ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. 1. Ο παρακάτω πίνακας δίνει το βαθμολογικό επίπεδο των μαθητών ενός σχολικού συγκροτήματος.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. 1. Ο παρακάτω πίνακας δίνει το βαθμολογικό επίπεδο των μαθητών ενός σχολικού συγκροτήματος."

Transcript

1 ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Προβλήματα 1. Ο παρακάτω πίνακας δίνει το βαθμολογικό επίπεδο των μαθητών ενός σχολικού συγκροτήματος. Βαθμολογικά ΚΟΡΙΤΣΙΑ ΑΓΟΡΙΑ επίπεδα Γυμνάσιο Λύκειο Γυμνάσιο Λύκειο Χαμηλή επίδοση 7 % 5 % 8 % 6 % Μεσαία επίδοση 15 % 11 % 14 % 10 % Υψηλή επίδοση 8 % 5 % 7 % 4 % Επιλέγουμε τυχαία ένα παιδί και έστω τα ενδεχόμενα. i) Α: να είναι κορίτσι ii) Β: να φοιτά στο λύκειο, iii) Γ: Να έχει υψηλή απόδοση. Να περιγραφούν και να βρεθούν οι πιθανότητες των ενδεχομένων: α) A B β) A Γ 2. Ο διπλανός πίνακας αναφέρεται σε ένα σύνολο ασθενών που πάσχουν από σακχαρώδη διαβήτη. Επιλέγουμε τυχαία έναν ασθενή και θεωρούμε τα ενδεχόμενα: Α: «η κατάσταση του ασθενούς είναι σοβαρή» Β: «ο ασθενής είναι κάτω των 40 ετών» Γ: «οι γονείς του ασθενούς έχουν παρόμοια πάθηση» i) Να βρείτε τις πιθανότητες Ρ(Α),Ρ(Β), Ρ(Γ), Ρ(Α Β), Ρ(Β Γ), Ρ(Α Γ), Ρ(Α Β Γ) ii) Διατυπώσετε περιφραστικά τα ενδεχόμενα Α Β, Α Β Γ, Α Γ και να βρείτε τις πιθανότητές τους. <40 ετών > 40 ετών Μέτρια περίπτωση Γονείς με παρόμοια πάθηση Σοβαρή περίπτωση Γονείς με παρόμοια πάθηση ΝΑΙ ΟΧΙ ΝΑΙ ΟΧΙ 15% 10% 8% 2% 15% 20% 20% 10% 3. Εξετάσαμε 50 οικογένειες ως προς τον αριθμό παιδιών που έχουν.τα αποτελέσματα φαίνονται στον παρακάτω πίνακα: Αριθμός παιδιών Αριθμός οικογενειών Αν επιλέξουμε τυχαία μία από αυτές τις οικογένειες να βρείτε την πιθανότητα των ενδεχομένων : i) A : η οικογένεια έχει 2 παιδιά ii) Β : η οικογένεια έχει τουλάχιστον 3 παιδιά 41

2 iii) Γ : η οικογένεια έχει το πολύ 2 παιδιά iv) Δ : η οικογένεια έχει 1 ή 2 παιδιά 4. Εξετάσαμε 50 άτομα ως προς τον αριθμό εφημερίδων που αγοράζουν κάθε βδομάδα. Τα αποτελέσματα φαίνονται στον παρακάτω πίνακα: Αριθμός εφημερίδων Αριθμός ατόμων x 2 2x x x α) Να βρείτε τον αριθμό x β) Αν επιλέξουμε τυχαία μία από αυτές τις οικογένειες να βρείτε την πιθανότητα των ενδεχομένων : i) A : το άτομο αγοράζει 2 εφημερίδες ii) Β : το άτομο αγοράζει 3ή 4 εφημερίδες iii) Γ : το άτομο αγοράζει τουλάχιστον 5εφημερίδες iv) Δ : το άτομο αγοράζει το πολύ 2 εφημερίδες 5. Εξετάσαμε 200 ενήλικες σχετικά με το αν έχουν δίπλωμα οδήγησης αυτοκινήτου ή μηχανής. Προέκυψαν τα εξής αποτελέσματα : 160 άτομα είχαν δίπλωμα οδήγησης αυτοκινήτου 60 άτομα είχαν δίπλωμα οδήγησης μηχανής 40 άτομα είχαν δίπλωμα οδήγησης αυτοκινήτου και μηχανής Επιλέγουμε τυχαία ένα από τα παραπάνω άτομα. Να βρείτε την πιθανότητα το άτομο αυτό : α) να έχει δίπλωμα οδήγησης αυτοκινήτου β) να μην έχει δίπλωμα οδήγησης μηχανής γ) να έχει δίπλωμα οδήγησης αυτοκινήτου ή δίπλωμα οδήγησης μηχανής δ) να έχει δίπλωμα οδήγησης μηχανής,αλλά να μην έχει δίπλωμα οδήγησης αυτοκινήτου ε) να μην έχει δίπλωμα οδήγησης αυτοκινήτου ούτε δίπλωμα οδήγησης μηχανής στ)να έχει μόνο δίπλωμα οδήγησης αυτοκινήτου ή μόνο δίπλωμα οδήγησης μηχανής 6. Σε μια κατασκήνωση υπάρχουν 200 παιδιά.το περασμένο βράδυ κάθε παιδί επέλεξε να δει μια κινηματογραφική ταινία,είτε κωμωδία είτε περιπέτεια. Τα 68 από τα 110 κορίτσια επέλεξαν να δούν κωμωδία,ενώ 56 αγόρια επέλεξαν να δουν περιπέτεια. α) Να συμπληρώσετε τον παρακάτω πίνακα : Κωμωδία Περιπέτεια Αγόρια Κορίτσια Β) Αν επιλέξουμε τυχαία ένα παιδί,να βρείτε τις πιθανότητες των ενδεχομένων: i) Α: το παιδί είναι κορίτσι ii) Β : το παιδί έχει επιλέξει περιπέτεια iii) Γ : το παιδί είναι αγόρι και έχει επιλέξει κωμωδία iv) Δ: το παιδί είναι κορίτσι ή έχει επιλέξει κωμωδία. 42

