MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)"

Transcript

1 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa. b) Para m = 0, calcula A 3 e A 25. c) Para m = 0, calcula a matriz X que verifica X. A = B, sendo B = (0-1 -1) a) Discute e interpreta xeometricamente, segundo os valores do parámetro m, o sistema b) Resólveo, se é posible, para os casos m = 0 e m = 2. BLOQUE 2 (XEOMETRÍA) (Puntuación máxima 3 a) Definición e interpretación xeométrica do produto vectorial de dous vectores en 3. b) Calcula os vectores unitarios e perpendiculares ós vectores e. c) Calcula a distancia da orixe de coordenadas ó plano determinado polo punto (1,1,1) e os vectores e. Dado o plano p: 2x + ly + 3 = 0 ; e a recta a) Calcula o valor de l para que a recta r e o plano p sexan paralelos. Para ese valor de l, calcula a distancia entre r e p. b) Para algún valor de l, a recta está contida no plano p? Xustifica a resposta. c) Para algún valor de l, a recta e o plano p son perpendiculares? Xustifica a resposta. BLOQUE 3 (ANÁLISE) (Puntuación máxima 4 a) Calcula a ecuación da recta tanxente á gráfica de ƒ(x) = (x + 1)e -x no punto de corte de ƒ(x) co eixo OX. b) Calcula, para ƒ(x) = (x + 1)e -x : intervalos de crecemento e decrecemento, extremos relativos, puntos de inflexión, concavidade e convexidade. c) Enunciado e interpretación xeométrica do teorema do valor medio do cálculo integral. a) Enunciado e interpretación xeométrica do teorema do valor medio do cálculo diferencial. b) De entre tódolos triángulos rectángulos con hipotenusa 10cm., calcula as lonxitudes dos catetos que corresponden ó de área máxima c) Calcula o valor de m, para que a área do recinto limitado pola recta y = mx e a curva y = x 3, sexa 2 unidades cadradas. 61

2 21 MATEMÁTICAS (Responder somente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 a) Sexan A, B e C tres matrices tales que o produto A. B. C é unha matriz 3x2 e o produto A. C t é unha matriz cadrada, sendo C t a trasposta de C. Calcula, razoando a resposta, as dimensións de A, B e C. b) Dada, obtén todas as matrices X que conmutan con M, é dicir, verifican X.M = M.X. c) Calcula a matriz Y que verifica M. Y + M -1. Y = I, sendo a matriz dada en b), M -1 a matriz inversa de M e I a matriz unidade de orde 2. a) Se nun sistema de tres ecuacións lineais con tres incógnitas, o rango da matriz dos coeficientes é 3, podemos afirmar que o sistema é compatible? Razoa a resposta. b) Discute, segundo os valores do parámetro m, o sistema de ecuacións lineais: y + mz = 0 x + z = 0 mx - y = m c) Resolve o sistema anterior para o caso m = 0. BLOQUE 2 (XEOMETRÍA) (Puntuación máxima 3 a) Dados os vectores,, calcula os vectores unitarios de 3 que son ortogonais ós dous vectores dados. b) Sexa π o plano determinado polo punto P(2, 2, 2) e os vectores,. Calcula o ángulo que forma o plano π coa recta que pasa polos puntos O(0, 0, 0) e Q(2, -2, 2). c) Calcula o punto simétrico de O(0, 0, 0) respecto do plano x - y + z - 2 = 0. Os lados dun triángulo están sobre as rectas a) Calcula os vértices do triángulo. É un triángulo rectángulo? Razoa a resposta b) Calcula a ecuación do plano π que contén ó triángulo. Calcula a intersección do plano π cos eixes OX, OY e OZ. BLOQUE 3 (ANÁLISE) (Puntuación máxima 4 a) Calcula os valores de a e b para que a gráfica de ƒ(x) = ax + b teña un mínimo relativo no x punto, Para eses valores de a e b, calcula: asíntotas e intervalos de crecemento e decrecemento de ƒ(x). b) Calcula c) Definición de primitiva e integral indefinida dunha función. Enunciado da regra de Barrow. a) Definición de función continua nun punto. Que tipo de descontinuidade ten en x = 0 a función? b) Un arame de 170 cm. de lonxitude divídese en dúas partes. Con unha das partes quérese formar un cadrado e coa outra un rectángulo de xeito que a base mida o dobre da altura. Calcula as lonxitudes das partes nas que se ten que dividir o arame para que a suma das áreas do cadrado e do rectángulo sexa mínima c) Calcula a área do recinto limitado pola recta y = 2 - x ; e a curva y = x 2. 62

