα σύστηµα συνήθων διαφορικών εξισώσεων, τότε οι εξισώσεις κατάστασης παίρνουν τη µορφή: x &( A( x( + B( y ( C( x( + D( x ( x ) R x& ( x ( L LC L + v( x& ( x( y( [ R ] x ( x( ΚΕΣ : Αυτόµατος Έλεγχος Παράδειγµα Το ηλεκτρικό κύκλωµα του σχήµατος περιγράφεται από την Ο..Ε (έξοδος η τάση στα άκρα της αντίστασης): x () il() i x() x() CVc () CV di( L + i( ) d + Ri v( d C τ τ Θεωρώντας ως µεταβλητές κατάστασης το ρεύµα στο πηνίο, x (i L ( τo φορτίο του πυκνωτή x ( i C ( τ ) dτ τότε ισχύει x& ( ic ( il( x ( L x& ( + x( + Rx( v( C

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 1: ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα

Διαβάστε περισσότερα

2012 : (307) : , 29 2012 : 11.00 13.30

2012  : (307) : , 29 2012 : 11.00 13.30 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρµοσµένη Ηλεκτρολογία

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Χώρος Κατάστασης Παραστάσεις στο Πεδίο του

Διαβάστε περισσότερα

Εξισώσεις ικτύων. t t 0, τότε µπορούµε να προσδιορίσουµε τις αποκρίσεις του για κάθε t t 0.

Εξισώσεις ικτύων. t t 0, τότε µπορούµε να προσδιορίσουµε τις αποκρίσεις του για κάθε t t 0. ΣΤΟΙΧΕΙΑ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΕΞΙΣΩΣΕΙΣ.3 ΣΤΟΙΧΕΙΑ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΕΞΙΣΩΣΕΙΣ Τα ηλεκτρικά στοιχεία είναι εξιδανικευµένα µοντέλα των φυσικών διατάξεων, παθητικών ή ενεργών, που καθορίζονται µέσω των αντίστοιχων

Διαβάστε περισσότερα

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια 6 Nicol Tptouli Ευστάθεια και θέση πόλων Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

Τυπική µορφή συστήµατος 2 ας τάξης

Τυπική µορφή συστήµατος 2 ας τάξης Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτν Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode 6 Ncolas Tsaatsouls Εισαγγή ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

5. Αυτεπαγωγή-Χωρητικότητα Inductance Capacitance

5. Αυτεπαγωγή-Χωρητικότητα Inductance Capacitance 5. Αυτεπαγγή-Χρητικότητα nucance Capaciance Εδώ εισάγουµε τα δύο τελευταία στοιχεία κυκλµάτν, τα πηνία και τους πυκντές. Οι τεχνικές ανάλυσης κυκλµάτν που εισήχθικαν νρίτερα ακόµα ισχύουν εδώ. Ένα πηνίο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ ΙΙ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΝΟΤΗΤΑ ΙΙ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΝΟΤΗΤΑ ΙΙ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ 0 Ηλεκτρικά κυκλώµατα Ηλεκτρικό κύκλωµα ονοµάζουµε ένα σύνολο στοιχείων που συνδέονται κατάλληλα έτσι ώστε να επιτελέσουν ένα συγκεκριµένο σκοπό. Για παράδειγµα το παρακάτω

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης Δυναμική Μηχανών I 9 1 Σύνοψη Εξεταστέας Ύλης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Ύλη Δυναμικής Μηχανών

Διαβάστε περισσότερα

Το εξεταστικό δοκίµιο µαζί µε το τυπολόγιο αποτελείται από εννιά (9) σελίδες. Τα µέρη του εξεταστικού δοκιµίου είναι τρία (Α, Β και Γ ).

Το εξεταστικό δοκίµιο µαζί µε το τυπολόγιο αποτελείται από εννιά (9) σελίδες. Τα µέρη του εξεταστικού δοκιµίου είναι τρία (Α, Β και Γ ). ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (ΙI) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΕΦΑΡΜΟΣΜΕΝΗ ΗΛΕΚΤΡΟΛΟΓΙΑ

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (hhp://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγή στο Χώρο

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 7 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Επανάληψη 1 ου μέρους μαθήματος: Μοντελοποίηση & Κατάστρωση Δυναμικών Εξισώσεων Εισαγωγή 2 ου μέρους μαθήματος:

