Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ"

Transcript

1 Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής

2 ΕΝΟΤΗΤΑ Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Έννοια Συνάρτησης Πεδίο Ορισμού Συνάρτησης Γραφικές Παραστάσεις Ισότητα συναρτήσεων-πράξεις συναρτήσεων Σύνθεση συναρτήσεων Θωρία-Σχόλια-Μεθοδολογικές υποδείξεις-παραδείγματα-ασκήσεις σε κατηγορίες Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών Copyriht: Μαθηματικός Περιηγητής Σχολικό Έτος: Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής

3 ΜΑΘΗΜΑ ο Βασικές γνώσεις-επαναλήψεις Τα βασικά σύνολα είναι: Το σύνολο των φυσικών αριθμών Ν = {0,,, 3,...}, Το σύνολο των ακεραίων αριθμών Ζ = {..., 3,,, 0,,, 3,...}, Το σύνολο των ρητών αριθμών συμβολίζεται με Q και είναι όλιο οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή, όπου α, β ακέραιοι με β 0. Το σύνολο R των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται με τα σημεία ενός άξονα, τ ο υ ά ξ ο ν α τ ω ν π ρ α γ μ α τ ι κ ώ ν α ρ ι θ μ ώ ν. Για τα σύνολα Ν, Ζ, Q και R ισχύει: Σχηματικά έχουμε: Πράξεις και διάταξη στο R Οι σπουδαιότερες ιδιότητες της διάταξης των πραγματικών αριθμών είναι οι: Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 3

4 Αν α β και β γ, τότε α γ Αν α, β 0 και ν ϵ N *, τότε ισχύει η ισοδυναμία: Aν αβ > 0, τότε ισχύει η ισοδυναμία: Διαστήματα πραγματικών αριθμών Αν α, β ϵ R με α < β, τότε ονομάζουμε διαστήματα με άκρα τα α, β καθένα από τα παρακάτω σύνολα: (α, β) = { ϵ R α < < β } : ανοικτό διάστημα [α, β] = { ϵ R α β } : κλειστό διάστημα [α, β) = { ϵ R α < β } : κλειστό-ανοικτό διάστημα (α, β] = { ϵ R α < β } : ανοικτό-κλειστό διάστημα. (Σχ. 3) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 4

5 Αν α ϵ R, τότε ονομάζουμε μη φραγμένα διαστήματα με άκρο το α καθένα από τα παρακάτω σύνολα: (α, + ) = { ϵ R > α} [α, + ) = { ϵ R α} (, α) = { ϵ R < α} (, α] = { ϵ R α} (Σχ. 4) Υπό μορφή διαστήματος το σύνολο R το συμβολίζουμε με (,+ ). Τα σημεία ενός διαστήματος Δ, που είναι διαφορετικά από τα άκρα του, λέγονται εσωτερικά σημεία του Δ. Απόλυτη τιμή πραγματικού αριθμού Η απόλυτη τιμή ενός πραγματικού αριθμού α, που συμβολίζεται με α, ορίζεται ως εξής:, 0, 0 Οι βασικές ιδιότητες της απόλυτης τιμής είναι οι εξής: 3 Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 5

6 4 ( 0) 5 6 ( 0) 7 ή ( 0) ή Α. Κατανοώ. Να γράψετε σε ποια σύνολα ανήκουν οι επόμενοι αριθμοί: 3, 4,, 3. Αν και να βρείτε σε ποιο διάστημα ανήκουν οι παραστάσεις: 3. Να συμπληρώσετε τα παρακάτω κενά: 3 και ( 0) 9... Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 6

7 4. Να γράψετε σε μορφή διαστήματατος τις επόμενες ανισώσεις: Ανίσωση Διάστημα 5. Να γράψετε τα επόμενα διαστήματα σε μορφή ανισώσεων: Διάστημα (, ) Ανίσωση [, ) ( 3,7] [0, ] 5 3, Β. Εμπεδώνω. Να γράψετε τα παρακάτω σύνολα σε μορφή διαστήματος / 3 B / Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 7

8 ΜΑΘΗΜΑ ο Πεδίο Ορισμού Συνάρτησης Η έννοια της πραγματικής συνάρτησης ΟΡΙΣΜΟΣ Έστω Α ένα υποσύνολο του R. Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα), με την οποία κάθε στοιχείο ϵ A αντιστοιχίζεται σε ένα μόνο πραγματικό αριθμό y. Το y ονομάζεται τιμή της στο και συμβολίζεται με (). Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: Χρήσιμες παρατηρήσεις : A R () Το γράμμα, που παριστάνει οποιοδήποτε στοιχείο του Α λέγεται ανεξάρτητη μεταβλητή, ενώ το γράμμα y, που παριστάνει την τιμή της στο, λέγεται εξαρτημένη μεταβλητή. Το πεδίο ορισμού Α της συνάρτησης συνήθως συμβολίζεται με D. Το σύνολο που έχει για στοιχεία του τις τιμές της σε όλα τα ϵ A, λέγεται σύνολο τιμών της και συμβολίζεται με A. Είναι δηλαδή: / ( ) A y y ά A ΜΕΘΟΔΟΣ- Εύρεσης του πεδίου ορισμού μίας συνάρτησης Για να βρούμε το πεδίο ορισμού περιπτώσεις: η περίπτωση: Αν D μίας συνάρτησης διακρίνουμε τις επόμενες A( ) ( ), τότε λύνουμε την εξίσωση B( ) 0 και εξαιρούμε από το τα που B( ) μηδενίζουν τον παρονομαστή, δηλαδή το πεδίο ορισμού της συνάρτησης είναι: D / B( ) 0 η περίπτωση: Αν ( ) A( ), τότε λύνουμε την ανίσωση A( ) 0 και το πεδίο ορισμού της συνάρτησης είναι: Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 8