3 CONVOCATORIA DE XUÑO Soamente se puntuará a primeira pregunta respondida de cada un dos tres bloques. Bloque 1 (Álxebra lineal) OPCIÓN 1: a) 1 punto Cálculo de A 3 Cálculo de A 25 c) 1 punto OPCIÓN 2: a) 2 puntos, distribuidos en Discusión Interpretación xeométrica Resolución no caso m = 0 (0,50 Resolución no caso m = 2 (0,50 Bloque 2 (Xeometría) OPCIÓN 1: Definición do producto vectorial de dous vectores Interpretación xeométrica do producto vectorial de dous vectores b) 1 punto. c) 1 punto, distribuido en Determinación do plano Cálculo da distancia OPCIÓN 2: a) 1,5 puntos, distribuidos en Determinación de l. ( 0,75 Cálculo da distancia (0,75 b) 0,75 puntos c) 0,75 puntos Bloque 3 (Análise) OPCIÓN 1: Cálculo do punto de corte co eixo OX ( 0,25 Cálculo da derivada Ecuación da recta tanxente b) 2 puntos, distribuidos en Intervalos de crecemento e decrecemento (0,5 Extremos relativos Puntos de inflexión Concavidade e convexidade c) 1 punto, distribuido en Enunciado do teorema do valor medio do cálculo integral Interpretación xeométrica do teorema OPCIÓN 2: Enunciado do teorema do valor medio do cálculo diferencial Interpretación xeométrica do teorema b) 1,5 puntos, distribuidos en Formulación do problema Obtención dos catetos c) 1,5 puntos, distribuidos en Formulación do problema (0,75 Cálculo da integral e obtención de m (0,75 63

4 CONVOCATORIA DE SETEMBRO Soamente se puntuará a primeira pregunta respondida de cada un dos tres bloques. Bloque 1 (Álxebra lineal) Opción 1: Dimensión de A Dimensión de B Dimensión de C Formulación das ecuacións Solución c) 1 punto, distribuido en Cálculo de M -1 Cálculo de Y Opción 2: a) 1 punto Sistema incompatible Sistema compatible indeterminado c) 1 punto Bloque 2 (Xeometría) Opción 1: Cálculo álculo de x Cálculo de x Por cada solución Vector asociado ó plano Vector director da recta Cálculo do ángulo c) 1 punto Opción 2: a) 1,5 puntos, distribuidos en Cálculo dos vértices Triángulo rectángulo b) 1,5 puntos, distribuidos en Obtención do plano Intersección cos eixos Bloque 3 (Análise) Opción 1: a) 2 puntos, distribuidos en Cálculo de a e b Asíntotas (0,75 Intervalos de crecemento e decrecemento (0,75 b) 1 punto c) 1 punto, distribuido en Definición de primitiva Definición de integral indefinida Regla de Barrow Opción 2: Definición de función continua nun punto (0,5 Tipo de discontinuidade b) 1,5 puntos, distribuidos en Expresión a minimizar (0,75 Cálculo da lonxitude das dúas partes nas que se divide o arame Comprobación de mínimo c) 1,5 puntos, distribuidos en Formulación do problema (0,75 Determinación dos límites de integración (0,25 Cálculo da integral (0,5 punto) 64

5 BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 CONVOCATORIA DE XUÑO m = 2, dous planos coincidentes (o 1º e o 3º) que se cortan co outro plano ó longo dunha recta a) A = m 2-1. Polo tanto A = 0 m = ±1. Así, A ten inversa m ±1. b) Se m = 0, utilizando as propiedades do produto de matrices A 2 = A. ; A 3 = A 2. A = -I; A 25 = (-I) 8. A = I. A = A. c) Tendo en conta a), para m = 0, A -1 e ademais, por b), A -1 = -A 2. Polo tanto X. A = B X = B. A -1, X = (0-1 -1). (-A 2 ) = (-1 0 1) a) Matriz de coeficientes :. Matriz ampliada : C = m - 2 m 2 rang(c) = rang(a) =3 m = 2 : = 1 0 rang(c) = 2; b) Se m=0, estamos no caso dun S.C.D. e como é un sistema homoxéneo, a solución única é a trivial: x = 0; y = 0; z = 0; Se m= 2, estamos no caso dun S.C.I. As infinitas solucións pódense expresar: x = l, y = -l -2, z = -3l -2 / l R ; BLOQUE 2 (XEOMETRÍA) (Puntuación máxima 3 a) Definición do produto vectorial de dous vectores en R 3. Interpretación xeométrica do produto vectorial de dous vectores en R 3. b) x = (-2, 1, 2); x = 3 Os dous vectores unitarios e ortogonais a e a son w 1 = (- 2 3, 1 3, 2 3 ); w2 = ( 2 3, - 1 3, - 2 ) 3 Discusión: rang(a) = 2 m 2, rang(c) = rang(a) =3 = nº de incógnitas. Sistema compatible determinado (S.C.D.). Solución única. m = 2, rang(c) = rang(a) =2 < nº de incógnitas. Sistema compatible indeterminado (S.C.I.). Infinitas solucións. (1punto) Interpretación xeométrica: m 2, tres planos que se cortan nun punto P c) A ecuación do plano será: ; é dicir p : 2x - y - 2z + 1 = 0 Utilizando a fórmula da distancia dun punto, neste caso O = (0, 0, 0), a un plano temos: d(o, p) = 1/3 a) Vector asociado ó plano p: n p = (2, l, 0) Vector director da recta ; v r = (-6, -12, -15) Como r p vr n p, e vr n p vr. n p = 0, temos que r p l = -1 (0,75 Para l = -1, temos o plano p : 2x - y + 3 = 0. Como 65