3 7. Σε μια κωμόπολη το 15% των νοικοκυριών δεν έχoυν τηλεόραση, το 40% δεν έχουν βίντεο και το 10% δεν έχουν ούτε τηλεόραση ούτε βίντεο. Επιλέγουμε τυχαίως ένα νοικοκυριό. i. Να βρείτε την πιθανότητα να έχει τηλεόραση. ii. Να βρείτε την πιθανότητα να έχει βίντεο. iii. Να βρείτε την πιθανότητα να έχει τηλεόραση και βίντεο iv. Να βρείτε την πιθανότητα να έχει τουλάχιστον ένα από τα δυο v. Να βρείτε την πιθανότητα να έχει μόνο τηλεόραση. vi. Να βρείτε την πιθανότητα να έχει μόνο βίντεο. vii. Να βρείτε την πιθανότητα να έχει μόνο ένα από τα δύο 8. Σε μια ομάδα 20 ατόμων 3 από τις 9 γυναίκες και 2 από τους 11 άνδρες φορούν γυαλιά.αν επιλέξουμε τυχαία ένα άτομο: i) ποια είναι η πιθανότητα να φορά γυαλιά; ii) να είναι γυναίκα ή να φοράει γυαλιά; 9. Από τους 123 μαθητές ενός Λυκείου οι 32 μαθητές συμμετέχουν σε μια θεατρική ομάδα, οι 27 μαθητές συμμετέχουν στην ομάδα στίβου και οι 11 μαθητές συμμετέχουν και στις δύο ομάδες. Επιλέγουμε τυχαία ένα μαθητή. Ποια είναι η πιθανότητα ο μαθητής i) να συμμετέχει σε μια τουλάχιστον από τις δύο ομάδες; ii) να συμμετέχει μόνο σε μια από τις δύο ομάδες; iii) να μη συμμετέχει σε καμία από τις δύο ομάδες; 10. Σ' ένα χωριό με 48 οικογένειες,οι 36 έχουν έγχρωμη τηλεόραση,οι 16 έχουν ασπρόμαυρη και οι 6 έχουν και έγχρωμη και ασπρόμαυρη. Αν επιλέξουμε τυχαία μία οικογένεια τον χωριού,να βρείτε τις πιθανότητες των ενδεχομένων Α : Να μην έχει ούτε έγχρωμη ούτε ασπρόμαυρη τηλεόραση Β : Να έχει μόνο έγχρωμη τηλεόραση. 11. Από τις οικογένειες των 30 μαθητών μιας τάξης 25 έχουν βίντεο,5 έχουν κομπιούτερ και 4 έχουν και βίντεο και κομπιούτερ. Επιλέγουμε τυχαία μία οικογένεια. Να βρείτε τις πιθανότητες των ενδεχομένων : Α : Να έχει μόνο βίντεο Β : Να έχει μόνο βίντεο η κομπιούτερ Γ : Να έχει μία τουλάχιστον συσκευή. 12. Σε ένα σύλλογο με 120 μέλη, τα 50 συμμετέχουν στο χορευτικό τμήμα του συλλόγου,τα 30 στο θεατρικό τμήμα,ενώ τα 12 απ αυτά συμμετέχουν και στα δύο τμήματα.αν επιλέξουμε τυχαία ένα μέλος του συλλόγου,να βρείτε τις πιθανότητες των ενδεχομένων : Α : Να συμμετέχει στο χορευτικό η στο θεατρικό τμήμα, Β : Να συμμετέχει στο χορευτικό αλλά όχι στο θεατρικό τμήμα, Γ : Να μη συμμετέχει στο χορευτικό ούτε στο θεατρικό τμήμα. 13. Σε μια ανθοδέσμη τα 40% των λουλουδιών είναι τριαντάφυλλα και το 25% των λουλουδιών είναι κόκκινα. Επιλέγουμε τυχαία ένα λουλούδι και η πιθανότητα να βγει κόκκινο τριαντάφυλλο είναι 10%. Ποια η πιθανότητα να βγει κατά την επιλογή αυτή τριαντάφυλλο ή κόκκινο λουλούδι. 14. Η πιθανότητα να πάρει το πρωτάθλημα ποδοσφαίρου η ομάδα Α είναι διπλάσια από τη πιθανότητα να μην το πάρει. Να βρείτε τη πιθανότητα η ομάδα Α να είναι πρωταθλήτρια. 43

4 15. Μια τάξη έχει 12 αγόρια και 15 κορίτσια. Τα 2 3 των αγοριών και τα 3 5 των κοριτσιών έχουν ποδήλατο. Επιλέγουμε τυχαία ένα άτομο. Να βρείτε τη πιθανότητα να είναι κορίτσι ή να έχει ποδήλατο. 16. Σε μια τάξη υπάρχουν 40 αγόρια και 27 κορίτσια. Τα 3/5 των αγοριών και τα 4/9 των κοριτσιών έγραψαν άριστα σ ένα διαγώνισμα των μαθηματικών. Να βρεθεί η πιθανότητα, αν επιλεγεί τυχαία ένα άτομο, να είναι κορίτσι ή να έγραψε άριστα στο διαγώνισμα. 17. Σε ένα σχολείο το 25% των μαθητών δεν έχει ηλεκτρονικό υπολογιστή και το 15% έχει κινητό αλλά όχι ηλεκτρονικό υπολογιστή. α) Ποια η πιθανότητα αν επιλέξουμε τυχαία ένα μαθητή να µην έχει ούτε κινητό ούτε Η/Υβ) να µην έχει κινητό ή να έχει Η/Υ. 18. Σε δύο διαγωνίσματα Μαθηματικών που έγιναν σε μία τάξη οι μαθητές που έγραψαν κάτω από τη βάση αποτελούσαν το 30% στο 1ο διαγώνισμα,το 40 % στο 2ο διαγώνισμα και το 25% και στα δύο. Επιλέγουμε τυχαία ένα μαθητή της τάξης αυτής.να βρείτε την πιθανότητα του ενδεχομένου ο μαθητής να έγραψε τουλάχιστον τη βάση και στα δύο διαγωνίσματα. 19. Σε ένα αεροπλάνο της γραμμής Αθήνα Μαδρίτη υπάρχουν 300 επιβάτες ( άνδρες και γυναίκες). Το 60% των επιβατών είναι άνδρες, το 70% των επιβατών έχουν ξαναταξιδέψει µε αεροπλάνο ενώ το 10% των γυναικών ταξιδεύει πρώτη φορά µε αεροπλάνο. Επιλέγουμε τυχαία έναν από τους επιβάτες. Να βρεθούν οι πιθανότητες των ενδεχομένων : α. Ο επιβάτης να είναι γυναίκα ή να έχει ξαναταξιδέψει µε αεροπλάνο. β. Ο επιβάτης να είναι άνδρας και να µην έχει ξαναταξιδέψει µε αεροπλάνο. γ. Ο επιβάτης να είναι άνδρας ή να έχει ξαναταξιδέψει µε αεροπλάνο. 20. Μια τάξη έχει 12 αγόρια και 16 κορίτσια. Τα μισά αγόρια και τα μισά κορίτσια έχουν μαύρα μάτια. Επιλέγουμε τυχαία ένα άτομο. Να βρείτε την πιθανότητα να είναι αγόρι ή να έχει μαύρα μάτια. 21. Aπό τους ψηφοφόρους μιας πόλης, το 45% είναι άνδρες. Το 36% των ανδρών και το 40% των γυναικών ψήφισαν στις τελευταίες εκλογές το κόμμα Κ. Εκλέγουμε τυχαία ένα άτομο. α) Να βρείτε την πιθανότητα των ενδεχομένων: Γ: «το άτομο αυτό είναι γυναίκα» K: «το άτομο ψήφισε το κόμμα Κ» E: «το άτομο είναι άνδρας ή ψήφισε το κόμμα Κ» Δ: «δεν είναι ούτε γυναίκα ούτε ψήφισε το κόμμα Κ» β) Αν απ τους ψηφοφόρους της πόλης, οι δεν ψήφισαν το κόμμα Κ, να βρείτε το σύνολο των ψηφοφόρων 22. Μια ομάδα έχει πιθανότητα 30%, να κερδίσει το πρωτάθλημα, το κύπελλο 20% ενώ η πιθανότητα να κερδίσει και τους δύο τίτλους είναι 10%. Να βρείτε τις πιθανότητες: Α) Να κερδίσει ένα τουλάχιστον τίτλο. Β) Να κερδίσει μόνο το πρωτάθλημα. Γ) Να κερδίσει μόνο το κύπελλο. Δ) Να κερδίσει μόνο τον ένα από τους δύο τίτλους. Ε) Να μην κερδίσει κανέναν από τους δύο τίτλους. Ζ) Να κερδίσει το πρωτάθλημα ή να μη κερδίσει το κύπελλο 44