9 D / A( ) 0 3 η περίπτωση: Αν ( ) ln A( ) ή ( ) log A( ), τότε λύνουμε την ανίσωση A( ) 0 και το πεδίο ορισμού της συνάρτησης είναι: D / A( ) 0 Προφανώς η εύρεση του πεδίου ορισμού μιας συνάρτησης μπορεί να αποτελεί και συνδυασμό των παραπάνω περιπτώσεων. Παραδείγματα- Ασκήσεις Λυμένες. Να βρείτε το πεδίο ορισμού των συναρτήσεων: α) ( ) 4 ΛΥΣΗ ( η περίπτωση) α) Πρέπει: 3 β) g( ) Επομένως το πεδίο ορισμού της συνάρτησης είναι: β) Πρέπει: D, 3 40 Επομένως το πεδίο ορισμού της συνάρτησης είναι: Dg. Να βρείτε το πεδίο ορισμού των συναρτήσεων:, 3 α) ( ) 3 β) g ( ) 4 3 ΛΥΣΗ ( η περίπτωση) α) Πρέπει: Επομένως το πεδίο ορισμού της συνάρτησης είναι: β) Πρέπει: D, 3 Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 9

10 4 3 0 ή 3 Επομένως το πεδίο ορισμού της συνάρτησης είναι: g, 3, D 3. Να βρείτε το πεδίο ορισμού των συναρτήσεων: ΛΥΣΗ (3 η περίπτωση) α) Πρέπει: α) ( ) ln β) g( ) log 3 0 Επομένως το πεδίο ορισμού της συνάρτησης είναι: β) Πρέπει:,, D Επομένως το πεδίο ορισμού της συνάρτησης είναι: g,, D 4. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 9 α) ( ) ln 5 4 ΛΥΣΗ (συνδυαστική περίπτωση) g( ) ln( ) β) 3 3 α) Πρέπει να ισχύουν ταυτόχρονα: ή Επομένως το πεδίο ορισμού της συνάρτησης είναι:, 3 3, 4, D Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 0

11 β) Πρέπει να ισχύουν ταυτόχρονα: 0 ή Επομένως το πεδίο ορισμού της συνάρτησης είναι: D, Α. Κατανοώ. Να βρείτε το πεδίο ορισμού των συναρτήσεων: Α) ( ) 9. Να βρείτε το πεδίο ορισμού των συναρτήσεων: Β) g( ) ln Α) ( ) 5 5 Β) g( ) 5 3. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 3 Α) ( ) Β) g( ) Ασκήσεις από το Σχολικό Βιβλίο /Α. Ποιο είναι το πεδίο ορισμού των παρακάτω συναρτήσεων; Β. Εμπεδώνω. Να βρείτε το πεδίο ορισμού των συναρτήσεων: Α) ( ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: Β) g( ) Α) ( ) 3 3 ln 8 3. Να βρείτε το πεδίο ορισμού των συναρτήσεων: Β) g( ) 4 3 ln Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής

12 Α) 3 ( ) ln 6 5 g( ) 4 4 ln( ) Β) Να βρείτε το πεδίο ορισμού των συναρτήσεων: Α), ( ) 0, Β), 0 g( ), 0, 5. Να βρείτε το πεδίο ορισμού των συναρτήσεων: e ( ) e ln g( ) ln e 6. Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) + g( ) (Πεδία Ορισμού με παράμετρο) 7. Να βρείτε το πεδίο ορισμού της συνάρτησης ( ), για κάθε 3 8. Να βρείτε την τιμή του, ώστε το πεδίο ορισμού των επόμενων συναρτήσεων να είναι το 9. Δίνονται οι συναρτήσεις: α) ( ) ln β) g ( ) 3 ( ) 3 log a, g( ) ln () 0 i) Να βρείτε την τιμή του α ii) Nα βρείτε το πεδίο ορισμου της συνάρτησης με a iii) Nα βρείτε το πεδίο ορισμου της συνάρτησης g 0. Δίνεται η συνάρτηση: με 5 και 5 4 a, a 6 ( ), 7 i) Nα βρείτε το πεδίο ορισμού της συνάρτησης ii) Να βρείτε τις τιμές του α και του β. Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής

13 iii), 3 iv) Να λύσετε την εξίσωση ( ) 3 (Συναρτησιακές σχέσεις). Έστω μια συνάρτηση : 0, με: ln e για κάθε 0 i) Να βρείτε τον τύπο της συνάρτησης ii) Να βρείτε τις τιμές:,,. Έστω μια συνάρτηση : με: ( ) ( ) i) Να βρείτε τον τύπο της συνάρτησης, για κάθε ii) Να βρείτε τον τύπο της συνάρτησης g( ) ( ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 3

