FORMULARIO DE ELASTICIDAD

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "FORMULARIO DE ELASTICIDAD"

Transcript

1 U. D. Resistencia de Mateiales, Elasticidad Plasticidad Depatamento de Mecánica de Medios Continuos Teoía de Estuctuas E.T.S. Ingenieos de Caminos, Canales Puetos Univesidad Politécnica de Madid FORMULARIO DE ELASTICIDAD

2 Fomulaio de Elasticidad Unidad Docente de Resistencia de Mateiales (UPM) ELASTICIDAD TRIDIMENSIONAL. COORDENADAS CARTESIANAS ε Tenso de defomaciones: D ε ε Tenso de tensiones: T En ejes (,, ): T C T T C, D C T D C C mati de cambio de base ente bases otonomales Equilibio inteno (tensiones): + f ij, i j f f f 0 Equilibio inteno (movimientos): Gu + λ + G u + f ( ) jkk, kkj, j 0 e + ( λ + ) + 0 e + ( λ + ) + 0 e + ( λ + ) + 0 G u G f G v G f G w G f Equilibio en el contono: T.n (f, f, f ) T (n, veso nomal al contono) Compatibilidad en defomaciones: ε + ε ε (no sumatoio) ii, jj jj, ii ij, ij ε ε + ε ε + ε ε + ( ) ε ε + ε + ε (no sumatoio) ii, jk jk, i ik, j ij, k ε + + ε + ε +, i Compatibilidad en tensiones (Beltami Mitchell): ν ij + s, ij fi, j f j, i f αα, δij + ν ν s ν + ν ν s ν + ν ν s ν + ν ν s + ν s + ν s + ν

3 Fomulaio de Elasticidad Unidad Docente de Resistencia de Mateiales (UPM) Ecuaciones cinemáticas: ε ij ( ui, j + uj, i ), ω ij ( uj, i ui, j ) u v w ε ε ε ; u v u w v w v u w u w v ω ω ω Ecuaciones constitutivas: ij ν Hooke: εij kkδij G E ε ν ν ε ν ν ε E ν ν G G G Lamé: Gε + λε δ ij ij kk ij E ν ν ν ε ν ν ν ε ( + ν)( ν) ν ν ν ε G G G Paámetos vaios: λ ν E ( + ν )( ν ) ; G E ( + ν ) ; K E 3 s kk + + ; e ε kk ε + ε + ε s λ + G e 3 ; s Ke ( ν ) W f u f v f w dvol Vol f u f v f w da A Tabajo fueas eteioes: ( + + ) + ( + + ) Enegía elástica: U T: D dvol + + ν ( ) ( ) Vol Vol E E G dvol

4 Fomulaio de Elasticidad Unidad Docente de Resistencia de Mateiales (UPM) ELASTICIDAD TRIDIMENSIONAL. COORDENADAS CILÍNDRICAS ε Tenso de defomaciones: D ε ε Tenso de tensiones: T Equilibio inteno (tensiones): f f f 0 Compatibilidad intena (defomaciones): ε ε + 0 ε ε ε 0 u u u u Ecuaciones cinemáticas: ε ε + ε u u u u u u u Ecuaciones constitutivas: ε ν ν Hooke: ε ν ν ε E ν ν G G G E ν ν ν ε Lamé: ν ν ν ε ( + ν)( ν) ν ν ν ε G G G Solución a pati de una función de tensiones: Φ Φ Φ Φ Φ Condición fundamental: Φ 0 Φ ν Φ Φ ν Φ Obtención de tensiones (caso ail-simético): Φ ( ν) Φ Φ ( ν) Φ 3

5 Fomulaio de Elasticidad Unidad Docente de Resistencia de Mateiales (UPM) ELASTICIDAD BIDIMENSIONAL. COORDENADAS CARTESIANAS TENSIÓN PLANA (laja o placa de pequeño espeso) Tenso de defomaciones: D ε 0 ε ε Tenso de tensiones: 0 T Equilibio inteno (tensiones): + + f f 0 f 0 Equilibio inteno (movimientos): e G u + G + f 0 ν e G u + G + f 0 ν ν e ( ε + ε ) ν Compatibilidad en defomaciones: ε ε + Compatibilidad en tensiones: ( + ) ( + ν) + Ecuaciones constitutivas: Hooke: ε ν 0 ε ν 0 E 0 0 ( ν ) + ν ε ( + ) E E ν 0 ε Lamé: ν 0 ε ν ν 0 0 4

6 Fomulaio de Elasticidad Unidad Docente de Resistencia de Mateiales (UPM) ELASTICIDAD BIDIMENSIONAL. COORDENADAS CARTESIANAS DEFORMACIÓN PLANA (baa o tubo de gan longitud) Tenso de defomaciones: D ε 0 ε Tenso de tensiones: 0 T Equilibio inteno (tensiones): + + f f 0 f 0 Equilibio inteno (movimientos): e G u + G + f 0 ν e G u + G + f 0 ν e ε + ε Compatibilidad en defomaciones: ε ε + Compatibilidad en tensiones: ( + ) + ν Ecuaciones constitutivas: Hooke: ε ν ν ν 0 ε + ν ν 0 E 0 0 λe+ Gε Lamé: λe+ Gε ( ) ν + 5