5 23. Μια ομάδα έχει πιθανότητα να κερδίσει το πρωτάθλημα 40%, το κύπελλο 15% ενώ και τα δύο 8%. Να βρείτε τις πιθανότητες: Α) Να κερδίσει ένα τουλάχιστον τίτλο. Β) Να κερδίσει μόνο το πρωτάθλημα. Γ) Να κερδίσει μόνο το κύπελλο. Δ) Να κερδίσει μόνο τον ένα από τους δύο τίτλους. 24. Από 38 άτομα μιας τάξης, που ρωτήθηκαν, οι 14 απάντησαν ότι έγραψαν άριστα σ ένα διαγώνισμα (Α), οι 23 ότι έγραψαν άριστα σ ένα διαγώνισμα (Β) και οι 5 έγραψαν άριστα και στα δύο. Αν επιλέξουμε τυχαία ένα άτομο να βρεθούν οι πιθανότητες των ενδεχομένων: Α) Το άτομο δεν έγραψε άριστα σε κανένα διαγώνισμα. Β) Το άτομο έγραψε άριστα μόνο στο (Α). Γ) Το άτομο έγραψε άριστα μόνο στο (Β). 25. Από τους 25 μαθητές ενός τμήματος Α Λυκείου ενός σχολείου, οι 23 μαθαίνουν Αγγλικά, οι 8 Γαλλικά και 7 μαθαίνουν και τις δύο γλώσσες. Επιλέγουμε τυχαία ένα μαθητή της τάξης. Ποια είναι η πιθανότητα ο μαθητής: i) να μαθαίνει τουλάχιστον μία από τις δύο γλώσσες; ii) να μαθαίνει μόνο Αγγλικά; iii) να μην μαθαίνει καμία από τις δύο γλώσσες. 26. Από τους μαθητές ενός σχολείου, το 80% μαθαίνουν Αγγλικά, το 40% μαθαίνουν Γαλλικά ενώ το 10% δεν μαθαίνει καμία από τις δύο γλώσσες. Επιλέγουμε τυχαία ένα μαθητή της του παραπάνω σχολείου. Να βρείτε την πιθανότητα ο μαθητής: i) να μαθαίνει και Αγγλικά και Γαλλικά, ii) να μαθαίνει Αγγλικά αλλά να μην μαθαίνει Γαλλικά iii) να μην μαθαίνει μόνο μία από τις δύο γλώσσες Αγγλικά και Γαλλικά. 27. Σε μια δημοσκόπηση σχετικά με την ακροαματικότητα και την τηλεθέαση, το 10%των ερωτηθέντων δεν είδε τηλεόραση, το 30% δεν άκουσε ραδιόφωνο και το 7% δεν είδε τηλεόραση και δεν άκουσε ραδιόφωνο. Αν επιλέξουμε τυχαία έναν άνθρωπο, ποια είναι η πιθανότητα να είδε τηλεόραση και να άκουσε ραδιόφωνο. 28. Σε μια δημοσκόπηση σχετικά με την ακροαματικότητα και την τηλεθέαση, το 20%των ερωτηθέντων δεν είδε τηλεόραση, το 40% δεν άκουσε ραδιόφωνο και το 10% δεν είδε τηλεόραση και δεν άκουσε ραδιόφωνο. Να βρείτε την πιθανότητα και να είδε τηλεόραση και να άκουσε ραδιόφωνο. 29. Σε ένα σχολείο με 400 μαθητές διδάσκονται η αγγλική και η γαλλική γλώσσα. Κάθε μαθητής είναι υποχρεωμένος να παρακολουθεί τουλάχιστον μία από τις παραπάνω ξένες γλώσσες. Από τους παραπάνω μαθητές 340 παρακολουθούν την αγγλική γλώσσα και 240 τη γαλλική γλώσσα. Επιλέγουμε τυχαία έναν μαθητή. Έστω Α το ενδεχόμενο να παρακολουθεί την αγγλική γλώσσα και Γ να παρακολουθεί την γαλλική γλώσσα. Α. Να εξετάσετε αν τα ενδεχόμενα Α,Γ είναι ασυμβίβαστα. 3 Β. Να αποδείξετε ότι: P. 5 Γ. Να βρείτε την πιθανότητα ο μαθητής να παρακολουθεί μόνο την αγγλική γλώσσα. Δ. Να βρείτε την πιθανότητα ο μαθητής να παρακολουθεί μία μόνο ξένη γλώσσα από αυτές. 30. Από 120 μαθητές ενός Λυκείου, 24 μαθητές συμμετέχουν στο διαγωνισμό της Ελληνικής Μαθηματικής Εταιρείας, 20 μαθητές συμμετέχουν στο διαγωνισμό της Ένωσης Ελλήνων Φυσικών και 12 μαθητές συμμετέχουν και στους δύο διαγωνισμούς. Επιλέγουμε τυχαία ένα 45

6 μαθητή. Ποια είναι η πιθανότητα ο μαθητής: Α) Να συμμετέχει σε έναν τουλάχιστον από τους δύο διαγωνισμούς; Β) Να συμμετέχει μόνο σε έναν από τους δύο διαγωνισμούς; Γ) Να μην συμμετέχει σε κανέναν από τους δύο διαγωνισμούς; 31. Έχουμε 30 σφαίρες μέσα σ ένα δοχείο, αριθμημένες από το 1 έως το 30. Επιλέγουμε στην τύχη μία σφαίρα. Έστω Α το ενδεχόμενο ο αριθμός της σφαίρας να είναι άρτιος και Β το ενδεχόμενο ο αριθμός αυτός να είναι πολλαπλάσιο του 5. Αν Α, Β είναι τα συμπληρωματικά ενδεχόμενα των Α και Β αντιστοίχως, να υπολογίσετε τις πιθανότητες :, β. ( ) γ. ( ) P A α. δ. 32. Μια εταιρεία παράγει «κομπιουτεράκια». Από ένα δειγματοληπτικό έλεγχο 1000 προϊόντων βρέθηκαν 75 με πρόβλημα στην οθόνη, 52 με πρόβλημα στο πληκτρολόγιο και 21 με πρόβλημα και στην οθόνη και στο πληκτρολόγιο. Να βρείτε τις πιθανότητες: Α) Ένα προϊόν να μην είναι εμπορεύσιμο. Β) Ένα προϊόν να έχει πρόβλημα μόνο στην οθόνη ή μόνο στο πληκτρολόγιο. 33. Στην Α τάξη ενός Λυκείου ενός σχολείου το 60% των μαθητών είναι κορίτσια,το 40% συμμετέχουν στη χορωδία του σχολείου το 10% είναι αγόρια και συμμετέχουν στη χορωδία. Επιλέγουμε τυχαία ένα μαθητή του Λυκείου. Να βρείτε την πιθανότητα ο μαθητής αυτός : α) να είναι αγόρι και να συμμετέχει στη χορωδία, β) να είναι κορίτσι ή να συμμετέχει στη χορωδία γ) να είναι κορίτσι και να μην συμμετέχει στη χορωδία δ) να είναι αγόρι ή να συμμετέχει στη χορωδία 34. Η Α Λυκείου ενός σχολείου έχει 70 μαθητές. Επιλέγουμε τυχαία ένα μαθητή του Λυκείου. Η πιθανότητα να είναι μαθητής της Α τάξης είναι 40% ενώ η πιθανότητα να είναι μαθητής της Γ τάξης είναι 28%. Να βρείτε: Α) Πόσους μαθητές έχει το Λύκειο. Β) Πόσοι μαθητές υπάρχουν σε κάθε τάξη. 35. Η Γ Λυκείου ενός σχολείου έχει 70 μαθητές. Επιλέγουμε τυχαία ένα μαθητή του Λυκείου. Η πιθανότητα να είναι μαθητής της Γ τάξης είναι 28% ενώ η πιθανότητα να είναι μαθητής της Α τάξης είναι 34%. Να βρείτε: Α) Πόσους μαθητές έχει το Λύκειο. Β) Πόσοι μαθητές υπάρχουν σε κάθε τάξη. 36. Σε μια δημοσκόπηση σχετικά με την ακροαματικότητα και την τηλεθέαση, το 10%των ερωτηθέντων δεν είδε τηλεόραση, το 50% δεν άκουσε ραδιόφωνο και το 3% δεν είδε τηλεόραση και δεν άκουσε ραδιόφωνο. Να βρείτε την πιθανότητα και να είδε τηλεόραση και να άκουσε ραδιόφωνο. 37. Σε μια έρευνα μεταξύ μαθητών μιας τάξης διαπιστώθηκε ότι : Το 40% δεν είχε διαβάσει αρχαία, το 80% δεν είχε διαβάσει μαθηματικά και το 40% δεν είχε διαβάσει και τα δύο μαθήματα. Να βρείτε την πιθανότητα ένας μαθητής να έχει διαβάσει και τα δύο μαθήματα. 38. Από τους ψηφοφόρους μιας πόλης το 45% είναι άνδρες. Το 40% των ανδρών και το 60% των γυναικών ψήφισαν στις εκλογές το κόμμα «τιμιότητα». Επιλέγουμε τυχαία ένα ψηφοφόρο (άνδρα ή γυναίκα). Να βρείτε την πιθανότητα των ενδεχομένων: Α: Να είναι γυναίκα. Β: Να ψήφισε «τιμιότητα». 46