14 Γραφική παράσταση: Έστω μια συνάρτηση με πεδίο ορισμού Α και Oy ένα σύστημα συντεταγμένων στο επίπεδο. Το σύνολο των σημείων M(, y) για τα οποία ισχύει των σημείων, ( ) συνήθως με Επομένως, η ΜΑΘΗΜΑ 3 ο Γραφικές Παραστάσεις y, δηλαδή το σύνολο M, A, λέγεται γραφική παράσταση της και συμβολίζεται C. Η εξίσωση, λοιπόν, y = () επαληθεύεται μόνο από τα σημεία της y είναι η εξίσωση της γραφικής παράστασης της. C. Επειδή κάθε A αντιστοιχίζεται σε ένα μόνο y, δεν υπάρχουν σημεία της γραφικής παράστασης της με την ίδια τετμημένη. Αυτό σημαίνει ότι κάθε κατακόρυφη ευθεία έχει με τη γραφική παράσταση της το πολύ ένα κοινό σημείο (Σχ. 7α). Έτσι, ο κύκλος δεν αποτελεί γραφική παράσταση συνάρτησης, αφού υπάρχουν κατακόρυφες ευθείες που έχει δύο κοινά σημεία με τη γραφική του παράσταση. (Σχ. 7β). Οταν δίνεται η γραφική παράσταση μιας συνάρτησης, τότε: α) Το πεδίο ορισμού της είναι το σύνολο Α των τετμημένων των σημείων της C. β) Το σύνολο τιμών της είναι το σύνολο A των τεταγμένων των σημείων της C. γ) Η τιμή της στο 0 C (Σχ. 8). A είναι η τεταγμένη του σημείου τομής της ευθείας 0 και της Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 4

15 Όταν δίνεται η γραφική παράσταση C, μιας συνάρτησης μπορούμε, επίσης, να σχεδιάσουμε και τις γραφικές παραστάσεις των συναρτήσεων και όπως στα επόεμνα παραδείγματα: α) Η γραφική παράστασης της συνάρτησης - είναι συμμετρική, ως προς τον άξονα, της γραφικής παράστασης της, γιατί αποτελείται από τα σημεία M (, ()) που είναι συμμετρικά των M(, ()), ως προς τον άξονα. (Σχ. 9). β) Η γραφική παράσταση της αποτελείται από τα τμήματα τηςc που βρίσκονται πάνω από τον άξονα και από τα συμμετρικά, ως προς τον άξονα, των τμημάτων της C που βρίσκονται κάτω από τον άξονα αυτόν. (Σχ. 0). Μερικές βασικές συναρτήσεις Η πολυωνυμική συνάρτηση () = α + β Η πολυωνυμική συνάρτηση () = α, α 0. Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 5

16 Η πολυωνυμική συνάρτηση () = α 3, α 0. Η ρητή συνάρτηση a, α 0. Οι συναρτήσεις ( ) και g( ). Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 6

17 Επειδή, 0 g( ), η γραφική παράσταση της αποτελείται απο δύο, 0 κλάδους. Ο ένας είναι η γραφική παράσταση της y προς τον άξονα y y. και ο άλλος η συμμετρική της ως Οι τριγωνικές συναρτήσεις : () = ημ, () = συν, () = εφ Υπενθυμίζουμε ότι, οι συναρτήσεις () = ημ και () = συν είναι περιοδικές με περίοδο T = π, ενώ η συνάρτηση () = εφ είναι περιοδική με περίοδο Τ = π. Η εκθετική συνάρτηση () = α, 0 < α. Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 7

18 Υπενθυμίζουμε ότι: y y a a a 3 y a a a a y a 4 y y a a a ( a 0 ),,, 7 ( ) 8 Αν a, τότε a a 9 Αν 0 a, τότε a a Η λογαριθμική συνάρτηση () = log α, 0 < α. Υπενθυμίζουμε ότι: y log ya a log a a 3 log a a 4 loga 0 5 log log log a a a 6 7 log log log a log a loga 8 lna e 9 Αν a, τότε loga loga 0 Αν 0 a, τότε loga loga a a Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 8

19 ΜΕΘΟΔΟΣ Αν ζητείται να βρούμε τις τιμές του ώστε: Η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τον άξονα, τότε λύνουμε την ανίσωση ( ) 0. Η γραφική παράσταση της συνάρτησης βρίσκεται κάτω από τον άξονα, τότε λύνουμε την ανίσωση ( ) 0. Η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τη γραφική παράσταση της συνάρτησης g, τότε λύνουμε την ανίσωση ( ) g( ). Η γραφική παράσταση της συνάρτησης βρίσκεται κάτω από τη γραφική παράσταση της συνάρτησης g, τότε λύνουμε την ανίσωση ( ) g( ). Τα κοινά σημεία των γραφικών παραστάσεων των συναρτήσεων και g, τότε Χρήσιμα: λύνουμε την εξίσωση ( ) g( ). Αν μία συνάρτηση διέρχεται από την αρχή των αξόνων, τότε σημαίνει ότι 0 0 Αν μία συνάρτηση διέρχεται από το σημείο A, 0 y o, τότε σημαίνει ότι y 0 o Α. Κατανοώ Ασκήσεις από το σχολικό βιβλίο 6/Α. Nα παραστήσετε γραφικά τη συνάρτηση: και από τη γραφική παράσταση να προσδιορίσετε το σύνολο των τιμών της σε καθεμιά περίπτωση. Β. Εμπεδώνω. Να βρείτε τα κοινά σημεία ων συναρτήσεων: i) και g( ) ii) ( ) και g( ) ( ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 9