7 Fomulaio de Elasticidad Unidad Docente de Resistencia de Mateiales (UPM) ELASTICIDAD BIDIMENSIONAL. COORDENADAS CARTESIANAS SOLUCIÓN A PARTIR DE UNA FUNCIÓN DE TENSIONES (fueas de masa constantes) 4 Condición fundamental de la función de Ai: Φ 0 Obtención de tensiones: Φ Φ Φ f f Φ Φ Φ LÍNEAS CARACTERÍSTICAS α α α X (, ) α Y Tensiones pincipales:, + ± + Tensión tangencial máima: ma + α cos α + sin α + sin αcosα Tensiones alededo de un punto: sinαcosα + cos α sin α α ( ) ( ) Ángulo de las tensiones pincipales con el eje : i tan ; tani, i, d Líneas isostáticas: ± + d Líneas isoclinas: tan ϕ cte 6

8 Fomulaio de Elasticidad Unidad Docente de Resistencia de Mateiales (UPM) Líneas isobaas:, + ± + cte d Líneas de máima tensión tangencial: ± + d Defomaciones pincipales: ( ) ε, ε + ε ± ε ε + 4 Defomación tangencial máima: ( ) ma ε ε + 4 ε + ε ε ε εα + cos α + sin α Defomaciones alededo de un punto: ε ε sin α cos α α ( ) εi ε Ángulo de las defomaciones pincipales con el eje : tan, tani ε ε ε 7

9 Fomulaio de Elasticidad Unidad Docente de Resistencia de Mateiales (UPM) ELASTICIDAD BIDIMENSIONAL. COORDENADAS POLARES Tenso de defomaciones: ε D ε Tenso de tensiones: T d f 0 Equilibio inteno (tensiones): f 0 Compatibilidad intena (tensiones): ( ) Ecuaciones constitutivas: + 0 Tensión plana: ε ν ε E ν ; G E ν ε ν ν ε ; G ν ε ( + ) E Defomación plana: ε + ν ν ν ε E ν ν ; G E ν ν ε + ν ν ν ν ε ; G ( )( ) ( ) ν + u u u Ecuaciones cinemáticas: ε ε + u u u + Solución a pati de una función de tensiones: Condición fundamental: Φ 0 Obtención de tensiones: Φ Φ + Φ Φ Φ Φ Φ Φ + + 8

10 Fomulaio de Elasticidad Unidad Docente de Resistencia de Mateiales (UPM) TORSIÓN UNIFORME L L M t M t M t SOLUCIÓN EN MOVIMIENTOS (SAINT VENANT) ω Ángulo giado po unidad de longitud: ϑ L Ángulo giado en una sección cualquiea: ω ( ) ϑ u ϑ Movimientos: v ϑ, siendo f(,) la función de alabeo, tal que f 0 w ϑ f (, ) Ecuación constitutiva: M t GJϑ J dd A + + SOLUCIÓN EN TENSIONES (PRANDTL) Solución a pati de una función de tensiones: Φ Condición fundamental (compatibilidad): Φ cte Gϑ 0 s Φ Φ Obtención de tensiones: 0 contono Φ cte contono Equilibio en las secciones etemas: M Φdd Φ Φ Enegía potencial total: V U W 4Gϑ dd G + Φ A t A 9

11 Fomulaio de Elasticidad Unidad Docente de Resistencia de Mateiales (UPM) FÓRMULAS PRÁCTICAS PARA ALGUNAS SECCIONES Cicula de adio R (f(,) 0): M M t t M t ω t M ma πr πr πr L GπR M t Gω Cuadada de lado a: ma M t a 0.08a L Rectangula de lados a b: M M a a ab b b Gω a a L b b t ma 3 t a b + 0

12 Fomulaio de Elasticidad Unidad Docente de Resistencia de Mateiales (UPM) SOLUCIONES A ALGUNOS PROBLEMAS ELÁSTICOS Voladio de caas oblicuas: N cos H sin M sin + α + sin α α sin α sin α αcos α 0 M ( cos cosα ) ( sin α αcos α) Tubo cicula sometido a pesiones adiales: A + C A + C 0 ν + ε ( ) 0 ( ) cte p p p p A C p H p N M α +α Talado cicula en una chapa indefinida: p p p ( ) p p p 4 + ξ ( + 3ξ ) cos p 4 ( 3ξ + ξ ) sin siendo ξ 4 ξ + + 3ξ 4ξ cos p p 0

13 Fomulaio de Elasticidad Unidad Docente de Resistencia de Mateiales (UPM)

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

ε x = du dx ε(x) = ds ds = du(x) dx

ε x = du dx ε(x) = ds ds = du(x) dx Capítulo 8 ECUCIONES DIFERENCIES Cálculo de desplazamientos Dr. Fernando Flores 8.. INTRODUCCIÓN En este capítulo se sistematizan las ecuaciones que gobiernan el comportamiento de vigas. En general se

Διαβάστε περισσότερα

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1

Διαβάστε περισσότερα

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6 # % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν

Διαβάστε περισσότερα

Las Funciones Trigonométricas

Las Funciones Trigonométricas Caítulo 3 Las Funciones Trigonométricas 3.. El círculo trigonométrico Vamos a suoner conocido el sistema cartesiano en lo que se refiere a concetos fundamentales como son los de abscisa y ordenada de un

Διαβάστε περισσότερα

90 LIBERTAS SEGUNDA ÉPOCA. Introducción: La necesidad de una Reforma Institucional

90 LIBERTAS SEGUNDA ÉPOCA. Introducción: La necesidad de una Reforma Institucional 1 3 - - Abstract - - - 90 LIBERTAS SEGUNDA ÉPOCA Introducción: La necesidad de una Reforma Institucional - - - - - - - - - UNA PROPUESTA DE REFORMA MONETARIA PARA ARGENTINA 91 1 políticas establecidas

Διαβάστε περισσότερα

La experiencia de la Mesa contra el Racismo

La experiencia de la Mesa contra el Racismo La experiencia de la Mesa contra el Racismo Informe Di icultad para identi icarse como discriminado Subsistencia de mecanismos individuales para enfrentar el racismo Las propuestas de las organizaciones

Διαβάστε περισσότερα

! # %& # () & +( (!,+!,. / #! (!