7 Γ: Να είναι άνδρας ή να ψήφισε «τιμιότητα». 39. Ένας υποψήφιος έχει πιθανότητα 60% να γράψει καλά τουλάχιστον σ ένα από τα δύο μαθήματα που επανεξετάζεται και 40% να γράψει καλά και στα δύο. Να αποδείξετε ότι έχει την ίδια πιθανότητα να γράψει καλά τουλάχιστον σ ένα από τα δύο μαθήματα με το να μη γράψει καλά και στα δύο. 40. Από το σύνολο των κατοίκων της Αθήνας το 30%βλέπει το κανάλι Α, το 85% δεν βλέπει το κανάλι Β και το 40% βλέπει τουλάχιστον ένα από τα δύο κανάλια. Να βρεθούν οι πιθανότητες των ενδεχομένων : Κ : Ένας τυχαίος κάτοικος να βλέπει και τα δύο κανάλια. Λ : Ένας τυχαίος κάτοικος να μη βλέπει κανένα από τα δύο κανάλια. Μ : Ένας τυχαίος κάτοικος να βλέπει μόνο το κανάλι ΑΛΦΑ. 41. Από το σύνολο των κατοίκων της Αθήνας το 25%βλέπει το κανάλι ΑΛΦΑ, το 85% δεν βλέπει το κανάλι ΒΗΤΑ και το 38% βλέπει τουλάχιστον ένα από τα δύο κανάλια. Να βρεθούν οι πιθανότητες των ενδεχομένων : E : Ένας τυχαίος κάτοικος να βλέπει και τα δύο κανάλια. Z : Ένας τυχαίος κάτοικος να μη βλέπει κανένα από τα δύο κανάλια. H : Ένας τυχαίος κάτοικος να βλέπει μόνο το κανάλι ΑΛΦΑ. 42. Στο σύλλογο καθηγητών ενός λυκείου το 55% είναι γυναίκες, το 40% των καθηγητών είναι φιλόλογοι και το 30% είναι γυναίκες φιλόλογοι. Επιλέγουμε τυχαία έναν καθηγητή για να εκπροσωπήσει το σύλλογο σε κάποια επιτροπή. Να υπολογίσετε τις πιθανότητες ο καθηγητής να είναι: Α) γυναίκα ή φιλόλογος Β) γυναίκα και όχι φιλόλογος Γ) άνδρας και φιλόλογος Δ) άνδρας ή φιλόλογος. 43. Σε μία έκθεση αυτοκινήτων το 30% δεν έχει αερόσακο, το 20% δεν έχει καινούργια λάστιχα και το 5% δεν έχει αερόσακο ούτε καινούργια λάστιχα. Επιλέγουμε τυχαία ένα αυτοκίνητο της έκθεσης. Να βρείτε τη πιθανότητα να έχει αερόσακο και καινούργια λάστιχα. 44. Σε έναν δήμο,οι προηγούμενες δημοτικές εκλογές έγιναν σε δύο γύρους.το 35% των ψηφοφόρων δεν ψήφισαν στον Α γύρο, το 45% των ψηφοφόρων δεν ψήφισαν στον Β γύρο και το 40% ψήφισαν και στους δύο γύρους.επιλέγουμε τυχαία έναν ψηφοφόρο από τον παραπάνω δήμο.να βρείτε την πιθανότητα ο ψηφοφόρος αυτός: α) να ψήφισε σε έναν τουλάχιστον από τους δύο γύρους β) να μην ψήφισε σε κανέναν από τους δύο γύρους, γ) να ψήφισε στον Α γύρο και να μην ψήφισε στον Β γύρο δ) να ψήφισε μόνο σε έναν από τους δύο γύρους. 45. Εξετάσαμε τους φοιτητές ενός τμήματος σχετικά με το αν πέρασαν τα μαθήματα της Στατιστικής και των Πιθανοτήτων. Προέκυψαν τα εξής συμπεράσματα: το 65% των φοιτητών πέρασαν τη Στατιστική το 15% των φοιτητών πέρασαν τις Πιθανότητες και δεν πέρασαν τη Στατιστική Το 60% των φοιτητών δεν πέρασαν τουλάχιστον ένα από τα δύο μαθήματα Επιλέγουμε τυχαία ένα μαθητή του τμήματος.να βρείτε την πιθανότητα αυτός: α) να έχει περάσει και τα δύο μαθήματα, β) να έχει περάσει το μάθημα των Πιθανοτήτων, γ)να μην έχει περάσει κανένα από τα δύο μαθήματα, δ) να έχει περάσει ένα μόνο από τα δύο μαθήματα. 47

