Metrología Cuántica e Información Cuántica de Fisher.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Metrología Cuántica e Información Cuántica de Fisher."

Transcript

1 Metrología Cuántica e Información Cuántica de Fisher. Entrelazamiento y Distinguibilidad en Interferometría Atómica. Diego Alejandro Lancheros Seminario de Óptica Cuántica. Universidad de Los Andes.

2 Table of contents 1. Metrología Cuántica. 2. Criterios de Entrelazamiento, Squeezing y Distinguibilidad de los estados. 3. El Experimento de Oberthaler. 4. Los Estados No-Gaussianos. 1

3 Metrología Cuántica.

4 Cuatro caminos distintos. Figura 1: Cuatro esquemas de estimación de un parámetro ϕ por la evolución unitaria de los estados iniciales. 2

5 El Interferómetro Mach-Zehnder Atómico. 3

6 El Interferómetro Mach-Zehnder Atómico. Figura 2: Esquema físico del Interferómetro Mach - Zehnder atómico mediante la interacción de átomos con luz de longitud de onda corta. 3

7 El Interferómetro en Simetría SU(2). 4

8 El Interferómetro en Simetría SU(2). 4

9 El Interferómetro en Simetría SU(2). [ ai, a j ] [ ] a i, a j = = δ ij [ ] a i, a j = 0 4

10 El Interferómetro en Simetría SU(2). [ ai, a j ] [ ] a i, a j = = δ ij [ ] a i, a j = 0 J x = 1 ( ) a 1 2 a 2 + a 2 a 1 J y = i ( ) a 1 2 a 2 a 2 a 1 J z = 1 ( ) a 1 2 a 1 a 2 a 2 4

11 El Interferómetro en Simetría SU(2). [ ai, a j ] [ ] a i, a j = = δ ij [ ] a i, a j = 0 J x = 1 ( ) a 1 2 a 2 + a 2 a 1 J y = i ( ) a 1 2 a 2 a 2 a 1 J z = 1 ( ) a 1 2 a 1 a 2 a 2 parámetro ϕ Estimador N = 2J z 4

12 El Interferómetro en Simetría SU(2). [ ai, a j ] [ ] a i, a j = = δ ij [ ] a i, a j = 0 Esquema de un estado clásico. J x = 1 ( ) a 1 2 a 2 + a 2 a 1 J y = i ( ) a 1 2 a 2 a 2 a 1 J z = 1 ( ) a 1 2 a 1 a 2 a 2 parámetro ϕ Figura 3: Esquema interferométrico utilizando un estado clásico. Estimador N = 2J z 4

13 El esquema Quantum-Classical. Figura 4: Esquema interferométrico de un estado comprimido (Entrelazado-no clásico), ilustrando el mejoramiento en la sensibilidad de medición de θ. 5

14 Relaciones de Incertidumbre generalizadas. ( ϕ)( H) 1 2 ν 6

15 Relaciones de Incertidumbre generalizadas. ( ϕ)( H) 1 2 ν Estado Separable. 6

16 Relaciones de Incertidumbre generalizadas. ( ϕ)( H) 1 2 ν Estado Separable. Ψ = N ψ i i=1 6

17 Relaciones de Incertidumbre generalizadas. ( ϕ)( H) 1 2 ν Estado Separable. Ψ = H = N ψ i i=1 2 H j j 1/2 6

18 Relaciones de Incertidumbre generalizadas. ( ϕ)( H) 1 2 ν Estado Separable. Ψ = H = ψ i = N ψ i i=1 1/2 2 H j j 1 ( λ M + λ m ) 2 6

19 Relaciones de Incertidumbre generalizadas. ( ϕ)( H) 1 2 ν Estado Separable. Ψ = H = ψ i = N ψ i i=1 1/2 2 H j j 1 ( λ M + λ m ) 2 H j = 1 2 (λ M λ m ) 6

20 Relaciones de Incertidumbre generalizadas. ( ϕ)( H) 1 2 ν Estado Separable. Ψ = H = ψ i = N ψ i i=1 1/2 2 H j j 1 ( λ M + λ m ) 2 H j = 1 2 (λ M λ m ) ϕ 1 νn(λm λ m ) 6