6 r p, podemos calcular a distancia de r a p como a distancia entre un punto calquera de r, por exemplo P r = (0, -2, 1), e o plano p. Polo tanto d (r, p) = d (P r, p) = 5 5 = 5 (0,75 b) Vimos no apartado anterior que r p l = -1 e ademais, para este valor de l, d (r, p) = 5. Polo tanto Non existe ningún valor de l para o que a recta r estea contida no plano. (0,75 c) r p vr n p, pero non existe l que faga que os vectores vr = (-6, -12, -15) e n p = (2, l, 0) sexan proporcionais. Polo tanto, non hai ningún valor de l para o que r e p son perpendiculares. (0,75 BLOQUE 3 (ANÁLISE) (Puntuación máxima 4 Función a optimizar: A(x) = 1 2 x, (0,75 A (x) = Puntos críticos: x = 0 (non vale), x = -5 2 (non vale), x = 5 2 Xustificación de que 5 2 corresponde a un máximo: A (5 2) < 0 Polo tanto, de entre tódolos triángulos rectángulos de hipotenusa 10cm, o que ten área máxima corresponde a un triángulo rectángulo isósceles de catetos 5 2 cm. c) a) Punto de corte co eixo OX: (-1,0) f (x) = -xe -x ; f (-1) = e Recta tanxente en (-1,0): y = e (x+1) (0, 5 b) f (x) = 0 x = 0 A función é crecente en (-, 0) e decrecente en (0, ) f (x) = e -x (x-1); f (0) < 0. Hai un máximo relativo no punto (0,1) f (x) = 0 x = 1. Cóncava en (-, 1) e convexa en (1, ) f (x) = e -x (2-x); f (1) 0. Hai un punto de inflexión no punto (1, 2/e) c) Enunciado do teorema do valor medio do cálculo integral. Interpretación xeométrica do teorema do valor medio do cálculo integral. a) Enunciado do teorema do valor medio do cálculo diferencial. Interpretación xeométrica do teorema do valor medio do cálculo diferencial. b) Abscisas dos puntos de corte das gráficas x 3 = mx x = 0 ; x = ± m Como a área do recinto ten que ser 2 unidades cadradas 2 = o - m (x 3 - mx)dx + m Integrando o (mx - x 3 )dx (0,75 e así m = ±2, pero m = -2 non vale, polo tanto m = 2 (0,75 66