8 46. Μία Τράπεζα χορηγεί διαφόρων τύπων δάνεια στους πελάτες της. Αν επιλεγεί τυχαία κάποιος πελάτης η πιθανότητα να έχει πάρει μόνο στεγαστικό ή μόνο καταναλωτικό δάνειο είναι 0,7 ενώ η πιθανότητα να μην έχει πάρει κανένα από τα δύο προηγούμενα δάνεια είναι 0,1. α. Να βρείτε την πιθανότητα ένας πελάτης να έχει πάρει και τα δύο δάνεια. Να εξετάσετε αν τα ενδεχόμενα «έχει πάρει στεγαστικό» και «έχει πάρει καταναλωτικό» είναι ασυμβίβαστα. β. Αν επιπλέον η πιθανότητα να έχει πάρει μόνο στεγαστικό είναι 0,6 να βρείτε τις πιθανότητες των ενδεχομένων: i. «έχει πάρει καταναλωτικό». ii. «έχει πάρει μόνο καταναλωτικό». 47. Ένα ενυδρείο έχει 2400 ψάρια.από αυτά τα 1800 είναι τροπικά ψάρια,τα 800 έχουν κόκκινο χρώμα και τα 600 είναι τροπικά ψάρια με κόκκινο χρώμα. Επιλέγουμε τυχαία ένα ψάρι. Αν Α: το ενδεχόμενο το ψάρι να είναι τροπικό και Β: το ενδεχόμενο το ψάρι να είναι κόκκινο. Να βρεθεί η πιθανότητα το ψάρι α) να είναι τροπικό ή να έχει κόκκινο χρώμα ; β) να μην είναι τροπικό ούτε να έχει κόκκινο χρώμα ; γ) να έχει κόκκινο χρώμα αλλά να μην είναι τροπικό; δ) να είναι τροπικό ή να μην έχει κόκκινο χρώμα ; 48. Ένας κήπος έχει 1200 δέντρα.από αυτά τα 300 είναι τροπικά,τα 1000 είναι οπωροφόρα και τα 200 είναι τροπικά και οπωροφόρα. Επιλέγουμε τυχαία ένα δέντρο. Αν Α: το ενδεχόμενο το δέντρο να είναι τροπικό και Β: το ενδεχόμενο το δέντρο να είναι οπωροφόρο. Να βρεθεί η πιθανότητα το δέντρο α) να είναι τροπικό ή να είναι οπωροφόρο ; β) να μην είναι οπωροφόρο ούτε τροπικό ; γ) να είναι οπωροφόρο αλλά να μην είναι τροπικό; δ) να είναι τροπικό ή να μην είναι οπωροφόρο ; 49. Σε ένα αεροπλάνο της γραμμής Αθήνα - Κωνσταντινούπολη υπάρχουν 300 επιβάτες ( άνδρες και γυναίκες).από αυτούς οι 180 επιβάτες είναι άντρες,οι 210 επιβάτες έχουν ξαναταξιδέψει µε αεροπλάνο ενώ οι 120 επιβάτες είναι άντρες που έχουν ξαναταξιδέψει µε αεροπλάνο. Επιλέγουμε τυχαία έναν από τους επιβάτες. Αν Α: το ενδεχόμενο ο επιβάτης να είναι άντρας και Β: το ενδεχόμενο ο επιβάτης να έχει ξαναταξιδέψει µε αεροπλάνο Να βρεθούν οι πιθανότητες των ενδεχομένων : α. Ο επιβάτης να είναι άντρας ή να έχει ξαναταξιδέψει µε αεροπλάνο. β. Ο επιβάτης να είναι γυναίκα και να µην έχει ξαναταξιδέψει µε αεροπλάνο. γ. Ο επιβάτης να είναι γυναίκα αλλά να έχει ξαναταξιδέψει µε αεροπλάνο. δ. Ο επιβάτης να είναι άντρας ή να μην έχει ξαναταξιδέψει µε αεροπλάνο. 48

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (.,.2) Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ).. Αν Ω είναι δειγματικός χώρος ενός πειράματος τύχης,

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ κεφ - ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ Σε ένα συρτάρι υπάρχουν δύο κάρτες, μία άσπρη και μία κόκκινη Παίρνουμε στην τύχη μία κάρτα από το συρτάρι, καταγράφουμε το χρώμα της και την ξαναβάζουμε

Διαβάστε περισσότερα

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ Συχνότητα Σχετική συχνότητα Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται va φορές,τότε va ο αριθμός va λέγεται συχνότητα του ενδεχομένου

Διαβάστε περισσότερα

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ 1. Ο Γυμναστής ενός λυκείου προκειμένου να στελεχώσει την ομάδα μπάσκετ του λυκείου ψάχνει στην τύχη μεταξύ των μαθητών να βρει τρεις κοντούς (Κ) και τρεις ψηλούς (Ψ). Να

Διαβάστε περισσότερα

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β ΘΕΜΑ Β 1. Δίνονται δύο ενδεχόμενα A, B ενός δειγματικού χώρου και οι πιθανότητες: 3 5 1 P( A), P( A B) και P( B) 4 8 4 α) Να υπολογίσετε την P( A B) β) i) Να παραστήσετε με διάγραμμα Venn και να γράψετε

Διαβάστε περισσότερα

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς. Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις

Διαβάστε περισσότερα

5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ 1 5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ 1. Ισοπίθανα απλά ενδεχόµενα Είναι τα απλά ενδεχόµενα για τα οποία κάποιο εξ αυτών δεν έχει πλεονέκτηµα έναντι των άλλων όσον αφορά την επιλογή του. Με άλλα λόγια

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. Ρίχνουµε ένα νόµισµα τρείς φορές (i) Να βρείτε τον δειγµατικό χώρο του πειράµατος τύχης. (ii) Να βρείτε την πιθανότητα των ενδεχοµένων: Α: Οι τρεις ενδείξεις είναι ίδιες. Β:

Διαβάστε περισσότερα

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β 1. Δίνονται δύο ενδεχόμενα A, B ενός δειγματικού χώρου και οι πιθανότητες: 3 5 1 P( A), P( A B) και P( B) 4 8 4 α) Να υπολογίσετε την P( A B) β) i) Να παραστήσετε με διάγραμμα Venn

Διαβάστε περισσότερα

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4. ο Κεφάλαιο : Πιθανότητες. Δειγματικοί χώροι. Διαγράμματα Venn Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. Κλασικός ορισμός πιθανότητας 4. Κανόνες λογισμού πιθανοτήτων η Κατηγορία : Δειγματικοί χώροι ) Ρίχνουμε

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ ΛΥΚΕΙΟΥ 4 ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ-ΕΝΔΕΧΟΜΕΝΑ Πράξεις ενδεχομένων-γλωσσική περιγραφή 1) Να γράψετε με τη βοήθεια των συνόλων Α,Β,Γ,Α,Β,Γ τα ενδεχόμενα που

Διαβάστε περισσότερα

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ . ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα

Διαβάστε περισσότερα

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4 Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Na λυθούν οι εξισώσεις : α) 2 3x 1 x 8 x 1 (απ.: x = -2) β) γ) 2x 7 x 1 (απ.: x = -12) 4 3 4 5 x 2 x 4 2 x (απ.: x = 1) 4 5 δ) x 1

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος ΠΙΘΑΝΟΤΗΤΕΣ.Ένα κουτί περιέχει τέσσερις λαχνούς αριθμημένους από το εώς το 4. Εκλέγουμε έναν λαχνό στην τύχη,σημειώνουμε το αποτέλεσμα και δεν ξανατοποθετούμε τον λαχνό στο κουτί. Επαναλαμβάνουμε το πείραμα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2 ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

β. Αν το διαγώνισμα αποτελείται από 2 τέτοιες ερωτήσεις, ποια η πιθανότητα να απαντήσει σωστά και στις 2 ερωτήσεις;

β. Αν το διαγώνισμα αποτελείται από 2 τέτοιες ερωτήσεις, ποια η πιθανότητα να απαντήσει σωστά και στις 2 ερωτήσεις; ΘΕΜΑ 1 ο Ένας φοιτητής απαντά σε ερωτήσεις ενός διαγωνίσματος πολλαπλής επιλογής με 4 απαντήσεις ανά ερώτηση, εκ των οποίων μόνο η μία είναι σωστή κάθε φορά. Η πιθανότητα να γνωρίζει ο φοιτητής την σωστή

Διαβάστε περισσότερα

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ . Ασκήσεις σχ. βιβλίου σελίδας 54 56 Α ΟΜΑ ΑΣ. Από µία τράπουλα µε 5 φύλλα παίρνουµε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχοµένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν είναι 5 i) εχόµαστε

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Άσκηση 1 Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες:

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Όνομα/Επίθετο: Ζήτημα 1ο Να γράψετε στη γλώσσα των συνόλων και λεκτικά ποιο ενδεχόμενο παριστάνει κάθε ένα

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ . Να βρείτε το δειγµατικό χώρο της ρίψης ενός ζαριού.. Επιλέγουµε ένα µαθητή Λυκείου και σηµειώνουµε το φύλο και την τάξη του. Να βρείτε το δειγµατικό χώρο Ω του πειράµατος. 3. Τραβάµε ένα φύλλο από µία