! # %& # () & +( (!,+!,. / #! (! ! # %& # () & +( (!,+!,. / #! (! 0 1 12!, ( #& 34!5 6( )+(, 7889 / # 4 & #! # %& , & ( () & :;( 4#! /! # # +! % # #!& ( &6& +!, ( %4,!! ( 4!!! #& /

Διαβάστε περισσότερα

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς 9. 3. 2 0 1 6 A t h e n a e u m I n t e r C o Ο μ ι λ ί α κ υ ρ ί ο υ Τ ά σ ο υ Τ ζ ή κ α, Π ρ ο έ δ ρ ο υ Δ Σ Σ Ε Π Ε σ τ ο ε π ί σ η μ η δ ε ί π ν ο τ ο υ d i g i t a l e c o n o m y f o r u m 2 0 1

Διαβάστε περισσότερα

Métodos Estadísticos en la Ingeniería

Métodos Estadísticos en la Ingeniería Métodos Estadísticos e la Igeiería INTERVALOS DE CONFIANZA Itervalo de cofiaza para la media µ de ua distribució ormal co variaza coocida: X ± z α/ µ = X = X i N µ X... X m.a.s. de X Nµ Itervalo de cofiaza

Διαβάστε περισσότερα

ΥΟ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΑΠΟ ΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

ΥΟ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΑΠΟ ΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΥΟ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΑΠΟ ΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Από την θεωρία της Τριγωνοµετρίας είναι γνωστοί δύο νόµοι: ο νόµος του ηµιτόνων και ο νόµος του συνηµιτόνων, οι οποίοι ισχύουν για τυχαίο τρίγωνο. Έστω ένα τυχαίο

Διαβάστε περισσότερα

TEMA 6.- BIOMOLÉCULAS ORGÁNICAS IV: ÁCIDOS NUCLEICOS

TEMA 6.- BIOMOLÉCULAS ORGÁNICAS IV: ÁCIDOS NUCLEICOS TEMA 6.- BIMLÉCULAS RGÁNICAS IV: ÁCIDS NUCLEICS A.- Características generales de los Ácidos Nucleicos B.- Nucleótidos y derivados nucleotídicos El esqueleto covalente de los ácidos nucleicos: el enlace

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionario Trigonometría ACTIVIDADES INICIALES.I. En una recta r hay tres puntos: A, B y C, que distan, sucesivamente, y cm. Por esos puntos se trazan rectas paralelas que cortan otra, s, en M, N y P.

Διαβάστε περισσότερα

8 ) / 9! # % & ( ) + )! # 2. / / # % 0 &. # 1& / %. 3 % +45 # % ) 6 + : 9 ;< = > +? = < + Α ; Γ Δ ΓΧ Η ; < Β Χ Δ Ε Φ 9 < Ε & : Γ Ι Ι & Χ : < Η Χ ϑ. Γ = Φ = ; Γ Ν Ι Μ Κ Λ Γ< Γ Χ Λ =

Διαβάστε περισσότερα

Η μέθοδος του κινουμένου τριάκμου

Η μέθοδος του κινουμένου τριάκμου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευση Θεωρητικών Μαθηματικών Σ Σταματάκη Η μέθοδος του κινουμένου τριάκμου Σημειώσεις

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

ΤΟ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ

ΤΟ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ 8 Raimon Novell ΤΟ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ Η ΜΑΡΙΑΝΉ ΠΑΙΔΑΓΩΓΙΚΗ ΑΠΑΝΤΗΣΗ ΜΕ ΒΑΣΗ ΤΙΣ ΡΙΖΕΣ ΚΑΙ ΤΗΝ ΠΑΡΑΔΟΣΗ ΤΗΣ ΚΑΙ ΟΙ ΣΥΓΧΡΟΝΕΣ ΠΡΟΚΛΗΣΕΙΣ 1.- ΑΠΟΣΤΟΛΗ, ΧΑΡΙΣΜΑ, ΠΑΡΑΔΟΣΗ ΚΑΙ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ

Διαβάστε περισσότερα

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS 5 FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Página PARA EMPEZAR, REFLEXIONA Y RESUELVE. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora:

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά Δυναμική Μηχανών I 2 1 Επανάληψη: Μαθηματικά 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Συμβολισμοί Μεταβλητών

Διαβάστε περισσότερα

K K 1 2 1 K M N M(2 N 1) K K K K K f f(x 1, x 2,..., x K ) = K f xk (x k ), x 1, x 2,..., x K K K K f Yk (y k x 1, x 2,..., x k ) k=1 M i, i = 1, 2 Xi n n Yi n Xn 1 Xn 2 ˆM i P (n) e = {( ˆM 1, ˆM2 )

Διαβάστε περισσότερα

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: συγκρότηση Επιτροπής για την επιλογή ελευθέρων βοηθηµάτων Ισπανικής γλώσσας

ΠΡΟΣ: ΚΟΙΝ.: συγκρότηση Επιτροπής για την επιλογή ελευθέρων βοηθηµάτων Ισπανικής γλώσσας ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθµός Ασφαλείας: Να διατηρηθεί

Διαβάστε περισσότερα

ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ KΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΑ ΙΣΠΑΝΙΚΑ

ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ KΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΑ ΙΣΠΑΝΙΚΑ ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ KΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΑ ΙΣΠΑΝΙΚΑ Α. Να αποδώσετε στο τετράδιό σας στην ελληνική γλώσσα το παρακάτω κείμενο,