7 BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 a) Da hipótese A. B. C M 3x2, dedúcese que A M 3xm, B M mxn, C M nx2. Polo tanto C t M 2xn e para que A. C t, necesariamente m = 2 e A M 3x2. CONVOCATORIA DE SETEMBRO Da hipótese A. C t é unha matriz cadrada, dedúcese que n = 3 e polo tanto B M 2x3, C M 3x2, b) Para que existan os produtos X. M e M. X, X ten que ser unha matriz cadrada de orde 2. Da igualdade, deducimos que b = 0, a = d e polo tanto X = / a, c R c) M = 1, M -1 =, Discusión: Se m 0, rang(c) = 2 < 3 = rang(a). Sistema incompatible. Non ten solución. Se m = 0, rang(c) = 2 = rang(a) < nº incógnitas. Sistema Compatible Indeterminado (S.C.I.). Infinitas solucións c) Se m = 0, é un sistema homoxéneo e vimos que era un (S.C.I.). Para obter as infinitas solucións Solucións : {(-l, 0, l) / l R} BLOQUE 2 (XEOMETRÍA) máxima 3 (Puntuación a) x = (1, -1, 1) M. Y + M -1. Y = I Y = (M + M -1 ) -1 e como M + M -1 =, obtemos que Y = a) Se denotamos por C a matriz dos coeficientes e por A a matriz ampliada, temos que C M 3x3 e A M 3x4, polo que rang(a) 3. Ademais sabemos que sempre rang(c) rang(a), entón 3 = rang (C) rang (A) rang (A) 3 rang(c) = rang (A) = 3 Polo tanto, o sistema é compatible. Como o número de incógnitas tamén é 3, trátase dun sistema compatible determinado (S.C.D.). b) Matriz dos coeficientes: ; Matriz ampliada: ; x = 3 Entón, os dous vectores unitarios e ortogonais a e a son: w 1 = ( 3 3, - 3 3, 3 3 ); w = ( , ) b) Vector asociado ó plano: n p = x = (1, -1, 1). Vector director da recta: = (2, -2, 2). Estes dous vectores son proporcionais e polo tanto a recta e plano son perpendiculares c) Ecuación da recta que pasa por O (0, 0, 0) e é perpendicular a p Punto de intersección de S con p: P( 2 3, - 2 3, ). Este punto P é o punto medio de O e o seu simétrico O. Polo tanto O ( 4 3, - 4 3, 4 3 ). a) Calculamos as coordenadas dos vértices facendo a intersección das rectas r 1 r 2 : A (1, 1, -1) r 2 r 3 : B (-1, -1, -1) r 1 r 3 : C (3, -1, 3) 67

8 b) Polo tanto, o triángulo é rectángulo en A b) Podemos calcular o plano p como o plano determinado polo punto A e os vectores e. Así, é dicir p : x - y - z - 1 = 0 Intersección cos eixos OX, OY e OZ: P(1, 0, 0), Q(0, -1, 0) e R(0, 0, -1) respectivamente. BLOQUE 3 (ANÁLISE) (Puntuación máxima 4 a) f (x) = a - b x 2 c) Definición de primitiva Definición de integral indefinida Enunciado da regra de Barrow a) Definición de función continua nun punto definindo f (0) = 0 Discontinuidade evitable, que se evita b) Parte de arame para o cadrado: x cm. Parte de arame para o rectángulo: (170 - x) cm A(x) + x x)2 +(170 ; A (x) = x x 9 e temos así que f (x) = 4x + 1 x Asíntota vertical: x = 0 Asíntota oblicua: y = mx + n A (x) = 0 x = 80; A (x) = > 0 Solución: 80 cm para o cadrado e 90 cm para o rectángulo. (1,5 c) Abscisas dos puntos de corte das gráficas Polo tanto a asíntota oblicua é a recta y = 4x (0,75 ; A = 9 2 u2 Como f (x) = 4-1 x 2, temos que f (x) = 0 x = ± 1 2 (-, -1/2) (-1/2, 0) (0, 1/2) (1/2, ) f (x) f (x) é dicir> Crecente en (-, -1/2) (1/2, ), Decrecente en (-1/2, 0) (0, 1/2) (0,75 68

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Puntuación máima dos eercicios de cada opción: eercicio 1= 3 puntos, eercicio = 3 puntos, eercicio

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS 61 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS O alumno debe resolver só un exercicio de cada un dos tres bloques temáticos Puntuación máxima de cada un dos exercicios: Álxebra 3 puntos; Análise 3,5 puntos;

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS 61 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS O alumno debe resolver só un exercicio de cada un dos tres bloques temáticos. BLOQUE DE ÁLXEBRA (Puntuación máxima 3 puntos) 1 0 0 1-1 -1 Sexan as matrices

Διαβάστε περισσότερα

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO 1. Punto e recta 2. Lugares xeométricos 3. Ángulos 4. Trazado de paralelas e perpendiculares con escuadro e cartabón 5. Operacións elementais 6. Trazado de ángulos

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

TEORÍA DE XEOMETRÍA. 1º ESO

TEORÍA DE XEOMETRÍA. 1º ESO TEORÍA DE XEOMETRÍA. 1º ESO 1. CORPOS XEOMÉTRICOS No noso entorno observamos continuamente obxectos de diversas formas: pelotas, botes, caixas, pirámides, etc. Todos estes obxectos son corpos xeométricos.