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Πιθανότητες Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 7 / 0 / 0 6 Γενικής κεφάλαιο 3 94 ασκήσεις και τεχνικές σε 8 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

1.1 Πείραμα Τύχης - δειγματικός χώρος

1.1 Πείραμα Τύχης - δειγματικός χώρος 1. ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Πείραμα Τύχης - δειγματικός χώρος Κάθε πείραμα στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό πείραμα. Τέτοια πειράματα

Διαβάστε περισσότερα

ΘΕΜΑ Α Να χαρακτηρίσετε τις παρακάτω προτάσεις ως αληθής (Α) ή ψευδής (Ψ)

ΘΕΜΑ Α Να χαρακτηρίσετε τις παρακάτω προτάσεις ως αληθής (Α) ή ψευδής (Ψ) Κριτήριο αξιολόγησης στις πιθανότητες Ομάδα: Α Όνομα.Επώνυμο....ημ/νία Να χαρακτηρίσετε τις παρακάτω προτάσεις ως αληθής (Α) ή ψευδής (Ψ). Δύο συμπληρωματικά ενδεχόμενα δεν είναι ασυμβίβαστα.. Αν Α και

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος .Ένα κουτί περιέχει τέσσερις λαχνούς αριθμημένους από το εώς το 4. Εκλέγουμε έναν λαχνό στην τύχη,σημειώνουμε το αποτέλεσμα και δεν ξανατοποθετούμε τον λαχνό στο κουτί. Επαναλαμβάνουμε το πείραμα άλλες

Διαβάστε περισσότερα

ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου

ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου ΓΕΛ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : 013-014 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου Ω, τότε να αποδείξετε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις: ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ Στέλιιος Μιιχαήλογλου-Δημήτρης Πατσιιμάς Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β =

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β = ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ 005 ΘΕΜΑ ο Α.. Θεωρία s s Α.. CV =, αν > 0, ενώ CV =, αν < 0. - Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. ΘΕΜΑ ο α. Πρέπει > 0, άρα A f = (0, + ). β. f () = (α

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

Πιθανότητες. Κεφάλαιο Δειγματικός χώρος - Ενδεχόμενα Κατανόηση εννοιών - Θεωρία

Πιθανότητες. Κεφάλαιο Δειγματικός χώρος - Ενδεχόμενα Κατανόηση εννοιών - Θεωρία Κεφάλαιο 1 Πιθανότητες 1.1 Δειγματικός χώρος - Ενδεχόμενα 1.1.1 Κατανόηση εννοιών - Θεωρία 1. Ποιό πείραμα λέγεται αιτιοκρατικό και ποιό πείραμα τύχης; 2. Τι ονομάζουμε δειγματικό χώρο ενός πειράματος

Διαβάστε περισσότερα

15, 11, 10, 10, 14, 16, 19, 18, 13, 17

15, 11, 10, 10, 14, 16, 19, 18, 13, 17 ΜΕΡΟΣ 1 0 Α Σ Κ Η Σ Ε Ι Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ 1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών στο µάθηµα της Στατιστικής στο τέλος του β τετραµήνου. Πήραµε τις ακόλουθες βαθµολογίες: 15,

Διαβάστε περισσότερα

[ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΤΟ 2 ο ΘΕΜΑ

[ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΤΟ 2 ο ΘΕΜΑ [ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΠΙΘΑΝΟΤΗΤΕΣ ΤΟ ο ΘΕΜΑ Άσκηση 1 Από τους μαθητές ενός Λυκείου, το 5% συμμετέχει στη ομάδα, το 30% συμμετέχει στη θεατρική ομάδα ποδοσφαίρου και το 15%

Διαβάστε περισσότερα

ΑΝΕΣΤΗΣ ΤΣΟΜΙΔΗΣ - ΜΑΘΗΜΑΤΙΚΟΣ

ΑΝΕΣΤΗΣ ΤΣΟΜΙΔΗΣ - ΜΑΘΗΜΑΤΙΚΟΣ ΑΝΕΣΤΗΣ ΤΣΟΜΙΔΗΣ - ΜΑΘΗΜΑΤΙΚΟΣ 1) ΣΤΑΤΙΣΤΙΚΗ 1. Οι παρακάτω αριθμοί παρουσιάζουν τις ενδείξεις ενός ζαριού το οποίο ρίξαμε 20 φορές. 5 5 5 1 2 5 4 3 2 3 1 3 6 4 1 4 6 6 5 4 i) Να κατασκευάσετε πίνακα α)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ : 3 ώρες (180 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ: Ευρωπαϊκό τυπολόγιο Υπολογιστής τσέπης χωρίς δυνατότητα προγραμματισμού

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α.1. Αν η συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα Δ, τότε να αποδείξετε ότι:

ΘΕΜΑ 1ο Α.1. Αν η συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα Δ, τότε να αποδείξετε ότι: ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 30 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1ο

Διαβάστε περισσότερα

Διάλεξη 4: Θεωρία Πιθανοτήτων Ασκήσεις 4

Διάλεξη 4: Θεωρία Πιθανοτήτων Ασκήσεις 4 Διάλεξη 4: ΑΣΚΗΣΕΙΣ. Η πιθανότητα εμφάνισης βλάβης σε ένα μηχάνημα εργοστασίου ισούται με 0.03, η πιθανότητα εμφάνισης σε ένα δεύτερο ισούται με 0.0 και η πιθανότητα βλάβης και στα δυο ισούται με 0.05.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α. ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του

Διαβάστε περισσότερα

3.2 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ. Σχετική συχνότητα ενδεχοµένου Α : 2. Ιδιότητες της f, λ το πλήθος απλών ενδεχοµένων :

3.2 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ. Σχετική συχνότητα ενδεχοµένου Α : 2. Ιδιότητες της f, λ το πλήθος απλών ενδεχοµένων : 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ. Σχετική συχνότητα ενδεχοµένου Α : Είναι το πηλίκο f κ A = ν ενδεχόµενου Α σε ν το πλήθος εκτελέσεις του πειράµατος όπου κ το πλήθος των πραγµατοποιήσεων του. Ιδιότητες

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΛΥΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΛΥΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 01 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία και ώρα εξέτασης: Παρασκευή 1/5/01 8:00

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ι. Ενότητα: Πιθανότητες. Διδάσκων: Επίκ. Καθ. Αθανάσιος Λαπατίνας. Τμήμα: Οικονομικών Επιστημών

Τίτλος Μαθήματος: Στατιστική Ι. Ενότητα: Πιθανότητες. Διδάσκων: Επίκ. Καθ. Αθανάσιος Λαπατίνας. Τμήμα: Οικονομικών Επιστημών Τίτλος Μαθήματος: Στατιστική Ι Ενότητα: Πιθανότητες Διδάσκων: Επίκ. Καθ. Αθανάσιος Λαπατίνας Τμήμα: Οικονομικών Επιστημών Διάλεξη 4: ΑΣΚΗΣΕΙΣ. Η πιθανότητα εμφάνισης βλάβης σε ένα μηχάνημα εργοστασίου

Διαβάστε περισσότερα

ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΛ ΜΑΘ. ΣΤΑΤΙΣΤΙΚΗ Γ 369 Α. Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) = x είναι f (x) = Β. Να γράψετε τις παραγώγους των παρακάτω συναρτήσεων: Μονάδες

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1. Να αποδείξετε

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου

Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου Άλγεβρα Α Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Άλγεβρα Α Λυκείου Οι πράξεις των πραγματικών αριθμών και οι ιδιότητες τους Αν οι αριθμοί α,β είναι αντίστροφοι, να αποδείξετε ότι: 7 4 : 8 0 7 Να

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

Θέματα Στατιστικής. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Στατιστική. Δημόσια Διοίκηση Πάντειο. 24 θέματα σε 5 σελίδες

Θέματα Στατιστικής. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Στατιστική. Δημόσια Διοίκηση Πάντειο. 24 θέματα σε 5 σελίδες Θέματα Στατιστικής Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Στατιστική Δημόσια Διοίκηση Πάντειο 24 θέματα σε 5 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 2 9 / 3 / 2 0

Διαβάστε περισσότερα

ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ.

ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ. ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ. Είδαμε πως το 4.2% των μαθητών στο δείγμα μας δεν έχουν ελληνική καταγωγή. Θα μπορούσαμε να εξετάσουμε κάποια ειδικά χαρακτηριστικά αυτών των ξένων μαθητών

Διαβάστε περισσότερα

ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ

ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ Θ Ε Μ Α 1 Από τους 120 μαθητές ενός Λυκείου, οι 24 μαθητές συμμετέχουν σε ένα διαγωνισμό Α, οι 20 μαθητές συμμετέχουν σε ένα διαγωνισμό Β και οι 12 μαθητές

Διαβάστε περισσότερα

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα:

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: 1 Η Έννοια της Πιθανότητας Η Έννοια της Πιθανότητας 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: α) Να εμφανιστεί περιττός αριθμός κατά την ρίψη ενός ζαριού. (1/2) β) Να εμφανιστεί τουλάχιστον

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 7 ΜΑΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Α. Να αποδείξετε

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 Θέμα 1 ο A. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: Ρ(Α Β) = Ρ(Α) +

Διαβάστε περισσότερα

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους Πιθανότητες Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους «Πείραμα» Tύχης Οτιδήποτε συμβαίνει και δεν γνωρίζουμε από πριν το ακριβές αποτέλεσμά του. Απασχόλησαν

Διαβάστε περισσότερα

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΜΕΡΟΣ Α. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ 77. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ Κλασικός ορισμός πιθανότητας Αν ένα στοιχείο του συνόλου του δειγματικού χώρου επιλέγεται στην τύχη και δεν έχει κανένα πλεονέκτημα έναντι των άλλων,

Διαβάστε περισσότερα

ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ. ΠΛΗΘΥΣΜΟΣ ΔΕΙΓΜΑ

ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ. ΠΛΗΘΥΣΜΟΣ ΔΕΙΓΜΑ 1 4.1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ. ΠΛΗΘΥΣΜΟΣ ΔΕΙΓΜΑ ΘΕΩΡΙΑ 1.Πληθυσμός άτομα Πληθυσμός ονομάζεται ένα σύνολο του οποίου τα στοιχεία εξετάζουμε ως προς κάποιο χαρακτηριστικό. Τα στοιχεία του πληθυσμού

Διαβάστε περισσότερα

Τ ρ α π ε ζ α Θ ε μ α τ ω ν

Τ ρ α π ε ζ α Θ ε μ α τ ω ν Τ ρ α π ε ζ α Θ ε μ α τ ω ν Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Π ι θ α ν ο τ η τ ε ς 868 936 064 073 080

Διαβάστε περισσότερα

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α). 1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 102, Στρόβολος 200, Λευκωσία Τηλ. 57-2278101 Φαξ: 57-2279122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 201 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία:

Διαβάστε περισσότερα

Γ. Ε. ΛΥΚΕΙΟ 2008 ΜΑΘ. ΚΑΙ ΣΤ. ΣΤΑΤ. ΤΑΞΗ Γ

Γ. Ε. ΛΥΚΕΙΟ 2008 ΜΑΘ. ΚΑΙ ΣΤ. ΣΤΑΤ. ΤΑΞΗ Γ Γ. Ε. ΛΥΚΕΙΟ 008 43 Γ. Ε. ΛΥΚΕΙΟ 008 44 Α. Έστω f συνάρτηση με πεδίο ορισμού Α παραγωγίσιμη σε κάθε Α και c πραγματική σταθερά. Να αποδείξετε ότι: (cf ()) = cf () Μονάδες 5 Β. Να χαρακτηρίσετε με Σ (σωστό)

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 2: Θεωρία Πιθανοτήτων Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ 4ο Λύκειο Περιστερίου Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν ααννάά εεννόόττηητταα ΑΛΓΕΒΡΑ

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ 32. Μέτρια 18.9% Καλή 40.2% Πολύ καλή 40.8% ΔΙΑΓΡΑΜΜΑ 31. 10 Αττική. Φαίνεται πως οι μαθητές στην Αττική έχουν καλύτερες γνώσεις Αγγλικών.

ΠΙΝΑΚΑΣ 32. Μέτρια 18.9% Καλή 40.2% Πολύ καλή 40.8% ΔΙΑΓΡΑΜΜΑ 31. 10 Αττική. Φαίνεται πως οι μαθητές στην Αττική έχουν καλύτερες γνώσεις Αγγλικών. Β. Ενδιαφέροντα κι εξωσχολικές δραστηριότητες. Γνώση Αγγλικών Ένα εξαιρετικά μεγάλο ποσοστό της τάξεως του 97.9% των ερωτηθέντων μαθητών γνωρίζει Αγγλικά. Το επίπεδο γνώσεών τους εκτιμάται απ τους ίδιους

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΩΡΙΑ--ΑΣΚΗΣΕΙΣ

ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΩΡΙΑ--ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΩΡΙΑ--ΑΣΚΗΣΕΙΣ ΟΡΙΣΜΟΙ ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ Δειγματικός Χώρος: Ενδεχόμενο: Το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος τύχης καλείται δειγματικός χώρος. Συμβολίζεται

Διαβάστε περισσότερα

Στάσεις και συνήθειες γονέων με παιδιά μαθητές Λυκείου απέναντι στα φροντιστήρια και την ενισχυτική διδασκαλία. Μάρτιος 2007

Στάσεις και συνήθειες γονέων με παιδιά μαθητές Λυκείου απέναντι στα φροντιστήρια και την ενισχυτική διδασκαλία. Μάρτιος 2007 Στάσεις και συνήθειες γονέων με παιδιά μαθητές Λυκείου απέναντι στα φροντιστήρια και την ενισχυτική διδασκαλία Μάρτιος 2007 Η ταυτότητα της έρευνας [σε γονείς μαθητών Λυκείου] Ανάθεση :Σύνδεσμος φροντιστών

Διαβάστε περισσότερα

Ασκήσεις. Απάντηση : Η μέση θερμοκρασία της εβδομάδας στην Αλεξάνδρεια είναι 18,3 ο C.