Διαβάστε περισσότερα

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V Θέµατα εξετάσεων Θ. Κυκλωµάτων & Σηµάτων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί στις εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Μέρος Α Ωμικά Κυκλώματα (Διαλέξεις 6) Δρ. Σταύρος Ιεζεκιήλ ezekel@ucy.ac.cy Green Park, Γραφείο Τηλ. 899 Διάλεξη 7 Εισαγωγή στη μεταβατική ανάλυση Βασικά στοιχεία κυκλωμάτων

Διαβάστε περισσότερα

αυτ = dt dt = dt dt C dt C Ε = = = L du du du du + = = dt dt dt dt

αυτ = dt dt = dt dt C dt C Ε = = = L du du du du + = = dt dt dt dt ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΤΥΠΟΛΟΓΙΟ Q=CV U E =1/2 2 /C U B =1/2Li 2 E 0 =1/2Q 2 /C=1/2LI 2 E 0 =1/2 2 /C+1/2Li 2 T=2π LC =Q συνωt i=-i ημωt ω=1/ LC E di L αυτ = ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ d Φορτίου: i = Τάσης: Ρεύματος:

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Περιγραφή και Ανάλυση Συστημάτων Ελέγχου στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΡΜΟΣΜΕΝΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΚΑΤΕΥΘΥΝΣΗ : «ΕΦΑΡΜΟΣΜΕΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΑ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τίτλος Μαθήματος Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ

ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ 5. ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΛΟΓΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Στα προηγούμενα κεφάλαια παρουσιάσαμε την έννοια της συνάρτησης συστήματος για αναλογικά

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: 401 Πράσινο Άλσος Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Ηλ. Ταχ.: : gmitsis@ucy.ac.cy Ιωάννης Τζιώρτζης

Διαβάστε περισσότερα

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ .0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,

Διαβάστε περισσότερα

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος;

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Για να εξετάσουµε το κύκλωµα LC µε διδακτική συνέπεια νοµίζω ότι θα πρέπει να τηρήσουµε τους ορισµούς που δώσαµε στα παιδιά στη Β Λυκείου. Ας ξεκινήσουµε

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ

ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Εργαστηριακές Ασκήσεις με χρήση του λογισμικού Matlab ΣΚΟΠΟΣ: Σκοπός των εργαστηριακών ασκήσεων είναι η πλήρης μελέτη ενός συστήματος αυτομάτου ελέγχου. Για το λόγο αυτό, στη

Διαβάστε περισσότερα

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή

Διαβάστε περισσότερα

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: 1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Συστήματα Ελέγχου Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

Η ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ Αcos(ωt + φ) ΚΑΙ Η ΦΑΣΟΡΙΚΗ ΤΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ

Η ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ Αcos(ωt + φ) ΚΑΙ Η ΦΑΣΟΡΙΚΗ ΤΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ Η ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ Αco(ωt + φ) ΚΑΙ Η ΦΑΣΟΡΙΚΗ ΤΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ Η ημιτονοειδής συνάρτηση δίνεται από τον τύπο f(t) = Αco(ωt + φ) όπου Α είναι το πλάτος, φ είναι η φάση και ω είναι η γωνιακή συχνότητα.

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

Στοιχεία R, L, C στο AC

Στοιχεία R, L, C στο AC Στοιχεία R, L, C στο AC Εμπέδηση (περιγραφή, υπολογισμός για κάθε στοιχείο) Νόμος OHM στο AC Στόχοι μαθήματος Προηγούμενο Εύρεση phasors αρμονικών συναρτήσεων Πράξεις (Πρόσθεση/αφαίρεση κλπ) ημιτονοειδών

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3) Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 22 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

1. Μεταβατικά φαινόμενα Κύκλωμα RC

1. Μεταβατικά φαινόμενα Κύκλωμα RC . Μεταβατικά φαινόμενα.. Κύκλωμα RC Το κύκλωμα του Σχήματος είναι το απλούστερο κύκλωμα Α τάξης και αποτελείται από μια πηγή συνεχούς τάσης, που είναι η διέγερσή του, εν σειρά με μια αντίσταση και έναν

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

dv C Στον πυκνωτή η ένταση προηγείται της τάσης ενώ στο πηνίο η ένταση υστερεί της τάσης.