Διαβάστε περισσότερα

PAU XUÑO 2013 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU XUÑO 2013 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU XUÑO 2013 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα

PAU XUÑO 2014 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU XUÑO 2014 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU XUÑO 2014 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos VIII. ESPZO EULÍDEO TRIDIMENSIONL: Áglos perpediclaridade de rectas e plaos.- Áglo qe forma dúas rectas O áglo de dúas rectas qe se corta se defie como o meor dos áglos qe forma o plao qe determia. O áglo

Διαβάστε περισσότερα

Áreas de corpos xeométricos

Áreas de corpos xeométricos 9 Áreas de corpos xeométricos Obxectivos Nesta quincena aprenderás a: Antes de empezar 1.Área dos prismas....... páx.164 Área dos prismas Calcular a área de prismas rectos de calquera número de caras.

Διαβάστε περισσότερα

VI. VECTORES NO ESPAZO

VI. VECTORES NO ESPAZO VI. VECTORES NO ESPAZO.- Vectores no espazo. Operacións Sexa E o espazo de pntos ordinario o intitio da xeometría elemental. Un segmento orientado AB con orixe no pnto A e extremo no pnto B recibe o nome

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro 9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Trigonometría. Obxectivos. Antes de empezar.

Trigonometría. Obxectivos. Antes de empezar. 7 Trigonometría Obxectivos Nesta quincena aprenderás a: Calcular as razóns trigonométricas dun ángulo. Calcular todas as razóns trigonométricas dun ángulo a partir dunha delas. Resolver triángulos rectángulos

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( )

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( ) .. MATEMÁTICAS I PENDENTES (º PARTE) a) Calcula m de modo que o produto escalar de a(, ) e b( m, 5 ) sea igual a 5. b) Calcula a proección de a sobre c, sendo c,. ( ) 5 Se (, ) e y,. Calcula: a) Un vector

Διαβάστε περισσότερα

PAU Xuño 2015 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU Xuño 2015 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU Xuño 015 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα

1 Experimento aleatorio. Espazo de mostra. Sucesos

1 Experimento aleatorio. Espazo de mostra. Sucesos V. PROBABILIDADE E ESTATÍSTICA 1 Experimento aleatorio. Espazo de mostra. Sucesos 1 Experimento aleatorio. Concepto e exemplos Experimentos aleatorios son aqueles que ao repetilos nas mesmas condicións

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

Ámbito científico tecnolóxico. Xeometría. Unidade didáctica 2. Módulo 3. Educación a distancia semipresencial

Ámbito científico tecnolóxico. Xeometría. Unidade didáctica 2. Módulo 3. Educación a distancia semipresencial Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 3 Unidade didáctica 2 Xeometría Índice 1. Introdución... 3 1.1 Descrición da unidade

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

PAU MATEMÁTICAS II APLICADAS ÁS CCSS

PAU MATEMÁTICAS II APLICADAS ÁS CCSS PAU 2011-2012 MATEMÁTICAS II APLICADAS ÁS CCSS Circular informativa curso 2011-2012 Como directora do Grupo de Traballo de Matemáticas Aplicadas ás Ciencias Sociais e no nome de todo o grupo, póñome en

Διαβάστε περισσότερα

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles.

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles. 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Distinguir as clases de corpos xeométricos. Construíloss a partir do seu desenvolvemento plano. Calcular as súas áreas e volumes. Localizar

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B)

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B) 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A o B ) de cada bloque. Todos os problemas puntúan do mesmo xeito,

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson 1 La teoría de Jeans El caso ás siple de evolución de fluctuaciones es el de un fluído no relativista. las ecuaciones básicas son: a conservación del núero de partículas n t + (n v = 0 (1 b Navier-Stokes

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

Problemas resueltos del teorema de Bolzano

Problemas resueltos del teorema de Bolzano Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont

Διαβάστε περισσότερα

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA

PAU XUÑO 2016 FÍSICA PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionario Trigonometría ACTIVIDADES INICIALES.I. En una recta r hay tres puntos: A, B y C, que distan, sucesivamente, y cm. Por esos puntos se trazan rectas paralelas que cortan otra, s, en M, N y P.