21 Relaciones de Incertidumbre generalizadas. ( ϕ)( H) 1 2 ν Estado Separable. Ψ = H = ψ i = N ψ i i=1 1/2 2 H j j 1 ( λ M + λ m ) 2 Estado Entrelazado. H j = 1 2 (λ M λ m ) ϕ 1 νn(λm λ m ) 6

22 Relaciones de Incertidumbre generalizadas. ( ϕ)( H) 1 2 ν Estado Separable. Ψ = H = ψ i = N ψ i i=1 1/2 2 H j j 1 ( λ M + λ m ) 2 Estado Entrelazado. H λ m = Nλ m λ m H λ M = Nλ M λ M H j = 1 2 (λ M λ m ) ϕ 1 νn(λm λ m ) 6

23 Relaciones de Incertidumbre generalizadas. ( ϕ)( H) 1 2 ν Estado Separable. Ψ = H = ψ i = N ψ i i=1 1/2 2 H j j 1 ( λ M + λ m ) 2 Estado Entrelazado. H λ m = Nλ m λ m H λ M = Nλ M λ M Ψ = 1 ( λ m + λ M ) 2 H j = 1 2 (λ M λ m ) ϕ 1 νn(λm λ m ) 6

24 Relaciones de Incertidumbre generalizadas. ( ϕ)( H) 1 2 ν Estado Separable. Ψ = H = ψ i = N ψ i i=1 1/2 2 H j j 1 ( λ M + λ m ) 2 Estado Entrelazado. H λ m = Nλ m λ m H λ M = Nλ M λ M Ψ = 1 ( λ m + λ M ) 2 H máx = N 2 (λ M λ m ) H j = 1 2 (λ M λ m ) ϕ 1 νn(λm λ m ) 6

25 Relaciones de Incertidumbre generalizadas. ( ϕ)( H) 1 2 ν Estado Separable. Ψ = H = ψ i = N ψ i i=1 1/2 2 H j j 1 ( λ M + λ m ) 2 H j = 1 2 (λ M λ m ) ϕ 1 νn(λm λ m ) Estado Entrelazado. H λ m = Nλ m λ m H λ M = Nλ M λ M Ψ = 1 ( λ m + λ M ) 2 H máx = N 2 (λ M λ m ) ϕ 1 νn (λm λ m ) 6

26 Criterios de Entrelazamiento, Squeezing y Distinguibilidad de los estados.

27 Estimación Cuántica. 7

28 Estimación Cuántica. La Información de Fisher. 7

29 Estimación Cuántica. La Información de Fisher. {P z (θ)} = {P(z θ)} 7

30 Estimación Cuántica. La Información de Fisher. {P z (θ)} = {P(z θ)} P z (θ) = 1 z 7

31 Estimación Cuántica. La Información de Fisher. {P z (θ)} = {P(z θ)} P z (θ) = 1 z Θ = θ 7

32 Estimación Cuántica. La Información de Fisher. θ {P z (θ)} = {P(z θ)} P z (θ) = 1 z Θ = θ P z (θ) = 0 z 7

33 Estimación Cuántica. La Información de Fisher. θ {P z (θ)} = {P(z θ)} P z (θ) = 1 z Θ = θ P z (θ) = 0 z Θ θ = ΘP z (θ) = 1 θ z 7

34 Estimación Cuántica. La Información de Fisher. {P z (θ)} = {P(z θ)} P z (θ) = 1 z Θ = θ z (Θ θ) P z(θ) θ = 1 θ P z (θ) = 0 z Θ θ = ΘP z (θ) = 1 θ z 7

35 Estimación Cuántica. La Información de Fisher. {P z (θ)} = {P(z θ)} P z (θ) = 1 z Θ = θ (Θ θ) P z(θ) = 1 θ z (Θ θ) log [P z(θ)] θ = 1 θ P z (θ) = 0 z Θ θ = ΘP z (θ) = 1 θ z 7