Ασκήσεις. Απάντηση : Η μέση θερμοκρασία της εβδομάδας στην Αλεξάνδρεια είναι 18,3 ο C. Ασκήσεις Μάθημα 25 ο 1. Ένα προϊόν πωλείται σε 3 διαφορετικά καταστήματα στις παρακάτω τιμές : 18, 20 και 22. Ποια είναι η μέση τιμή πώλησης του προϊόντος ; Κατάστημα Α Β Γ Τιμές 18 20 22 Μ.Ο. 18 20 22

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 1.Δίνεται η εξίσωση f x x 4x. Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 1.Δίνεται η εξίσωση f x x 4x. Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ Δίνεται η εξίσωση fx x 4x Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η εξίσωση f x 0 έχει: α) ρίζα το β) δύο ρίζες πραγματικές και άνισες γ) ρίζες ετερόσημες δ) Αν 3,

Διαβάστε περισσότερα

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ () Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανοµή συχνοτήτων 0 οικογενειών ως προς τον αριθµό των παιδιών τους, να βρεθεί ο αριθµός

Διαβάστε περισσότερα

3 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 21. (1)

3 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 21. (1) ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α. Το 50% των κατοίκων µιας πόλης διαβάζουν την εφηµερίδα (α), ενώ το 30% των κατοίκων διαβάζουν την εφηµερίδα (α) και δε διαβάζουν την εφηµερίδα (β). Ποια είναι η πιθανότητα ένας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ - ΕΞΑΜΗΝΟ: 3 ο ΑΣΚΗΣΕΙΣ: ΠΙΘΑΝΟΤΗΤΕΣ Άσκηση 1.1 Να βρεθούν οι πιθανότητες:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ - ΕΞΑΜΗΝΟ: 3 ο ΑΣΚΗΣΕΙΣ: ΠΙΘΑΝΟΤΗΤΕΣ Άσκηση 1.1 Να βρεθούν οι πιθανότητες: ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-16 ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ - ΕΞΑΜΗΝΟ: 3 ο ΑΣΚΗΣΕΙΣ: ΠΙΘΑΝΟΤΗΤΕΣ Άσκηση 1.1 Να βρεθούν οι πιθανότητες: α) Να γεννηθούν δύο κορίτσια και ένα αγόρι σε τρεις

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 6: Ασκήσεις, 3 η γενική εργασία. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ / ΣΤΑΤΙΣΤΙΚΗ 03 06 000... ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.4 : Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (ΙV). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΡΧΑΓΓΕΛΟΥ ΛΑΚΑΤΑΜΕΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:...ΤΜΗΜΑ:...ΑΡ.:... (α) Να ελέγξετε ότι το γραπτό αποτελείται από 11 σελίδες.

ΓΥΜΝΑΣΙΟ ΑΡΧΑΓΓΕΛΟΥ ΛΑΚΑΤΑΜΕΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:...ΤΜΗΜΑ:...ΑΡ.:... (α) Να ελέγξετε ότι το γραπτό αποτελείται από 11 σελίδες. ΓΥΜΝΑΣΙΟ ΑΡΧΑΓΓΕΛΟΥ ΛΑΚΑΤΑΜΕΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011 2012 ΠΡΟΑΓΩΓΙΚΕΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΒΑΘΜΟΣ Αρ.:..... Ολογρ.:..... ΥΠΟΓΡΑΦΗ:..... ΗΜΕΡΟΜΗΝΙΑ: 05.06.2012 ΔΙΑΡΚΕΙΑ:

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1.ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Σε ένα σχολείο με 00 μαθητές, οι 90 έχουν ποδήλατο, 36 έχουν «παπί», ενώ 84 άτομα δεν έχουν ούτε ποδήλατο ούτε παπί. Διαλέγουμε

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. 1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. 1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1 ο Αχαρνών 97 Αγ Νικόλαος 086596 ο Αγγ Σικελιανού Περισσός 078688 Ε ΛΙΑΤΣΟΣ Μαθηµατικός 7 t t 5 Ο πληθυσµός µιας κοινωνίας βακτηριδίων δίνεται από τον τύπο P(t) = e e σε δεκάδες µικρόβια και t 0 Α Να αποδειχθεί

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ

ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ 1 1) Δίνεται ο διπλανός πίνακας 43 παρατηρήσεων της μεταβλητής Χ και οι αντίστοιχες συχνότητές τους ν i. Αν 116 η μέση τιμή των παρατηρήσεων είναι x =, η διάμε- 43 σος είναι δ=3 και ισχύει κ>10, να υπολογιστούν

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ Ενότητα 1: Σύνολα 1. Με τη βοήθεια του πιο κάτω διαγράμματος να γράψετε με αναγραφή τα σύνολα: Ω A 5. 1. B Ω =. 6. 4. 3. 7. 8.. Από το διπλανό διάγραμμα, να γράψετε με αναγραφή τα σύνολα: 3. Δίνεται το

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ(3)

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Φύλλο εργασίας 3 ο Δομή επιλογής Εισαγωγή στις Αρχές της Επιστήμης Η/Υ.

Φύλλο εργασίας 3 ο Δομή επιλογής Εισαγωγή στις Αρχές της Επιστήμης Η/Υ. Φύλλο εργασίας 3 ο Δομή επιλογής Εισαγωγή στις Αρχές της Επιστήμης Η/Υ. Στα προβλήματα που αντιμετωπίσατε μέχρι τώρα, εκτελούνταν όλες οι εντολές σειριακά (η μια εντολή μετά την άλλη). Στην πραγματικότητα

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω. ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από

Διαβάστε περισσότερα

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ τράπεζαθεμάτων θέμαδεύτεροκαιτέταρτο Επιμέλεια: ΕμμανουήλΚ.Σκαλίδης ΑντώνηςΚ.Αποστόλου ΚόμβοςΑτσιποπούλου014-15 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΙΘΑΝΟΤΗΤΕΣ 1. Ένα κουτί περιέχει 5 άσπρες,

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Ερωτηµατολόγιο PMP , +

Ερωτηµατολόγιο PMP , + Ερωτηµατολόγιο PMP Διαβάστε προσεκτικά κάθε ένα από τα παρακάτω προβλήµατα. Για κάθε πρόβληµα υπάρχουν τέσσερις εναλλακτικές απαντήσεις από τις οποίες µόνο µία είναι η σωστή. Παρακαλώ επιλέξτε τη σωστή

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ

Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ Στην καθημερινή ζωή μας ακούμε φράσεις όπως: Ο έμπορος κερδίζει 30% (τριάντα τοις εκατό ή τριάντα στα εκατό) στην τιμή της αγοράς Τι σημαίνει ο έμπορος κερδίζει 30%; Αν

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες

Διαβάστε περισσότερα

Εισαγωγή στα ΣΥΝΟΛΑ. Ε.1 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Α), αν είναι αληθείς ή με (Ψ), αν είναι ψευδής

Εισαγωγή στα ΣΥΝΟΛΑ. Ε.1 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Α), αν είναι αληθείς ή με (Ψ), αν είναι ψευδής Εισαγωγή στα ΣΥΝΟΛΑ Ε. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Α), αν είναι αληθείς ή με (Ψ), αν είναι ψευδής i) Αν Α= {0,5,8,3,89}, τότε το Α. ii) Αν Α = {, {,5}, 8, 0}, τότε το Α. iii) Τα σύνολα

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 Ζήτηµα 1ο Α.1. Α.2. Β.1. Β.2. Β.3. Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α)

Διαβάστε περισσότερα

Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς

Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς Μεθοδική Επανάληψη www.askisopolis.gr Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς Ε. Σύνολα i. Τι είναι το σύνολο; ii. Ποιοι είναι οι βασικοί τρόποι παράστασης συνόλων και τι γνωρίζετε γι αυτούς; iii. Πότε

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ (4) Ημερομηνία και ώρα εξέτασης: Δευτέρα, 25/5/2015

Διαβάστε περισσότερα

H Μετάβαση από το Δημοτικό στο Γυμνάσιο. Α1 Γυμνάσιο Χέρσου Σχ. Έτος

H Μετάβαση από το Δημοτικό στο Γυμνάσιο. Α1 Γυμνάσιο Χέρσου Σχ. Έτος H Μετάβαση από το Δημοτικό στο Γυμνάσιο Α1 Γυμνάσιο Χέρσου Σχ. Έτος 2013-14 Η μεταφορά στο σχολείο Στο μάθημα πάντα προσέχουμε!!!!! Καθημερινή εξέταση Διαβάζουμε για να μην έχουμε τα παρακάτω φαινόμενα

Διαβάστε περισσότερα