Διαβάστε περισσότερα

Uso e transformación da enerxía

Uso e transformación da enerxía Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 4 Unidade didáctica 5 Uso e transformación da enerxía Páxina 1 de 50 Índice 1. Introdución...3

Διαβάστε περισσότερα

Exercicios de Física 02b. Magnetismo

Exercicios de Física 02b. Magnetismo Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado

Διαβάστε περισσότερα

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS 5 FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Página PARA EMPEZAR, REFLEXIONA Y RESUELVE. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora:

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A ou B ) de cada bloque. Todos os problemas puntúan igual, é dicir,

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Coordenadas astronómicas. Medida do tempo

Coordenadas astronómicas. Medida do tempo Astronomía Básica 5 Coordenadas astronómicas. Medida do tempo Josefina F. Ling Departamento de Matemática Aplicada Facultade de Matemáticas Grao de Óptica e Optometria Vicerreitoría de ESTUDANTES, Cultura

Διαβάστε περισσότερα

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración. FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

PAU XUÑO 2015 FÍSICA

PAU XUÑO 2015 FÍSICA PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio. Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción

Διαβάστε περισσότερα

RADIACTIVIDADE. PROBLEMAS

RADIACTIVIDADE. PROBLEMAS RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de

Διαβάστε περισσότερα

Materiais e instrumentos que se poden empregar durante a proba

Materiais e instrumentos que se poden empregar durante a proba 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

Exercicios de Física 03a. Vibracións

Exercicios de Física 03a. Vibracións Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal

Διαβάστε περισσότερα

FORMULARIO DE ELASTICIDAD

FORMULARIO DE ELASTICIDAD U. D. Resistencia de Mateiales, Elasticidad Plasticidad Depatamento de Mecánica de Medios Continuos Teoía de Estuctuas E.T.S. Ingenieos de Caminos, Canales Puetos Univesidad Politécnica de Madid FORMULARIO

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

O MÉTODO CIENTÍFICO. ten varias etapas 2. BUSCA DE REGULARIDADES. cifras significativas

O MÉTODO CIENTÍFICO. ten varias etapas 2. BUSCA DE REGULARIDADES. cifras significativas PROGRAMACIÓN DE AULA MAPA DE CONTIDOS 1. OBTENCIÓN DA INFORMACIÓN O MÉTODO CIENTÍFICO ten varias etapas 2. BUSCA DE REGULARIDADES 3. EXPLICACIÓN DAS LEIS PROGRAMACIÓN DE AULA E mediante utilizando na análise

Διαβάστε περισσότερα

Académico Introducción

Académico Introducción - Σε αυτήν την εργασία/διατριβή θα αναλύσω/εξετάσω/διερευνήσω/αξιολογήσω... general para un ensayo/tesis Για να απαντήσουμε αυτή την ερώτηση, θα επικεντρωθούμε πρώτα... Para introducir un área específica

Διαβάστε περισσότερα

Catálogodegrandespotencias

Catálogodegrandespotencias www.dimotor.com Catálogogranspotencias Índice Motores grans potencias 3 Motores asíncronos trifásicos Baja Tensión y Alta tensión.... 3 Serie Y2 Baja tensión 4 Motores asíncronos trifásicos Baja Tensión

Διαβάστε περισσότερα

RADIACIÓNS ÓPTICAS ARTIFICIAIS INCOHERENTES

RADIACIÓNS ÓPTICAS ARTIFICIAIS INCOHERENTES Nº 33 - www.issga.es FRANCISCO JAVIER COPA RODRÍGUEZ Técnico superior en Prevención de Riscos Laborais Instituto Galego de Seguridade e Saúde Laboral Edita: Instituto Galego de Seguridade e Saúde Laboral

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

Academic Opening Opening - Introduction Greek Spanish En este ensayo/tesis analizaré/investigaré/evaluaré...

Academic Opening Opening - Introduction Greek Spanish En este ensayo/tesis analizaré/investigaré/evaluaré... - Introduction Σε αυτήν την εργασία/διατριβή θα αναλύσω/εξετάσω/διερευνήσω/αξιολογήσω... General opening for an essay/thesis En este ensayo/tesis analizaré/investigaré/evaluaré... Για να απαντήσουμε αυτή

Διαβάστε περισσότερα

1.- Carga eléctrica. Cuantización Lei de Coulomb Traballo Campo Electrostático Potencial Electrostático 6

1.- Carga eléctrica. Cuantización Lei de Coulomb Traballo Campo Electrostático Potencial Electrostático 6 CMPO ELECTROSTÁTICO 1.- Carga eléctrica. Cuantización 1.1. Tipo de carga:.- Lei de Coulomb 3 3.- Traballo 4 3.1.-Enerxía Potencial Electrotática 5 4.- Campo Electrotático 5 5.- Potencial Electrotático

Διαβάστε περισσότερα

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 1.1 Concepto de corrente eléctrica...2 1.1 Concepto de corrente eléctrica...2 1.2 Características dun circuíto de corrente

Διαβάστε περισσότερα

Física cuántica. Relatividade especial

Física cuántica. Relatividade especial Tema 8 Física cuántica. Relatividade especial Evolución das ideas acerca da natureza da luz Experimento de Young (da dobre fenda Dualidade onda-corpúsculo Principio de indeterminación de Heisemberg Efecto

Διαβάστε περισσότερα

Escenas de episodios anteriores

Escenas de episodios anteriores Clase 09/10/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Escenas de episodios anteriores objetivo: estudiar formalmente el concepto de demostración matemática. caso de estudio: lenguaje

Διαβάστε περισσότερα

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo.