20 . Δίνεται η συνάρτηση:, ( ), a i) Να σχεδιάσετε τη γραφική παράσταση της συνάρτησης g. ii) Με τη βοήθεια του (i) ερωτήματος, να βρείτε το πεδίο ορισμού της συνάρτησης g. 3. Δίνεται η συνάρτηση:, g( ), ln, i) Να σχεδιάσετε τη γραφική παράσταση της συνάρτησης. ii) Με τη βοήθεια του (i) ερωτήματος, να βρείτε το πεδίο ορισμού της συνάρτησης. Ασκήσεις από το σχολικό βιβλίο /Α. Για ποιές τιμές του ϵ R η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τον άξονα, όταν: 3/Α. Για ποιές τιμές του ϵ R η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τη γραφική παράσταση της συνάρτησης g, όταν: 5/Β. Να παραστήσετε γραφικά τη συνάρτηση: Aπό τη γραφική παράσταση της να προσδιορίσετε το σύνολο τιμών της σε καθεμιά περίπτωση. Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 0

21 /Β. Να προσδιορίσετε τη συνάρτηση της οποίας η γραφική παράσταση είναι : Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής

22 ΜΑΘΗΜΑ 4 ο Ισότητα συναρτήσεων-πράξεις συναρτήσεων Ισότητα συναρτήσεων Έστω οι συναρτήσεις: ( ) 3 και g( ) Παρατηρούμε ότι: οι συναρτήσεις, g έχουν κοινό πεδίο ορισμού το σύνολο Α = R και για κάθε A ισχύει ( ) g( ), αφού 3 ( ) g( ) Στην περίπτωση αυτή λέμε ότι οι συναρτήσεις, g είναι ίσες Γενικά: OΡΙΣΜΟΣ Δύο συναρτήσεις και g λέγονται ίσες όταν: έχουν το ίδιο πεδίο ορισμού Α και για κάθε A ισχύει ( ) g( ). Για να δηλώσουμε ότι δύο συναρτήσεις και g είναι ίσες γράφουμε g. Έστω τώρα, g δύο συναρτήσεις με πεδία ορισμού Α, Β αντιστοίχως και Γ ένα υποσύνολο των Α και Β. Αν για κάθε ϵ Γ ισχύει ( ) g( ), τότε λέμε ότι οι συναρτήσεις και g είναι ίσες στο σύνολο Γ. (Σχ. ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής

23 Για παράδειγμα, οι συναρτήσεις ( ) και g( ) που έχουν πεδία ορισμού τα σύνολα A = R {} και B = R {0} αντιστοίχως, είναι ίσες στο σύνολο Γ = R {0,}, αφού για κάθε ισχύει ( ) g( ). Παράδειγματα-Ασκήσεις Λυμένες (Άσκηση από το σχολικό βιβλίο) 7/Α. Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις είναι g. Στις περιπτώσεις που είναι g να προσδιορίσετε το ευρύτερο δυνατό υποσύνολο του στο οποίο ισχύει ( ) g( ). ΛΥΣΗ i) ii) iii) ( ) ( ) ( ) και g( ) και g( ) και g( ) i) Τα πεδία ορισμού των συναρτήσεων και g είναι αντίστοιχα: Επομένως ( ) g( ) D και Dg 0, ( ), για κάθε 0, g( ) και. ii) Τα πεδία ορισμού των συναρτήσεων και g είναι αντίστοιχα: Έχουμε: D,0 και ( ) και Επομένως ( ) g( ), για κάθε 0. D iii) Τα πεδία ορισμού των συναρτήσεων και g είναι αντίστοιχα: Έχουμε: D 0,, και Dg 0, g *, 0 g( ), 0 ( ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 3

24 Επομένως Επομένως ( ) g( ), για κάθε 0,,. Πράξεις με συναρτήσεις Έστω οι συναρτήσεις: ( ) και g( ) Το πεδίο ορισμού της είναι A, και της g το B, ορισμού τους, ορίζουμε τις συναρτήσεις:. Στο κοινό πεδίο Άθροισμα των, g : g( ) ( ) g( ) Διαφορά των, g : g( ) ( ) g( ) Γινόμενο των, g : g( ) ( ) g( ) Ειδικά για το πηλίκο των, g ορίζουμε στο κοινό πεδίο ορισμού: ( ) ( ), g( ) 0 g,δηλαδή g( ) ( ), g Το πεδίο ορισμού των g, g, g είναι η τομή A B των πεδίων ορισμού Α και Β των συναρτήσεων και g αντιστοίχως, ενώ το πεδίο ορισμού της g είναι το A B, εξαιρουμένων των τιμών του που μηδενίζουν τον παρονομαστή g(), δηλαδή το σύνολο: / A B, g( ) 0 / A B, g( ) 0 Παραδείγματα-Ασκήσεις Λυμένες. Δίνονται οι συναρτήσεις: ( ) και g( ) Να βρείτε τις συναρτήσεις g, g, g, g Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 4