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

+ (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# # # # 6! 9 # ( 6 & # 6

+ (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# # # # 6! 9 # ( 6 & # 6 # % ( + (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# 2 + + 3 + 4 5 # 6 5 7 + 8 # # 6 (! 9 # ( 6 & 0 6 ) 1 5 + # 6 2 # # + 6 # # 6 # + # # + 6 + # #! 5 # # 6 & # : # # : 6 0 ) 5 + 6 1 # # 2 + # + # # 4 + # 6

Διαβάστε περισσότερα

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ, Σχ. Μηχ. Μηχ. ΕΜΠ 1 Αριθμητική Επίλυση Μη-Γραμμικών

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

* * * * * * * * * * * * * * * * * * * * * * * * * Ν ΖΖ.ΖΖΖΖΖ.ΖΖΖΖΖΖΖ Ν.ΖΖΖΖ.ΖΖΖΖΖΖΖΖΖΖΖΖΖ

* * * * * * * * * * * * * * * * * * * * * * * * * Ν ΖΖ.ΖΖΖΖΖ.ΖΖΖΖΖΖΖ Ν.ΖΖΖΖ.ΖΖΖΖΖΖΖΖΖΖΖΖΖ . Ν, Φ Γ Ω ( υ α α α α α υ ) * * * * * * * * * * * * * * * * * * * * * * * * * Χ. Ω Ν Γ ΖΖΖΖΖΖΖΖΖΖΖΖΖΖΖ.ΖΖΖ.ΖΖ.Ζ 2-8 Ν Ω Θ Ζ..ΖΖ.. 8-23 Ν ΖΖ.ΖΖΖΖΖ.ΖΖΖΖΖΖΖ. 23-29 Ν.ΖΖΖΖ.ΖΖΖΖΖΖΖΖΖΖΖΖΖ. 29-51 Ν Φ ΖΖΖΖΖΖΖΖΖΖΖΖ.ΖΖΖΖ.ΖΖ.

Διαβάστε περισσότερα

23.12.2006 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης EL ΠΑΡΑΡΤΗΜΑ V ΑNAΠAPAΓΩΓH TΩN KOINOTIKΩN ΣYMBOΛΩN KAI ENΔEIΞEΩN 1. KOINOTIKA ΣYMBOΛA, EΓXPΩMA -Ή AΣΠPOMAYPA Έγχρωμα χρησιμοποιούνται σε χρώματα Pantone

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο

Διαβάστε περισσότερα

Υπολογισµοί συντεταγµένων σηµείων

Υπολογισµοί συντεταγµένων σηµείων ΒΙΒΛΙΟΓΡΑΦΙΑ: Π. Σαββαΐδης, Ι. Υφαντής, Κ. Λακάκης, ΣΗΜΕΙΩΣΕΙΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΘΕΜΑΤΙΚΗΣ ΧΑΡΤΟΓΡΑΦΙΑΣ ΓΙΑ ΤΟ ΤΜΗΜΑ ΑΡΧΙΤΕΚΤΟΝΩΝ Α. Π. Θ., Θεσσαλονίκη 2007 1. Ορισµοί Υπολογισµοί συντεταγµένων σηµείων Η

Διαβάστε περισσότερα

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή ) εξίσωση Helmholtz σε D χωρικές διαστάσεις :

Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή ) εξίσωση Helmholtz σε D χωρικές διαστάσεις : Η Εξίσωση Helmholtz Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή εξίσωση Helmholtz σε χωρικές διαστάσεις : ( + k Ψ ( r f( r ( k (6 Η εξίσωση αυτή συνοδεύεται (συνήθως από συνοριακές συνθήκες

Διαβάστε περισσότερα

Αναλυτικός υπολογισµός των πεδίων τάσεων και παραµορφώσεων γύρω από τυπικές πεταλοειδείς διατοµές ΝΑΤΜ

Αναλυτικός υπολογισµός των πεδίων τάσεων και παραµορφώσεων γύρω από τυπικές πεταλοειδείς διατοµές ΝΑΤΜ Αναλυτικός υπολογισµός των πεδίων τάσεων και παραµορφώσεων γύρω από τυπικές πεταλοειδείς διατοµές ΝΑΤΜ Ο. Αγγελοπούλου & Σ. Καρανάσιου Αγρονόµος Τοπογράφος Μηχανικός Ε.Μ.Π. Μ. Σακελλαρίου Αναπληρωτής Καθηγητής

Διαβάστε περισσότερα

DIAGRAMAS DE INTERACCIÓN (PARTE III) RESISTENCIA DE SECCIONES CIRCULARES SOMETIDAS A FLEXIÓN COMPUESTA RECTA

DIAGRAMAS DE INTERACCIÓN (PARTE III) RESISTENCIA DE SECCIONES CIRCULARES SOMETIDAS A FLEXIÓN COMPUESTA RECTA DIAGRAMAS DE INTERACCIÓN (PARTE III) RESISTENCIA DE SECCIONES CIRCULARES SOMETIDAS A FLEXIÓN COMPUESTA RECTA Diagramas de Interacción Parte III. Ejemplos de Aplicación del Reglamento CIRSOC 201-2005.-

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΙΙ ΔΗΜΟΣ ΑΛΕΞΑΝΔΡΟΥΠΟΛΗΣ. Πόλη: ΑΛΕΞΑΝΔΡΟΥΠΟΛΗ Ταχ. κώδικας: Χώρα: Ελλάδα 681 00 ΕΛΛΑΔΑ-GR Σημείο(-α) επαφής: Τεχνική Υπηρεσία