dv C Στον πυκνωτή η ένταση προηγείται της τάσης ενώ στο πηνίο η ένταση υστερεί της τάσης. Ανακεφαλαίωση: Οι εξισώσεις τάσης και έντασης για τον πυκνωτή είναι dv V = I d I =, d για το πηνίο οι σχετικές εξισώσεις είναι di V = I = V d d Και για την ωµική αντίσταση V = I Στα ac κυκλώµατα που ηλεκτροδοτούνται

Διαβάστε περισσότερα

Κανονική Εξέταση στο Mάθημα: "ΘΕΩΡΙΑ ΔΙΚΤΥΩΝ" (5 ο εξάμηνο) ΟΜΑΔΑ A ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΚΑΛΗ ΕΠΙΤΥΧΙΑ

Κανονική Εξέταση στο Mάθημα: ΘΕΩΡΙΑ ΔΙΚΤΥΩΝ (5 ο εξάμηνο) ΟΜΑΔΑ A ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΚΑΛΗ ΕΠΙΤΥΧΙΑ Κανονική Εξέταση στο Mάθημα: "ΘΕΩΡΙΑ ΔΙΚΤΥΩΝ" (5 ο εξάμηνο) (Διάρκεια: ώρες) ΟΜΑΔΑ A Ημερομηνία: 5 Μαρτίου ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΘΕΜΑ ο (.5,.) δ Σχήμα R Ι C i R g v R 5 v - r i R 4 v out R δ - v

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία

Διαβάστε περισσότερα

HMY 102 Ανασκόπηση της μεταβατικής ανάλυσης Πρωτοτάξια κυκλώματα (RL και RC)

HMY 102 Ανασκόπηση της μεταβατικής ανάλυσης Πρωτοτάξια κυκλώματα (RL και RC) Ths mag canno currnly b dsplayd. Τρία είναι τα βασικά παθητικά στοιχεία στη θεωρία γραμμικών κυκλωμάτων:, και HMY 12 Ανασκόπηση της μεταβατικής ανάλυσης Πρωτοτάξια κυκλώματα ( και ) απορροφά ενέργεια και

Διαβάστε περισσότερα

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό.

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα

Διαβάστε περισσότερα

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων H Ανάλυση Ηλεκτρικών Κυκλωμάτων Από την προηγούμενη διάλεξη Στην ανάλυση πλεγμάτων, εφαρμόζουμε τον νόμο τάσης του Kirchhoff σε όλα τα πλέγματα του κυκλώματος. Τα ρεύμα σε ένα συγκεκριμένο πλέγμα εκφράζεται

Διαβάστε περισσότερα

ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Μηχανικές & Ηλεκτρικές Ταλαντώσεις ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 3ο: (Ιούλιος 2010 - Ηµερήσιο) Σώµα Σ 1

Διαβάστε περισσότερα

Συνέλιξη Κρουστική απόκριση

Συνέλιξη Κρουστική απόκριση Συνέλιξη Κρουστική απόκριση Το εργαστήριο αυτό ασχολείται με τα «διασημότερα συστήματα στην επεξεργασία σήματος. Αυτά δεν είναι παρά τα γραμμικά χρονικά αμετάβλητα (ΓΧΑ) συστήματα. Ένα τέτοιο σύστημα μπορεί

Διαβάστε περισσότερα

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση Ονοµατεπώνυµο: Αριθµός Μητρώου: Εξάµηνο: Υπογραφή Εργαστήριο Ηλεκτρικών Κυκλωµάτων και Συστηµάτων 1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος σε βηµατική και αρµονική διέγερση Μέρος Α : Απόκριση στο πεδίο

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 5: Θεωρήματα κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΧΩΡΟ ΚΑΤΑΣΤΑΣΗΣ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

N 1 :N 2. i i 1 v 1 L 1 - L 2 -

N 1 :N 2. i i 1 v 1 L 1 - L 2 - ΕΝΟΤΗΤΑ V ΙΣΧΥΣ - ΤΡΙΦΑΣΙΚΑ ΣΥΣΤΗΜΑΤΑ 34 Μετασχηµατιστής Ο µετασχηµατιστής είναι µια διάταξη που αποτελείται από δύο πηνία τυλιγµένα σε έναν κοινό πυρήνα από σιδηροµαγνητικό υλικό. Το πηνίο εισόδου λέγεται

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΚΥΚΛΩΜΑΤΑ Ένα ηλεκτρικό κύκλωμα αποτελείται από ένα σύνολο