25 ΛΥΣΗ Βρίσκουμε πρώτα το πεδίο ορισμού των συναρτήσεων και g. Έχουμε: Άρα D,. Ακόμα, 0, άρα Dg, 0 Επομένως για την εύρεση των συναρτήσεων g, g, g, εργαζόμαστε για κάθε,. Έχουμε: Για τη συνάρτηση g,, g( ),, g,, g ισχύει αν, πρέπει επιπλέον να είναι g ( ) 0 0, το οποίο. Οπότε:. Δίνονται οι συναρτήσεις:, g,, 0 ( ) και, 0, 0 g( ), 0 Να βρείτε τις συναρτήσεις ΛΥΣΗ g και g. Στην περίπτωση αυτή το πεδίο ορισμού των συναρτήσεων, g είναι το,0 0,. Για 0 έχουμε: g ( ) g Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 5

26 Για 0 έχουμε: g ( ) g Για 0 είναι (0), g(0) και άρα: g(0) 3 και g(0) Επομένως:, 0 g( ), 0 3, 0, 0 g, 0, 0 και Α. Κατανοώ Ασκήσεις από το σχολικό βιβλίο 8/Α. Δίνονται οι συναρτήσεις: Να βρείτε τις συναρτήσεις g, g, g, g 9/Α. Ομοίως για τις συναρτήσεις: και g( ) και g( ) Β. Εμπεδώνω. Δίνονται οι συναρτήσεις: Να βρείτε τις συναρτήσεις. Δίνονται οι συναρτήσεις:, 0 ( ), 0, 0 g και g. και, 0 g( ), 0 Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 6

27 ( ) Να βρείτε τις συναρτήσεις,, g και g. και g( ), 0, 0 3. Δίνονται οι συναρτήσεις, g : με: g ( ) g ( ) 6 5 g ( ) ( ), για κάθε i) Να βρείτε τους τύπους των συναρτήσεων, g ii) Να υπολογίσετε την παράσταση: A ( ) g( ) ( ) 8 Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 7

28 ΜΑΘΗΜΑ 5 ο Σύνθεση συναρτήσεων Έστω η συνάρτηση ( ). Η τιμή της φ στο μπορεί να οριστεί σε δύο φάσεις ως εξής: α) Στο ϵ R αντιστοιχίζουμε τον αριθμό y = και στη συνέχεια β) στο y = αντιστοιχίζουμε τον αριθμό y, εφόσον y = 0. η g( y) y, που έχει πεδίο ορισμού το σύνολο Β = [0, + ) (β φάση). Έτσι, η τιμή της φ στο γράφεται τελικά: ( ) g ( ) Η συνάρτηση λέγεται σύνθεση της με την g και συμβολίζεται με go. Το πεδίο ορισμού της δεν είναι ολόκληρο το πεδίο ορισμού Α της, αλλά περιορίζεται στα A για τα οποία η τιμή ( ) ανήκει στο πεδίο ορισμού Β της g, δηλαδή είναι το σύνολο A = [, + ). Γενικά: ΟΡΙΣΜΟΣ Αν, g είναι δύο συναρτήσεις με πεδίο ορισμού Α, Β αντιστοίχως, τότε ονομάζουμε σύνθεση της με την g, και τη συμβολίζουμε με go, τη συνάρτηση με τύπο go g ( ) ( ). Το πεδίο ορισμού της go αποτελείται από όλα τα στοιχεία του πεδίου ορισμού της για τα οποία το ( ) ανήκει στο πεδίο ορισμού της g. Δηλαδή είναι το σύνολο : A A / ( ) B Είναι φανερό ότι η go ορίζεται αν A Ø, δηλαδή αν (A) B Ø. Ερώτηση: Ποιο είναι το πεδίο ορισμού της og ; Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 8

29 ΠΡΟΣΟΧΗ Στη συνέχεια, θα ασχοληθούμε μόνο με συναρτήσεις που οι συνθέσεις τους έχουν πεδίο ορισμού διάστημα ή ένωση διαστημάτων. ΣΧΟΛΙΑ Στην παραπάνω εφαρμογή παρατηρούμε ότι go og. Γενικά, αν, g είναι δύο συναρτήσεις και ορίζονται οι go και og, τότε αυτές δ ε ν ε ί ν α ι υ π ο χ ρ ε ω τ ι κ ά ίσες. Αν, g, h είναι τρεις συναρτήσεις και ορίζεται η hogo, τότε ορίζεται και η hogo και ισχύει: ho go hog o Τη συνάρτηση αυτή τη λέμε σύνθεση των, g, h και τη συμβολίζουμε με hogo. Η σύνθεση συναρτήσεων γενικεύεται και για περισσότερες από τρεις συναρτήσεις. Παραδείγματα-Ασκήσεις Λυμένες. Να προσδιορίσετε τη σύνθεση og αν: ( ) e και g( ) ln( ) ΛΥΣΗ Τα πεδία ορισμού των συναρτήσεων, g είναι αντίστοιχα πεδίο ορισμού της og είναι: D και Dg,. Το Για κάθε, og έχουμε:, / ( ), D g. og g e ln( ) ( ) ( ) ln( ) ( ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 9