ΠΑΡΑΡΤΗΜΑ ΙΙ ΔΗΜΟΣ ΑΛΕΞΑΝΔΡΟΥΠΟΛΗΣ. Πόλη: ΑΛΕΞΑΝΔΡΟΥΠΟΛΗ Ταχ. κώδικας: Χώρα: Ελλάδα 681 00 ΕΛΛΑΔΑ-GR Σημείο(-α) επαφής: Τεχνική Υπηρεσία ΠΑΡΑΡΤΗΜΑ ΙΙ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ Δημοσίευση στο συμπλήρωμα της Επίσημης Εφημερίδας της Ευρωπαϊκής Ένωσης 2, rue Mercier, L-2985 Luxembourg Φαξ: (352) 29 29 42 670 Ηλεκτρονικό ταχυδρομείο: mp-ojs@opoce.cec.eu.int

Διαβάστε περισσότερα

ekpdproswpiko3 Α/Α Α/Α Ο

ekpdproswpiko3 Α/Α Α/Α Ο Α Η ΧΗ Ω Α Α Ω Α Α Α Η Α Η Η 1 1 Α Α Α Α. 63 αθία.. Α Α 2 2 Α Α Α Α Α Α. 69 Α έσβο.. 3 3 Α Α ΑΪ Α Α. 72 ά ισας.. Α Α 4 4 Α Α Α. 76 έ α.. Α 5 5 Α Α Α Α Α Α Α. 77 έ α.. Α 6 6 Α Α Α Α Α Α Α. 79 Α ι αιά..

Διαβάστε περισσότερα

ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ Α.Π.Θ.

ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ Α.Π.Θ. ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΠΟΤΙΜΗΣΗΣ ΣΠΟΥΔΩΝ Ακαδημαϊκό Έτος Εγγραφής στο Τμήμα: Τρόπος Εγγραφής στο Τμήμα:

Διαβάστε περισσότερα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα ΦΥΕ 4 Διανύσματα Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα τμήματα Δύο διανύσματα θα θεωρούμε ότι είναι ίσα, εάν έχουν το ίδιο μήκος

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 1: δυναμικά φορτία Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

M14/1/AYMGR/HP1/GRE/TZ0/XX

M14/1/AYMGR/HP1/GRE/TZ0/XX M14/1/AYMGR/HP1/GRE/TZ0/XX 22142045 MODERN GREEK A: LANGUAGE AND LITERATURE HIGHER LEVEL PAPER 1 GREC MODERNE A : LANGUE ET LITTÉRATURE NIVEAU SUPÉRIEUR ÉPREUVE 1 GRIEGO MODERNO A: LENGUA Y LITERATURA

Διαβάστε περισσότερα

1 ο Γυμνάσιο Αργυρούπολης. Χημεία Γ Γυμνασίου. 1. Γενικά να γνωρίζεις Α. τα σύμβολα των παρακάτω στοιχείων

1 ο Γυμνάσιο Αργυρούπολης. Χημεία Γ Γυμνασίου. 1. Γενικά να γνωρίζεις Α. τα σύμβολα των παρακάτω στοιχείων 1 ο Γυμνάσιο Αργυρούπολης Π. Γκίνης 1. Γενικά να γνωρίζεις Α. τα σύμβολα των παρακάτω στοιχείων Β. τις παρακάτω ρίζες Χημεία Γ Γυμνασίου Οξυγόνο O Βρώμιο Br Χαλκός Cu Υδρογόνο H Ιώδιο I Αργίλιο Al Άζωτο

Διαβάστε περισσότερα

Black and White, an innovation in wooden flooring.

Black and White, an innovation in wooden flooring. a m s t e r d a m v i e n n a l o n d o n p a r i s m o s c o w d u b l i n m i l a n c o p e n h a g e n g e n e v a a t h e n s b a r c e l o n a r e y k j a v i c k i e v GB PT ES IT GR Black and White,

Διαβάστε περισσότερα

Plantronics Explorer 10. Εγχειρίδιο χρήσης

Plantronics Explorer 10. Εγχειρίδιο χρήσης Plantronics Explorer 10 Εγχειρίδιο χρήσης Περιεχόμενα Λίγα λόγια για τον αγοραστή 3 Περιεχόμενα συσκευασίας 4 Επισκόπηση ακουστικού 5 Η ασφάλεια προέχει 5 Σύζευξη και φόρτιση 6 Σύζευξη 6 Ενεργοποίηση της

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 Ροή (γενικά): Ηλεκτρική Ροή Η ποσότητα ενός μεγέθους που διέρχεται από μία επιφάνεια. Ε Ε dα dα θ Ε Ε θ Ηλεκτρική ροή dφ Ε μέσω στοιχειώδους επιφάνειας da (αφού da στοιχειώδης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΤΑ ΚΕΝΤΡΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΤΑ ΚΕΝΤΡΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΤΑ ΚΕΝΤΡΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΓΛΩΣΣΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: Ισπανικά για τον τουρισμό(α1-α2) Συγγραφέας: Δημήτρης Ε. Φιλιππής

Διαβάστε περισσότερα

LA CONDUZIONE ELETTRICA NEI METALLI

LA CONDUZIONE ELETTRICA NEI METALLI ELETTRODINAMICA ELETTRODINAMICA ELETTRODINAMICA ELETTRODINAMICA LA CONDUZIONE ELETTRICA NEI METALLI CONDUZIONE ELETTRICA CONDUZIONE ELETTRICA!"!##$"%"#&"!'#"($ $ )"$ *$ %""!"&"!##)!"'$'"#&"+!%!%"(!#"(