Διαβάστε περισσότερα

m e j ω t } ja m sinωt A m cosωt

m e j ω t } ja m sinωt A m cosωt ΕΝΟΤΗΤΑ IV ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 26 Στρεόµενα διανύσµατα Σε κυκλώµατα όπου η διέγερση είναι περιοδική και ηµιτονοειδής οι τάσεις και τα ρεύµατα αναπαρίστανται µε µιγαδικούς αριθµούς, ή όπως συνήθως λέµε

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ

ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Ε. Μ. Πολυτεχνείο Εργαστήριο Ηλεκτρονικής ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Γ. ΠΑΠΑΝΑΝΟΣ ΠΑΡΑΡΤΗΜΑ : Συναρτήσεις Δικτύων Βασικοί ορισμοί Ας θεωρήσουμε ένα γραμμικό, χρονικά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Σκοπός του µαθήµατος Η Συστηµατική Περιγραφή: των Σηµάτων και των Συστηµάτων Τι είναι Σήµα; Ένα πρότυπο µεταβολών µιας ποσότητας που µπορεί να: επεξεργαστεί αποθηκευθεί

Διαβάστε περισσότερα

Ισοδυναµία τοπολογιών βρόχων.

Ισοδυναµία τοπολογιών βρόχων. Ισοδυναµία τοπολογιών βρόχων. Κατά κανόνα, συµφέρει να ανάγουµε τις «πολύπλοκες» τοπολογίες βρόχων σε έναν απλό κλειστό βρόχο, µε µία συνάρτηση µεταφοράς στον κατ ευθείαν κλάδο και µία συνάρτηση µεταφοράς

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Συνάρτηση Μεταφοράς Σ.Δ.Δ. Διακριτοποίηση Συν. Μεταφοράς Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες

Διαβάστε περισσότερα

Ηλεκτροτεχνία 3 ο εξάμηνο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών ΕΜΠ

Ηλεκτροτεχνία 3 ο εξάμηνο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών ΕΜΠ Ηλεκτροτεχνία 3 ο εξάμηνο Σ λή Ν ώ Μ λό Σχολή Ναυπηγών Μηχανολόγων Μηχανικών ΕΜΠ Ενότητες που καλύφθηκαν Σήματα και Συστήματα Ηλεκτρικά μεγέθη Ηλεκτρικά στοιχεία και κυκλώματα Επίλυση ηλεκτρικών κυκλωμάτων

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Εφαρµογές Προσαρµοστικού Ελέγχου στα Σύγχρονα Τηλεπικοινωνιακά Συστήµατα

Εφαρµογές Προσαρµοστικού Ελέγχου στα Σύγχρονα Τηλεπικοινωνιακά Συστήµατα ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΙΟΙΚΗΣΗΣ ιατριβή που υπεβλήθη για την απόκτηση Μεταπτυχιακού ιπλώµατος Ειδίκευσης Θέµα Εφαρµογές Προσαρµοστικού Ελέγχου στα Σύγχρονα Τηλεπικοινωνιακά Συστήµατα

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Σεραφείµ Καραµπογιάς Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος τωνεπιτρεποµένωνεισόδωνκαιεξόδων.

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ψηφιακά Σ.Α.Ε: Περιγραφή στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9ο ΓΕΛ ΠΕΙΡΑΙΑ Διάρκεια 90 min ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ονοµατεπώνυµο: Τµήµα: Γ θετ Ηµεροµηνία: 0//0 Ζήτηµα ο Σώµα Σ µε µάζα m είναι συνδεδεµένο στο ένα άκρο ιδανικού ελατηρίου σταθεράς κ,

Διαβάστε περισσότερα

στη θέση 1. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση 1 στη

στη θέση 1. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση 1 στη ΠΥΚΝΩΤΗΣ ΣΥΝΔΕΔΕΜΕΝΟΣ ΠΑΡΑΛΛΗΛΑ ΜΕ ΠΗΓΗ. Στο διπλανό κύκλωμα η πηγή έχει ΗΕΔ = V και ο διακόπτης είναι αρχικά στη θέση. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση στη θέση και αρχίζουν οι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΙΙΙ

Διαβάστε περισσότερα

Συντονισµός Εξαναγκασµένη Ταλάντωση

Συντονισµός Εξαναγκασµένη Ταλάντωση Συντονισµός Εξαναγκασµένη Ταλάντωση Κατά την εξαναγκασµένη ταλάντωση οι γραφικές παραστάσεις του πλάτους της Μηχανικής ταλάντωσης, καθώς και του πλάτους του φορτίου κατά την ηλεκτρική ταλάντωση φαίνονται

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

1.5 1 Ο νόμος των ρευμάτων του Kirchhoff 11 1.5 2 Ο νόμος των τάσεων του Kirchhoff 12 1.5 3 Το θεώρημα του Tellegen 13

1.5 1 Ο νόμος των ρευμάτων του Kirchhoff 11 1.5 2 Ο νόμος των τάσεων του Kirchhoff 12 1.5 3 Το θεώρημα του Tellegen 13 Μέρος Α 1. Εισαγωγικές Έννοιες 3 1.1 Το αντικείμενο της θεωρίας των ηλεκτρικών κυκλωμάτων 4 1.2 Φυσικά και μαθηματικά μοντέλα 5 1.3 Συγκεντρωμένα και κατανεμημένα κυκλώματα 6 1.4 Ορισμοί Φορές αναφοράς

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Συναρτήσεις Μεταφοράς, Δομικά Διαγράμματα, Διαγράμματα Ροής Σημάτων Aναστασία Βελώνη Τμήμα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α I A. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΤΑΛΑΝΤΩΣΕΙΣ Θέµα ο ) Ενώ ακούµε ένα ραδιοφωνικό σταθµό που εκπέµπει σε συχνότητα 00MHz, θέλουµε να ακούσουµε το σταθµό που εκπέµπει σε 00,4MHz.

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Περιγραφή συστημάτων στο πεδίο της συχνότητας Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 2011 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 2011 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΗΕΚΤΡΟΟΓΙΑ ΤΕΧΝΟΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΟΣ ΤΕΧΝΟΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 011 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ 1. Για τις παρακάτω προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα σε

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, ΦΕΒΡΟΥΑΡΙΟΣ i 1 i 2

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, ΦΕΒΡΟΥΑΡΙΟΣ i 1 i 2 ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, 007008 ΦΕΒΡΟΥΑΡΙΟΣ 008 ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΕ ΑΥΤΟ ΤΟ ΧΡΩΜΑ ΘΕΜΑ. [0%] Για το κύκλωμα δεξιά, ένα λογισμικό ανάλυσης κυκλωμάτων έδωσε τα παρακάτω αποτελέσματα:

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ

ΕΚΠΑΙΔΕΥΤΙΚΟ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΗΛΕΚΤΡΟΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΜΕΤΡΗΣΕΙΣ Χ. ΤΣΩΝΟΣ ΛΑΜΙΑ 2013 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Στοιχεία Δύο Ακροδεκτών Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Δομή Παρουσίασης Εισαγωγή Αντιστάτης Πηγές τάσης και ρεύματος Πυκνωτής

Διαβάστε περισσότερα

Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.)

Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.) ΚΕΣ 01 Αυτόµατος Έλεγχος Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.) Νικόλας Τσαπατσούλης Λέκτορας Π..407/80 Τµήµα Επιστήµη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Βιβλιογραφία

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Απόκριση Συχνότητας. Φώτης Πλέσσας

Ανάλυση Κυκλωμάτων. Απόκριση Συχνότητας. Φώτης Πλέσσας Ανάλυση Κυκλωμάτων Απόκριση Συχνότητας Φώτης Πλέσσας fplessas@inf.uth.gr Εισαγωγή Η συμπεριφορά του κυκλώματος στην ημιτονοειδή μόνιμη κατάσταση ισορροπίας, καθώς μεταβάλλεται η γωνιακή συχνότητα ω, ονομάζεται

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

Κεφάλαιο 26 Συνεχή Ρεύµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 26 Συνεχή Ρεύµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 26 Συνεχή Ρεύµατα Περιεχόµενα Κεφαλαίου 26 Ηλεκτρεγερτική Δύναµη (ΗΕΔ) Αντιστάσεις σε σειρά και Παράλληλες Νόµοι του Kirchhoff Σειριακά και Παράλληλα EMF-Φόρτιση Μπαταρίας Κυκλώµατα RC Μέτρηση

Διαβάστε περισσότερα

5. (Λειτουργικά) Δομικά Διαγράμματα

5. (Λειτουργικά) Δομικά Διαγράμματα 5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες

Διαβάστε περισσότερα