30 Σημαντική παρατήρηση: Για να βρούμε τη og (ή τη go ) βρίσκουμε πρώτα το πεδίο ορισμού της og (ή της go ) με D og (ή Dgo ) και έπειτα τον τύπο της. Δεν είναι σωστό (και ούτε πάντα το ίδιο) να βρούμε τον τελικό τύπο της og (ή της go ) και από αυτόν να προσδιορίσουμε το πεδίο ορισμού της og (ή της go ).. Να προσδιορίσετε τη σύνθεση og και την go αν: ( ) και g( ) ΛΥΣΗ Τα πεδία ορισμού των συναρτήσεων, g είναι αντίστοιχα, D και Dg. Το πεδίο ορισμού της og είναι: og / ( ), / / 0 0, D g Για κάθε 0, έχουμε: og ( ) g( ) Το πεδίο ορισμού της go είναι: Για κάθε, go έχουμε:, / ( ), D go ( ) g( ( )) g( ) 3 3. Έστω η συνάρτηση με πεδίο ορισμού το A 0,. Να βρείτε το πεδίο ορισμού των συναρτήσεων: i) ( 4) ii) ( e ) iii) (ln ) iv) ( 4 4) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 30

31 ΛΥΣΗ i) Πρέπει: Άρα το πεδίο ορισμού της είναι το A 4,6 4 0, ii) Πρέπει: e e e 0, 0 ln ln Άρα το πεδίο ορισμού της είναι το A, ln iii) Πρέπει: ln 0, 0 ln ln 0 ln e Άρα το πεδίο ορισμού της είναι το A3, e iv) Πρέπει: 4 4 0, ( ) 0 4 0,,0 0, Άρα το πεδίο ορισμού της είναι το A4,0 0, Α. Κατανοώ Άσκηση από το σχολικό βιβλίο: 0/Α. Να προσδιορίσετε τη συνάρτηση go, αν Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 3

32 /Α. Δίνονται οι συναρτήσεις ( ) και g( ). Να προσδιορίσετε τις συναρτήσεις go και og. Β. Εμπεδώνω Ασκήσεις από το σχολικό βιβλίο: 7/Α. Δίνονται οι συναρτήσεις () = + και g() = α +. Για ποια τιμή του α ϵ R ισχύει og go ; /Α. Να εκφράσετε τη συνάρτηση ως σύνθεση δύο ή περισσοτέρων συναρτήσεων, αν Προτεινόμενες:. Δίνεται η συνάρτηση : Να αποδείξετε ότι: με: o ( ), για κάθε i) () ii) ( ) ( ) iii) (0) () 0. Δίνεται η συνάρτηση : Να αποδείξετε ότι: 3. Δίνονται οι συναρτήσεις: με: i) () o ( ) 3, για κάθε ii) ( ) (3 ) 3 ( ) e, g( ) ln( ), h( ) Να βρεθεί η σύνθεση ogoh Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 3

33 ΜΑΘΗΜΑ 6 ο Ασκήσεις-Προβλήματα (Επανάληψη) Α. Από το σχολικό βιβλίο 6/Β. Να βρείτε συνάρτηση τέτοια, ώστε να ισχύει : 8/Β. Δίνονται οι συναρτήσεις: α) (()) =, για κάθε ϵ R {α} και β) g(g()) =, για κάθε ϵ [0, ]. 3/Β. Στο επόμενο σχήμα είναι AB =, AΓ = 3 και ΓΔ =. Να εκφράσετε το εμβαδόν του γραμμοσκιασμένου χωρίου ως συνάρτηση του = ΑΜ, όταν το Μ διαγράφει το ευθύγραμμο τμήμα ΑΓ. /Β. Ένα κουτί κυλινδρικού σχήματος έχει ακτίνα βάσης cm και όγκο 68 cm 3. Το υλικό των βάσεων κοστίζει 4 δρχ. ανά cm, ενώ το υλικό της κυλινδρικής επιφάνειας,5 δρχ. ανά cm. Να εκφράσετε το συνολικό κόστος ως συνάρτηση του. Πόσο κοστίζει ένα κουτί με ακτίνα βάσης 5 cm, και ύψος 8 cm; Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 33