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo. Estatística Contidos 1. Facer estatística Necesidade Poboación e mostra Variables 2. Reconto e gráficos Reconto de datos Gráficos Agrupación de datos en intervalos 3. Medidas de centralización e posición

Διαβάστε περισσότερα

MATRICES DE TRANSFORMACION DE COORDENADAS. 3D. ü INCLUDES. ü Cálculo de las componentes de la Matriz de rotación de tensiones (3-3)

MATRICES DE TRANSFORMACION DE COORDENADAS. 3D. ü INCLUDES. ü Cálculo de las componentes de la Matriz de rotación de tensiones (3-3) MATRICES DE TRANSFORMACION DE COORDENADAS. 3D ü INCLUDES In[298]:= In[301]:= In[302]:= In[303]:= Off@General::"spell"D; Off@General::"spell1"D; Off@Set::"wrsm"D; Needs@"LnearAlgebra`MatrxManpulaton`"D

Διαβάστε περισσότερα

Polinomios. Obxectivos. Antes de empezar. 1.Expresións alxébricas... páx. 64 De expresións a ecuacións Valor numérico Expresión en coeficientes

Polinomios. Obxectivos. Antes de empezar. 1.Expresións alxébricas... páx. 64 De expresións a ecuacións Valor numérico Expresión en coeficientes 4 Polinomios Obxectivos Nesta quincena aprenderás: A traballar con expresións literais para a obtención de valores concretos en fórmulas e ecuacións en diferentes contextos. A regra de Ruffini. O teorema

Διαβάστε περισσότερα

Inmigración Estudiar. Estudiar - Universidad. Indicar que quieres matricularte. Indicar que quieres matricularte en una asignatura.

Inmigración Estudiar. Estudiar - Universidad. Indicar que quieres matricularte. Indicar que quieres matricularte en una asignatura. - Universidad Me gustaría matricularme en la universidad. Indicar que quieres matricularte Me quiero matricular. Indicar que quieres matricularte en una asignatura en un grado en un posgrado en un doctorado

Διαβάστε περισσότερα

δικαιοσύνης διδασκαλεῖα. ἀλλ οἱ µὲν δυνάµενοι τρέφειν τοὺς παῖδας

δικαιοσύνης διδασκαλεῖα. ἀλλ οἱ µὲν δυνάµενοι τρέφειν τοὺς παῖδας Instrucciones: a) Duración: 1 hora y 30 minutos. b) Se podrá hacer uso del diccionario y de su apéndice gramatical. c) El alumno elegirá y desarrollará en su totalidad una de las dos opciones propuestas,

Διαβάστε περισσότερα

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA PROBLEMAS TERMOQUÍMICA 1. Para o proceso Fe 2O 3 (s) + 2 Al (s) Al 2O 3 (s) + 2 Fe (s), calcule: a) A entalpía da reacción en condicións estándar e a calor desprendida

Διαβάστε περισσότερα

A onda posterior influe na onda frontal

A onda posterior influe na onda frontal Xullo Xermade A onda posterior influe na onda frontal Onda de presión cando o cono vai hacia atras Onda de presión cando o cono vai hacia diante λ = v/f λ f = v/λ Caixa doméstica Caixa profesional

Διαβάστε περισσότερα

Una visión alberiana del tema. Abstract *** El marco teórico. democracia, república y emprendedores; alberdiano

Una visión alberiana del tema. Abstract *** El marco teórico. democracia, república y emprendedores; alberdiano Abstract Una visión alberiana del tema - democracia, república y emprendedores; - - alberdiano El marco teórico *** - 26 LIBERTAS SEGUNDA ÉPOCA - - - - - - - - revolución industrial EMPRENDEDORES, REPÚBLICA

Διαβάστε περισσότερα

OS PRONOMES RELATIVO INTERROGATIVOS E INDEFINIDOS SINTAXE DA ORACIÓN DE RELATIVO. O INFINITIVO E A SÚA SINTAXE.