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 2: Αποσβεσμένη Ελεύθερη Ταλάντωση Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α. Τριγωνομετρικές Ταυτότητες Β. Αναπτύγματα σε σειρές Για

Διαβάστε περισσότερα

8 9 Θ ] :! : ; Θ < + ###( ] < ( < ( 8: Β ( < ( < ( 8 : 5 6! 5 < 6 5 : ! 6 58< 6 Ψ 5 ; 6 5! < 6 5 & = Κ Ο Β ϑ Β > Χ 2 Β ϑβ Ι? ϑ = Α 7

8 9 Θ ] :! : ; Θ < + ###( ] < ( < ( 8: Β ( < ( < ( 8 : 5 6! 5 < 6 5 : ! 6 58< 6 Ψ 5 ; 6 5! < 6 5 & = Κ Ο Β ϑ Β > Χ 2 Β ϑβ Ι? ϑ = Α 7 ! # % & ( # ) ( +,,. # ( # / 0 1 2 4 5! 6 7 8 9 9 8 : ; 5 ? Α Β Χ 2Δ Β Β Φ Γ Β Η Ι? ϑ = Α? Χ Χ Ι? ϑ Β Χ Κ Χ 2 Λ Κ >? Λ Μ Λ Χ Φ Κ?Χ Φ 5+Χ Α2?2= 2 Β Η Ν Γ > ϑβ Ο?Β Β Φ Γ Π Λ > Κ? Λ Α? Χ?ΠΛ

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

4. Να βρεθεί η προβολή του σημείου Ρ=(6,1,5) πάνω στην ευθεία ε: x ={3,1,2}+λ{1,2,1},, και η απόστασή του από αυτήν.

4. Να βρεθεί η προβολή του σημείου Ρ=(6,1,5) πάνω στην ευθεία ε: x ={3,1,2}+λ{1,2,1},, και η απόστασή του από αυτήν. ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙI Α Σ Κ Η Σ Ε Ι Σ ΑΚΑΔ. ΕΤΟΣ 009-00 Κ Ε Φ Α Λ Α Ι Ο V Ι. Δίνονται οι ευθείες δ: x ={,0,0}+λ{,,}, ε: x -x + x -=0, x -x =. Να εξετάσετε αν οι ευθείες δ, ε είναι ασύμβατες. Αν ναι, βρείτε

Διαβάστε περισσότερα

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται 6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση

Διαβάστε περισσότερα

(b) flat (continuous) fins on an array of tubes

(b) flat (continuous) fins on an array of tubes (a) Individually finned ues () fla (coninuous) fins on an array of ues Eample Fins Fins on Segosaurus 3 Rekangulär fläns, Recangular fin. Z d f 4 Rekangulär fläns, Recangular fin. Z d f d αc d λ ( f )

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΝΟΜΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ ΝΟΜΟΣ (INTRASOFT INTERNATIONAL)

ΤΡΑΠΕΖΑ ΝΟΜΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ ΝΟΜΟΣ (INTRASOFT INTERNATIONAL) ΤΡΑΠΕΖΑ ΝΟΜΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ ΝΟΜΟΣ (INTRASOFT INTERNATIONAL) ΟΔΓ_ΕΟΚ 0029/2001: Δικαιώµατα δηµιουργών & συγγενικών δικαιωµάτων στην κοινωνία της πληροφορίας (314324) Αρθρο :0 STDM-EL-20100805-20100901 ΑΡΙΘΜΟΣ

Διαβάστε περισσότερα

4. ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΝΟΙΞΗΣ ΚΑΙ ΥΠΟΣΤΗΡΙΞΗΣ ΣΗΡΑΓΓΩΝ ΜΕ ΚΑΜΠΥΛΕΣ ΣΥΓΚΛΙΣΗΣ-ΑΠΟΤΟΝΩΣΗΣ

4. ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΝΟΙΞΗΣ ΚΑΙ ΥΠΟΣΤΗΡΙΞΗΣ ΣΗΡΑΓΓΩΝ ΜΕ ΚΑΜΠΥΛΕΣ ΣΥΓΚΛΙΣΗΣ-ΑΠΟΤΟΝΩΣΗΣ ΚΕΦΑΛΑΙΟ 4 4. ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΝΟΙΞΗΣ ΚΑΙ ΥΠΟΣΤΗΡΙΞΗΣ ΣΗΡΑΓΓΩΝ ΜΕ ΚΑΜΠΥΛΕΣ ΣΥΓΚΛΙΣΗΣ-ΑΠΟΤΟΝΩΣΗΣ 4. Μέθοδος ανάλυσης Κατά τη διάνοιξη σηράγγων οι µετακινήσεις του εδάφους αρχίζουν σε θέσεις αρκετά εµπρός από

Διαβάστε περισσότερα

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΕΓΓΡΑΦΗ ΣΤΟ ΜΗΤΡΩΟ ΣΥΜΒΟΥΛΩΝ ΤΗΣ ΠΡΑΞΗΣ

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΕΓΓΡΑΦΗ ΣΤΟ ΜΗΤΡΩΟ ΣΥΜΒΟΥΛΩΝ ΤΗΣ ΠΡΑΞΗΣ ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΕΓΓΡΑΦΗ ΣΤΟ ΜΗΤΡΩΟ ΣΥΜΒΟΥΛΩΝ ΤΗΣ ΠΡΑΞΗΣ Κατάρτιση, πιστοποίηση και συμβουλευτική με στόχο την ενδυνάμωση των δεξιοτήτων άνεργων νέων 18-24 ετών σε ειδικότητες του