36 Estimación Cuántica. θ La Información de Fisher. {P z (θ)} = {P(z θ)} P z (θ) = 1 z Θ = θ P z (θ) = 0 z Θ θ = ΘP z (θ) = 1 θ z (Θ θ) P z(θ) = 1 θ z (Θ θ) log [P z(θ)] θ fg 2 f 2 g 2 = 1 7

37 Estimación Cuántica. θ La Información de Fisher. {P z (θ)} = {P(z θ)} P z (θ) = 1 z Θ = θ P z (θ) = 0 z Θ θ = ΘP z (θ) = 1 θ z (Θ θ) P z(θ) = 1 θ z (Θ θ) log [P z(θ)] θ = 1 fg 2 f 2 g 2 (Θ θ) 2 1 { } 2 log[pz(θ)] θ 7

38 Estimación Cuántica. θ La Información de Fisher. {P z (θ)} = {P(z θ)} P z (θ) = 1 z Θ = θ P z (θ) = 0 z Θ θ = ΘP z (θ) = 1 θ z (Θ θ) P z(θ) = 1 θ z (Θ θ) log [P z(θ)] θ = 1 fg 2 f 2 g 2 (Θ θ) 2 1 { } 2 log[pz(θ)] F(θ) = z θ { log [Pz (θ)] P z (θ) θ } 2 7

39 Criterio de Entrelazamiento. 8

40 Criterio de Entrelazamiento. Si Ψ es separable ϕ escala como 1/ N 8

41 Criterio de Entrelazamiento. Si Ψ es separable ϕ escala como 1/ N Si ϕ no escala como 1/ N Ψ está entrelazado. 8

42 Criterio de Entrelazamiento. Si Ψ es separable ϕ escala como 1/ N Si ϕ no escala como 1/ N Ψ está entrelazado. 8

43 Criterio de Entrelazamiento. Si Ψ es separable ϕ escala como 1/ N Si ϕ no escala como 1/ N Ψ está entrelazado. ) 2 Si ˆρ inp es puro F Q (ˆρ inp, Ĵ n ) = 4 ( Ĵ n 8

44 Criterio de Entrelazamiento. Si Ψ es separable ϕ escala como 1/ N Si ϕ no escala como 1/ N Ψ está entrelazado. ) 2 Si ˆρ inp es puro F Q (ˆρ inp, Ĵ n ) = 4 ( Ĵ n ˆρ inp = ˆρ 1 ˆρ N 8

45 Criterio de Entrelazamiento. Si Ψ es separable ϕ escala como 1/ N Si ϕ no escala como 1/ N Ψ está entrelazado. ) 2 Si ˆρ inp es puro F Q (ˆρ inp, Ĵ n ) = 4 ( Ĵ n χ 2 N = F Q (ˆρ inp, Ĵ n ) ˆρ inp = ˆρ 1 ˆρ N N ĵ(i) 2 F Q (ˆρ inp ) = N 4 n N i=1 8

46 Criterio de Entrelazamiento. Si Ψ es separable ϕ escala como 1/ N Si ϕ no escala como 1/ N Ψ está entrelazado. ) 2 Si ˆρ inp es puro F Q (ˆρ inp, Ĵ n ) = 4 ( Ĵ n χ 2 = ˆρ inp = ˆρ 1 ˆρ N N ĵ(i) 2 F Q (ˆρ inp ) = N 4 n N { N F Q (ˆρ inp, Ĵ n ) = i=1 8

47 Criterio de Entrelazamiento. Si Ψ es separable ϕ escala como 1/ N Si ϕ no escala como 1/ N Ψ está entrelazado. ) 2 Si ˆρ inp es puro F Q (ˆρ inp, Ĵ n ) = 4 ( Ĵ n χ 2 = ˆρ inp = ˆρ 1 ˆρ N N ĵ(i) 2 F Q (ˆρ inp ) = N 4 n N N F Q (ˆρ inp, Ĵ n ) = i=1 { < 1, el estado está entrelazado. 8