OS PRONOMES RELATIVO INTERROGATIVOS E INDEFINIDOS SINTAXE DA ORACIÓN DE RELATIVO. O INFINITIVO E A SÚA SINTAXE. EPAPU OURENSE GREGO 1º BACHARELATO CURSO 2008-09 1 GREGO 1º BACHARELATO 11º QUINCENA OS PRONOMES RELATIVO INTERROGATIVOS E INDEFINIDOS SINTAXE DA ORACIÓN DE RELATIVO. O INFINITIVO E A SÚA SINTAXE. 1º.-

Διαβάστε περισσότερα

Filipenses 2:5-11. Filipenses

Filipenses 2:5-11. Filipenses Filipenses 2:5-11 Filipenses La ciudad de Filipos fue nombrada en honor de Felipe II de Macedonia, padre de Alejandro. Con una pequeña colonia judía aparentemente no tenía una sinagoga. El apóstol fundó

Διαβάστε περισσότερα

PRUEBA INICIAL DE CLASIFICACIÓN CURSO Documento para adjuntar a la Solicitud de plaza

PRUEBA INICIAL DE CLASIFICACIÓN CURSO Documento para adjuntar a la Solicitud de plaza PRUEBA INICIAL DE CLASIFICACIÓN CURSO 2017-18 Documento para adjuntar a la Solicitud de plaza Yo con DNI, número de teléfono y dirección de correo electrónico, solicitante del idioma, nivel, declaro bajo

Διαβάστε περισσότερα

A actividade científica. Tema 1

A actividade científica. Tema 1 A actividade científica Tema 1 A ciencia trata de coñecer mellor o mundo que nos rodea. Para poder levar a cabo a actividade científica necesitamos ter un método que nos permita chegar a unha conclusión.

Διαβάστε περισσότερα

MARKSCHEME BARÈME DE NOTATION ESQUEMA DE CALIFICACIÓN

MARKSCHEME BARÈME DE NOTATION ESQUEMA DE CALIFICACIÓN IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI M06/2/ABMGR/SP1/GRE/TZ0/XX/M MARKSCHEME BARÈME DE NOTATION ESQUEMA DE CALIFICACIÓN May / mai / mayo 2006 MODERN GREEK / GREC

Διαβάστε περισσότερα

dr 1...dp N exp [ βh ({p}, {r})], (1) p 2 i 2m +Φ(r 1,..., r N ). (2) Z id = N!Λ 3N Z = Q(N,V,T). (6) Z = Z id

dr 1...dp N exp [ βh ({p}, {r})], (1) p 2 i 2m +Φ(r 1,..., r N ). (2) Z id = N!Λ 3N Z = Q(N,V,T). (6) Z = Z id Física de Líquidos L. Mederos Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas 5 de abril de 2004 Índice. Descripción microscópica de un líquido. 2.. Conceptos

Διαβάστε περισσότερα

Opalas de Pedro II: o APL como remediação da grande mina

Opalas de Pedro II: o APL como remediação da grande mina BrunoMilanez 1 JoséAntonioPuppimdeOliveira 2 1. Introdução 2. OmunicípiodePedroIIeseuentorno 1 2 United Nations University Institute of Advanced Studies 3 percapita percapita percapita per capita percapita

Διαβάστε περισσότερα

TEMA 6.- BIOMOLÉCULAS ORGÁNICAS IV: ÁCIDOS NUCLEICOS

TEMA 6.- BIOMOLÉCULAS ORGÁNICAS IV: ÁCIDOS NUCLEICOS TEMA 6.- BIMLÉCULAS RGÁNICAS IV: ÁCIDS NUCLEICS A.- Características generales de los Ácidos Nucleicos B.- Nucleótidos y derivados nucleotídicos El esqueleto covalente de los ácidos nucleicos: el enlace

Διαβάστε περισσότερα

Exercicios de Física 01. Gravitación

Exercicios de Física 01. Gravitación Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Atlas de ondas. de Galicia

Atlas de ondas. de Galicia Atlas de ondas de Galicia Edita: XUNTA DE GALICIA Consellería de Medio Ambiente, Territorio e Infraestruturas (MeteoGalicia, Área de predición numérica) Instituto Enerxético de Galicia (INEGA) Ano: 2009

Διαβάστε περισσότερα

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Instrucciones: a) Duración: 1 hora y 30 minutos. b) Se podrá hacer uso del diccionario y su apéndice gramatical. c) El alumno elegirá y desarrollará en su totalidad una de las dos opciones propuestas,

Διαβάστε περισσότερα