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09 ΕΡΓΑΣΙΑ 6 Ημερομηνία Παράδοσης: 9/6/9 1. Ένας ομογενώς φορτισμένος μονωτικός κυκλικός δίσκος ακτίνας με συνολικό φορτίο τοποθετείται στο επίπεδο xy. Να βρείτε το ηλεκτρικό πεδίο σε σημείο P που βρίσκεται

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ± Ó³ Ÿ. 009.. 6, º 7(156.. 6Ä69 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒ ˆ - ˆ ƒ ˆ ˆ ˆŸ Š -Œ ˆ Šˆ ˆ.. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ μ ± Ê É É Ê Ò μ μ, Œμ ± É ÉÓ μ Ò ÕÉ Ö ²μ Í Ò - μ Ò ² É Ö ³ ÖÉÓ Ì ÒÎ ² ÖÌ, μ²ó ÊÕÐ Ì ±μ ± 4- μ Ò. This paper

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

* * } t. / f. i ^ . «-'. -*.. ;> * ' ί ' ,ΐ:-- ΙΣ Τ Ο Λ Ο Γ ΙΑ Τ Α ΣΥΣΤΗ Μ Α ΤΑ ΟΡΓΑΝΟΝ. Ο.Β.Κ δτο ΥΛΑΣ

* * } t. / f. i ^ . «-'. -*.. ;> * ' ί ' ,ΐ:-- ΙΣ Τ Ο Λ Ο Γ ΙΑ Τ Α ΣΥΣΤΗ Μ Α ΤΑ ΟΡΓΑΝΟΝ. Ο.Β.Κ δτο ΥΛΑΣ % r,r,»v: ' $ & '"- -.,.. -., * *» # t -..* ' T. < - 'ί" : ', *».- 7 Λ CV';y * ' f y \ '. :.-ή ; / ' w, * * } t ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΠΑΝΝΙΝΠΝ ΙΑΤΡΙΚΗ ΣΧΟΛΗ V* ι Λ-Α..;. «* '. ft A 1^>>,- 7 - ^Λ' :.-.. ν -»V-

Διαβάστε περισσότερα

ΑΡΓΕΝΤΙΝΗ Χ Τ Υ Π Ο Ι

ΑΡΓΕΝΤΙΝΗ Χ Τ Υ Π Ο Ι ΑΡΓΕΝΤΙΝΗ Χ Τ Υ Π Ο Ι Σ Τ Ο Ρ Υ Θ Μ Ο Σ Α Σ Καταρράκτες Iguazu Buenos Aires Πάρκο Temaiken Tango TRAVEL & TOURS Δ Ρ Α Σ Τ Η Ρ Ι Ο Τ Η Τ Ε Σ Μ Ε Π Ε Ρ Ι Π Ε Τ Ε Ι Α ΔΑΣΟΣ ΙΓΚΟΥΑΖΟΥ Συνάντηση: Ξενοδοχείο

Διαβάστε περισσότερα

% & ( ) +, / & : ; < / 0 < 0 /

% & ( ) +, / & : ; < / 0 < 0 / !! #!! % & ( ) +, &. / + 0 0 0 1 2 3 0 1 0 4 5 44 6 & 0 5 7. + 8 3 0 + 4 0 5 9 + : + 0 8 0 ; 7 0 0 + + 0 0 < 0 0 4 0 6 0 / 0 < 0 / & 4... & 4 4... = > 5...? < 4.........Α # 6 1 4... 3 # Β 5... Χ... Χ Β

Διαβάστε περισσότερα

6. Αρµονικός ταλαντωτής

6. Αρµονικός ταλαντωτής 6 Αρµονικός ταλαντωτής Βιβλιογραφία Kittel, W D Knight, A Ruderman, A Helmholz και B J oyer, Μηχανική Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 998 Κεφ 7 F S rawford Jr, Κυµατική Σειρά Μαθηµάτων Φυσικής Berkeley,

Διαβάστε περισσότερα

ΤΕΧΝΙΚΟ ΔΕΛΤΙΟ ΠΡΟΤΕΙΝΟΜΕΝΗΣ ΔΡΑΣΗΣ

ΤΕΧΝΙΚΟ ΔΕΛΤΙΟ ΠΡΟΤΕΙΝΟΜΕΝΗΣ ΔΡΑΣΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ ΕΥΡΩΠΑΪΚΟ ΤΑΜΕΙΟ ΑΣΥΛΟΥ, ΜΕΤΑΝΑΣΤΕΥΣΗΣ ΚΑΙ ΕΝΤΑΞΗΣ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (75% ΕΥΡΩΠΑΪΚΟΙ 25% ΕΘΝΙΚΟΙ ΠΟΡΟΙ) ΕΘΝΙΚΟ ΠΡΟΓΡΑΜΜΑ ΓΙΑ ΤΑ ΗΜΕΡΟΛΟΓΙΑΚΑ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς ΤΧΝΟΛΟΙΚΟ ΚΠΑΙΥΤΙΚΟ ΙΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΧΝΟΛΟΙΚΩΝ ΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΙΣ ΣΤΑΤΙΚΗΣ ΙΙ οκοί, Πλαίσια, ικτυώματα, ραμμές πιρροής και Υπερστατικοί Φορείς, Ph.D. Μάρτιος 11 Ασκήσεις

Διαβάστε περισσότερα

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 大阪電気通信大学研究論集 ( 自然科学編 ) 第 51 号 A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 Takuya IWATA and Kiyoshi