48 Criterio de Entrelazamiento. Si Ψ es separable ϕ escala como 1/ N Si ϕ no escala como 1/ N Ψ está entrelazado. ) 2 Si ˆρ inp es puro F Q (ˆρ inp, Ĵ n ) = 4 ( Ĵ n χ 2 = ˆρ inp = ˆρ 1 ˆρ N N ĵ(i) 2 F Q (ˆρ inp ) = N 4 n N N F Q (ˆρ inp, Ĵ n ) = i=1 { < 1, el estado está entrelazado. 1, 8

49 Criterio de Entrelazamiento. Si Ψ es separable ϕ escala como 1/ N Si ϕ no escala como 1/ N Ψ está entrelazado. ) 2 Si ˆρ inp es puro F Q (ˆρ inp, Ĵ n ) = 4 ( Ĵ n χ 2 = ˆρ inp = ˆρ 1 ˆρ N N ĵ(i) 2 F Q (ˆρ inp ) = N 4 n N N F Q (ˆρ inp, Ĵ n ) = i=1 { < 1, el estado está entrelazado. 1, no podemos afirmar nada. 8

50 Criterio de Compresión. 9

51 Criterio de Compresión. ξ 2 n [ˆρ inp, Ĵ n ] = Ĵ p1 N 2 Ĵ n ĴĴ p2 9

52 Criterio de Compresión. ξ 2 n [ˆρ inp, Ĵ n ] = Ĵ p1 N 2 Ĵ n ĴĴ p2 n = sin(θ) sin(ϕ) e x sin(θ) cos(ϕ) e y + cos(θ) e z p 1 = cos(ϕ) e x + sin(ϕ) e y p 2 = cos(θ) sin(ϕ) e x + cos(θ) cos(ϕ) e y + sin(θ) e z 9

53 Criterio de Compresión. ξ 2 n [ˆρ inp, Ĵ n ] = Ĵ p1 N 2 Ĵ n ĴĴ p2 n = sin(θ) sin(ϕ) e x sin(θ) cos(ϕ) e y + cos(θ) e z p 1 = cos(ϕ) e x + sin(ϕ) e y p 2 = cos(θ) sin(ϕ) e x + cos(θ) cos(ϕ) e y + sin(θ) e z ξ 2 [ˆρ ] ] inp = mín ξ 2 n n [ˆρ inp, Ĵ n [ ] F Q = máx F Q ˆρ inp, Ĵ n n 9

54 Síntesis Estimación de Fase Entrelazamiento 10

55 Síntesis Estimación de Fase F Q [ˆρ inp ] > N Entrelazamiento 10

56 Síntesis Estimación de Fase Entrelazamiento F Q [ˆρ inp ] > N ( ϕ) best < ( ϕ) SN 10

57 Síntesis Estimación de Fase F Q [ˆρ inp ] > N ( ϕ) best < ( ϕ) SN Entrelazamiento F Q [ˆρ inp ] > N 10

58 Síntesis Estimación de Fase F Q [ˆρ inp ] > N ( ϕ) best < ( ϕ) SN Entrelazamiento F Q [ˆρ inp ] > N ˆρ inp ˆρ sep 10

59 Síntesis Estimación de Fase F Q [ˆρ inp ] > N ( ϕ) best < ( ϕ) SN ξ 2 [ˆρ in ] < 1 Entrelazamiento F Q [ˆρ inp ] > N ˆρ inp ˆρ sep 10

60 Síntesis Estimación de Fase F Q [ˆρ inp ] > N ( ϕ) best < ( ϕ) SN ξ 2 [ˆρ in ] < 1 ( ϕ) best < ( ϕ) SN Entrelazamiento F Q [ˆρ inp ] > N ˆρ inp ˆρ sep 10

61 Síntesis Estimación de Fase Entrelazamiento F Q [ˆρ inp ] > N ( ϕ) best < ( ϕ) SN F Q [ˆρ inp ] > N ˆρ inp ˆρ sep ξ 2 [ˆρ in ] < 1 ( ϕ) best < ( ϕ) SN ξ 2 [ˆρ inp ] < 1 10

62 Síntesis Estimación de Fase F Q [ˆρ inp ] > N ( ϕ) best < ( ϕ) SN ξ 2 [ˆρ in ] < 1 ( ϕ) best < ( ϕ) SN Entrelazamiento F Q [ˆρ inp ] > N ˆρ inp ˆρ sep ξ 2 [ˆρ inp ] < 1 ˆρ inp ˆρ sep 10