Διαβάστε περισσότερα

Ολοκληρώματα. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Ολοκληρώματα. ΗΥ111 Απειροστικός Λογισμός ΙΙ ΗΥ- Απειροστικός Λογισμός ΙΙ Ολοκληρώματα Εφαρμογές Ολοκληρωμάτων Υπολογισμός μήκους Υπολογισμός εμβαδού Υπολογισμός όγκου Χρήση σε Τύπους/Μετρικές Φυσική Πιθανότητες Γραφική Θέματα Αναγνώρισης προτύπων

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

M07/2/ABMGR/SP1/GRE/TZ0/XX/Q

M07/2/ABMGR/SP1/GRE/TZ0/XX/Q IB MODERN GREEK B STANDARD LEVEL PAPER 1 GREC MODERNE B NIVEAU MOYEN ÉPREUVE 1 GRIEGO MODERNO B NIVEL MEDIO PRUEBA 1 Monday 7 May 2007 (morning) Lundi 7 mai 2007 (matin) Lunes 7 de mayo de 2007 (mañana)

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ γ

Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ γ Ε ο ζ δ μ ΝΝ λ Α σ λ Π Ι Λ Ρ υ λ δ ο Ρ β ε Δ Ο υ Π ο π λ ρ υ Ι ξ ρ ρ Ν μ υ β γ α ρ δ ψ λ ε Δ υ λ Π Κ Ο υ ξ δ Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 1: Hλεκτρικά πεδία. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 1: Hλεκτρικά πεδία. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ενότητα 1: Hλεκτρικά πεδία Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

# % & % ( ) + ),, .//0

# % & % ( ) + ),, .//0 ! # % & % ( ) + ),,.//0 & 1 2 1 (, %, (, %, 3 4 ( 5 ( 6 (! ) 1 % % 1 (, %, 3 5.7, 4.//0 2 3 (, %, 6 8, ) %, 6 +!8!! 6 6, 9 ) 6 & : 6 + # ; 8 , %? 6 6 77Α, 5 9 Β

Διαβάστε περισσότερα

2.153 Adaptive Control Lecture 7 Adaptive PID Control

2.153 Adaptive Control Lecture 7 Adaptive PID Control 2.153 Adaptive Control Lecture 7 Adaptive PID Control Anuradha Annaswamy aanna@mit.edu ( aanna@mit.edu 1 / 17 Pset #1 out: Thu 19-Feb, due: Fri 27-Feb Pset #2 out: Wed 25-Feb, due: Fri 6-Mar Pset #3 out:

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Στροφορµή στην Κβαντική Μηχανική 1.1.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Μια ράβδος λέμε ότι καταπονείται σε στρέψη, όταν επάνω σε αυτήν επενεργούν ζεύγη ίσων και αντίθετων δυνάμεων που τα επίπεδά τους είναι κάθετα στoν κεντροβαρικό άξονά της. Τα ζεύγη των δυνάμεων

Διαβάστε περισσότερα

5 η Εργασία Παράδοση 20/5/2007 Οι ασκήσεις είναι ισοδύναµες

5 η Εργασία Παράδοση 20/5/2007 Οι ασκήσεις είναι ισοδύναµες 5 η Εργασία Παράδοση /5/7 Οι ασκήσεις είναι ισοδύναµες Για ένα συµµετρικό σώµα (για παράδειγµα, ϑεωρείστε ένα κυλινδρικό σώµα) που κυλά προς τα κάτω, χωρίς να ολισθαίνει, πάνω σε κεκλιµένο επίπεδο, να

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουνίου 11 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ (1

Διαβάστε περισσότερα

Τµήµα Πληροφορικής και Τηλεπικοινωνιών

Τµήµα Πληροφορικής και Τηλεπικοινωνιών Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Νικόλαος Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών 2 Σεπτεµβρίου 2015 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 1 / 35 Περιεχόµενα

Διαβάστε περισσότερα

: B. -.

: B. -. 2, rue Mercier, L-2985 Luxembourg (352) 29 29 42 670..: mp-ojs@opoce.cec.eu.int & : http://simap.eu.int :.1), (- ) :... : 30-32 :. : 104 33 : (- ) : :-. -. - B. -. : + 30210 88 19 139 + 30210 88 19 139

Διαβάστε περισσότερα

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής: ΑΝΩΤΑΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:

Διαβάστε περισσότερα

Μετασχηματισμός Jοukowski κυκλικού κυλίνδρου σε ομοιόμορφη ροή

Μετασχηματισμός Jοukowski κυκλικού κυλίνδρου σε ομοιόμορφη ροή Μετασχηματισμός Jοukowski κυκλικού κυλίνδρου σε ομοιόμορφη ροή Κυκλικός κύλινδρος (ακτίνας r ) βρίσκεται εντός επίπεδης, άτριβης, δυναμικής ροής. Η γωνία πρόσπτωσης της αδιατάρακτης (επ άπειρον) ροής είναι

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

15PROC

15PROC INFORMATICS DEVELOPMEN T AGENCY Α Α / Ω Ω Α Ω - Α Α ι θ η: α ά η ο ό οφο η οφο ί : α α ία α α α α ο Mail :sarakatsanou@ioannina.gr η.; 9 Α 6510-74441 45444 ΩΑ Α Digitally signed by INFORMATICS DEVELOPMENT

Διαβάστε περισσότερα

u u u u u u u u u u u x x x x

u u u u u u u u u u u x x x x Βασικοί συµβολισµοί και σχέσεις ϕ ϕ ui & ϕ=, ϕ, i=, ui, j= t x x u1 u1 u1 x1 x2 x u 3 1, 1 ui, j ui, j u1, 1 ui, j ui, j u u u u u u u u u u u i 2 2 2 i, j= = i, j 2, 2 i, j = i, j 2, 2 i, j = x j x1 x2

Διαβάστε περισσότερα