63 Síntesis Estimación de Fase F Q [ˆρ inp ] > N ( ϕ) best < ( ϕ) SN ξ 2 [ˆρ in ] < 1 ( ϕ) best < ( ϕ) SN Entrelazamiento F Q [ˆρ inp ] > N ˆρ inp ˆρ sep ξ 2 [ˆρ inp ] < 1 ˆρ inp ˆρ sep 10

64 Síntesis Estimación de Fase F Q [ˆρ inp ] > N ( ϕ) best < ( ϕ) SN ξ 2 [ˆρ in ] < 1 ( ϕ) best < ( ϕ) SN Entrelazamiento F Q [ˆρ inp ] > N ˆρ inp ˆρ sep ξ 2 [ˆρ inp ] < 1 ˆρ inp ˆρ sep Existen estados cuánticos que sin ser comprimidos, puedan ser útiles en interferometría? 10

65 El Experimento de Oberthaler.

66 Hamiltoniano de Interacción Atómica Figura 5: Figura esquemática que representa el Hamiltoniano en el interferómetro Mach - Zehnder. En rojo, la dinámica de Rabi, en azul, la de Spin-Squeezing. La esfera de Bloch muestra un punto inestable y dos puntos estables. 11

67 Figura 6: A. Arreglo de condensados de Bose-Einstein en una red óptica. B. Esfera de Bloch generalizada mostrando los estados relevantes de la evlución. C. Imagen de Absorción luego de una separación tipo Stern-Gerlach. D. Histogramas de Imbalance para dos estados comprimidos a diferentes ángulos de rotación finales, comparados con el correspondiente al estado coherente (verde). 12

68 Figura 7: Demostración de la obtención de un estado no comprimido, pero útil en interferometría luego de una evolución de 25 ms. 13

69 Figura 8: Obtención de la Información de Fisher a partir de la distancia de Heilinger d 2 H = 1 2 z [Pz(θ) Pz(0)]2, mediante la relación d 2 H(θ) = (F/8)θ 2 + O(θ 3 ). 14

70 Figura 9: A. La obtención de la sensibilidad θ deducida a partir de la propagación de error no muestra mejora más allá del SQL. B. Se realizó un estudio de análisis bayesiano. La varianza de log(l) corresponde a la sensibilidad. La rápida convergencia al valor de F hallado por la distancia de Heilinger demuestra la coherencia entre los métodos. 15

71 Los Estados No-Gaussianos.

72 Ventajas de los estados no-gaussianos. 16

73 Ventajas de los estados no-gaussianos. Figura 10: Distribuciones de P(µ j, θ, τ) = j, µ e iθĵ y ψ(τ) 2. 16

74 Ventajas de los estados no-gaussianos. Figura 10: Distribuciones de P(µ j, θ, τ) = j, µ e iθĵ y ψ(τ) 2. Figura 11: Elementos de matriz en la base de Fock mostrando que los estados son robustos en un Dephasing Channel. 16

75 Ruido en la Información de Fisher. 17

76 Ruido en la Información de Fisher. Figura 12: Parámetros F Q y 1/ξ 2 en función del tiempo, mostrándose el efecto de Ruido en la detección. 17

77 Ruido en la Información de Fisher. Figura 12: Parámetros F Q y 1/ξ 2 en función del tiempo, mostrándose el efecto de Ruido en la detección. Figura 13: Información cuántica de Fisher sujeta a un Dephasing Channel. 17

78 Referencias Strobel, et al. Fisher Information and Entanglement of non-gaussian spin states. Science vol 345. Junio de Giovannetti et al. Quantum Metrology. Physical Review Letters. Enero de Pezzé L. Smerzi A. Entanglement, Nonlinear Dynamics, and the Heisenberg Limit. Physical Review Letters. Marzo de Ferrini et al. Effect of phase noise on quantum correlations in Bose-Josephson Junctions. Physical Review A 84, (2011). 18