34 4/Β. Ένα ορθογώνιο ΚΛΜΝ ύψους cm είναι εγγεγραμμένο σε ένα τρίγωνο ΑΒΓ βάσης ΒΓ = 0cm και ύψους ΑΔ = 5cm. Να εκφράσετε το εμβαδό Ε και την περίμετρο Ρ του ορθογωνίου ως συνάρτηση του. ΕΡΓΑΣΙΑ: 4/Α. Οι ανθρωπολόγοι εκτιμούν οτι το ύψος του ανθρώπου δίνεται από τις συναρτήσεις: A() =, ,64 (για τους άνδρες) και Γ() =,75 + 7,48 (για τις γυναίκες) όπου σε εκατοστά, το μήκος του βραχίονα. Σε μία ανασκαφή βρέθηκε ένα οστό από βραχίονα μήκους 0,45 m. α) Αν προέρχεται από άνδρα ποιο ήταν το ύψος του; β) Aν προέρχεται από γυναίκα ποιο ήταν το ύψος της; 5/Α. Σύρμα μήκους l = 0cm κόβεται σε δύο κομμάτια με μήκη cm και (0 ) cm. Με το πρώτο κομμάτι σχηματίζουμε τετράγωνο και με το δεύτερο ισόπλευρο τρίγωνο. Να βρείτε το άθροισμα των εμβαδών των δύο σχημάτων ως συνάρτηση του. 9/Β. Οι πολεοδόμοι μιας πόλης εκτιμούν ότι, όταν ο πληθυσμός Ρ της πόλης είναι εκατοντάδες χιλιάδες άτομα, θα υπάρχουν στην πόλη χιλιάδες αυτοκίνητα. Έρευνες δείχνουν ότι σε t έτη από σήμερα ο πληθυσμός της πόλης θα είναι εκατοντάδες χιλιάδες άτομα. i) Να εκφράσετε τον αριθμό Ν των αυτοκινήτων της πόλης ως συ-νάρτηση του t. ii) Πότε θα υπάρχουν στην πόλη 0 χιλιάδες αυτοκίνητα.; Προτεινόμενες Ασκήσεις Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 34

35 . Δίνονται οι συναρτήσεις: ln και g( ) e α) Να βρείτε τα πεδία ορισμού των συναρτήσεων και g. β) Να βρείτε τις συναρτήσεις og και go. γ) Να βρείτε τα σημείο τομής των συναρτήσεων και g (αν υπάρχουν). δ) Να βρείτε τα σημείο τομής των και g με τους άξονες.. Δίνονται οι συναρτήσεις: και g( ) α) Να εξετάσετε σε ποιο σύνολο οι συναρτήσεις, g είναι ίσες. β) Να βρείτε για ποια η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τη γραφική παράσταση της συνάρτησης g. γ) Να βρείτε για ποια η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τον άξονα. 3. Δίνονται οι συναρτήσεις: και α) Να βρείτε τις συναρτήσεις og και go. g( ) β) Να βρείτε για ποια η γραφική παράσταση της συνάρτησης og βρίσκεται πάνω από τη γραφική παράσταση της συνάρτησης g. γ) Να βρείτε για ποια η γραφική παράσταση της συνάρτησης go βρίσκεται πάνω από τη γραφική παράσταση της συνάρτησης g. δ) Να χαράξετε τη γραφική παράσταση των συναρτήσεων go, και g. 4. Δίνεναι η συνάρτηση : 0, με: Να αποδείξετε ότι: y y, για κάθε, y 0 i) () 0 ii) ( ), 0 iii) ( ) ( y) y,, y 0 Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 35

36 5. Δίνεναι η συνάρτηση : Να αποδείξετε ότι: με: i) (0) 0, (), ( ) y y, για κάθε, y ii) H είναι άρτια iii), Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 36

37 Διαγώνισμα στην ενότητα ΘΕΜΑ ο Α. Να δώσετε τους παρακάτω ορισμούς: Α. Πότε δύο συναρτήσεις και g λέγονται ίσες; (Μονάδες 8) Α. Πότε λέμε ότι η συνάρτηση έχει μέγιστο στο σημείο 0 του πεδίου ορισμού της Α. (Μονάδες 7) Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλα σας τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή τη λέξη Λάθος αν η πρόταση είναι λανθασμένη.. Αν ορίζονται οι συνθέσεις og και go, τότε είναι υποχρεωτικά ίσες. Ισχύει: ho og ho og 3. Αν A είναι το πεδίο ορισμού της συνάρτησης και B το πεδίο ορισμού της g, τότε το πεδίο ορισμού της g είναι A B. 4. Αν δύο συναρτήσεις, g έχουν πεδία ορισμού αντίστοιχα A και B με A B, τότε το πεδίο ορισμού της g είναι το B. 5. Αν δύο συναρτήσεις, g έχουν πεδία ορισμού αντίστοιχα A και B, τότε το πεδίο ορισμού της g είναι πάντα το A B. (Μονάδες 5Χ3=5) ΘΕΜΑ ο Δίνονται οι συναρτήσεις: ( ) ln( ) και ( ) g e Α. Να βρείτε τα πεδία ορισμού των, g (Μονάδες ) Β. Να βρείτε τις συναρτήσεις g και g (Μονάδες 0) Γ. Να ορίσετε τις συναρτήσεις og και go (Μονάδες 8) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 37

38 ΘΕΜΑ 3 ο Δίνονται οι συναρτήσεις: και g( ) Α. Να εξετάσετε σε ποιο σύνολο οι συναρτήσεις, g είναι ίσες. (Μονάδες 8) Β. Να βρείτε για ποια η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τη γραφική παράσταση της συνάρτησης g. (Μονάδες ) Γ. Να βρείτε για ποια η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τον άξονα. (Μονάδες 0) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής 38

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ Θ Ε Τ Ι Κ Ω Ν Σ Π Ο Υ Δ Ω Ν, Ο Ι Κ Ο Ν Ο Μ Ι Α Σ & Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Γ ΛΥΚΕΙΟΥ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΜΑΘΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ-ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Για τις Πανελλαδικές Εξετάσεις 07 ΚΕΦΑΛΑΙΟ ο : ΣΥΝΑΡΤΗΣΕΙΣ

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.ii) 1.iii) 1.iv) Ποιο είναι το πεδίο ορισµού της συνάρτησης f(x) = ln(1.

Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.ii) 1.iii) 1.iv) Ποιο είναι το πεδίο ορισµού της συνάρτησης f(x) = ln(1. .. Ασκήσεις σχολικού βιβλίου σελίδας 45 48 A Οµάδας.i) Ποιο είναι το πεδίο ορισµού της συνάρτησης () + 3+ Οι ρίζες του τριωνύµου 3 + είναι και. Πρέπει 3 + 0 και Άρα D (, ) (, ) (, + ).ii) Ποιο είναι το

Διαβάστε περισσότερα

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet: Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R . ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ. Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της

ΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο. ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0 ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 5. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 Ορισμοί Ονομάζουμε συνάρτηση την διαδικασία με την οποία σε κάθε τιμή της μεταβλητής αντιστοιχίζουμε μια μόνο τιμή της μεταβλητής. Ονομάζουμε

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x 1 4.3 Η ΣΥΝΑΡΤΗΣΗ f () A Ομάδας Ασκήσεις σχολικού βιβλίου σελίδας 164 167 1. Να βρείτε τη γωνία που σχηματίζει με τον άξονα η ευθεία = + = 3 1 i = + 1 iv) = 3 + εφω = 1 ω = 45 ο εφω = 3 ω = 60 ο i εφω

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

lnx ln x ln l x 1. = (0,1) (1,7].

lnx ln x ln l x 1. = (0,1) (1,7]. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 + Ερωτήσεις ανάπτυξης. ** Έστω η συνάρτηση f () = - 3 +. α) Να βρείτε τις τιμές f (), f (0), f (-3), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),,

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 73 8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ρισμός της συνέχειας Έστω οι συναρτήσεις g h παρακάτω σχήματα των οποίων οι γραφικές παραστάσεις δίνονται στα C h 6 l ( C l g( C g l l (a Παρατηρούμε ότι:

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

5.3. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

5.3. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ 5.3. Αντίστροφη συνάρτηση Έστω μια συνάρτηση f : A.Αν υποθέσουμε ότι αυτή είναι - τότε για κάθε στοιχείο y του συνόλου τιμών f (A) της f υπάρχει μοναδικό στοιχείο του πεδίου ορισμού της Α για το οποίο

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1 Ερωτήσεις ανάπτυξης. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: α) f () = ( -) 4 - + β) f () = - - + 3 4 - - γ) f () = δ) f () = - + - - 5-3

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ Γιώργος Μιχαηλίδης ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΥ Προσανατολισμός Θετικών Σπουδών και Σπουδών ικονομίας και Πληροφορικής Α ΤΜΣ ΡΙ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΔΙΑΦΡΙΚΣ ΛΓΙΣΜΣ Κάθε γνήσιο αντίτυπο έχει την υπογραφή του συγγραφέα

Διαβάστε περισσότερα

x y f (x). f(a) {y R x A : y f(x)}.

x y f (x). f(a) {y R x A : y f(x)}. ΣΥΝΑΡΤΗΣΕΙΣ Η έννοια της πραγματικής συνάρτησης ΟΡΙΣΜΟΣ Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα), με την οποία κάθε στοιχείο A αντιστοιχίζεται

Διαβάστε περισσότερα

y x y x+2y=

y x y x+2y= ΜΕΡΟΣ Α 3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ 59 3. 1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ Η εξίσωση α+β=γ Λύση μιας εξίσωσης α + β = γ ονομάζεται κάθε ζεύγος αριθμών (, ) που την επαληθεύει. Για παράδειγμα η

Διαβάστε περισσότερα

Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ

Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ 60 Κεφάλαιο ο Ι. ΣΥΝΑΡΤΗΣΕΙΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ. Σ 0. i) Σ. Σ. Σ 0. ii) Σ 3. Σ 3. Σ. Σ 4. Λ 4. Λ. Λ 5.

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση. Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ο Γενικό Επαναληπτικό Διαγώνισμα ΘΕΜΑ ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Μαθηματικά Β μέρος Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας & Πληροφορικής Λύσεις

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Μαθηματικά Κατεύθυνσης (Προσανατολισμού)

Μαθηματικά Κατεύθυνσης (Προσανατολισμού) Θέματα ενδοσχολικών εξετάσεων στα Μαθηματικά Προσανατολισμού Β Λυκείου Σχ έτος 03-04, Ν Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Μαθηματικά Κατεύθυνσης (Προσανατολισμού) ΣΧΟΛΙΚΟ

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών

Κ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών Άλγεβρα Α Λυκείου, Κεφάλαιο ο ΘΕΩΡΙΑ-ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΑΠΟΔΕΙΞΕΙΣ ΠΡΟΤΑΣΕΩΝ-ΑΣΚΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΥΠΟΥΡΓΕΙΟΥ Κ Ε Φ Α Λ Α Ι Ο ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. Οι Πράξεις και οι Ιδιότητές

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 6//26 ΕΩΣ 3//26 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Κυριακή 3 Οκτωβρίου 26 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α v v Α. Έστω το πολυώνυμο

Διαβάστε περισσότερα

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών Μαθηματικά Β Γυμνασίου Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών 1. Να χρησιμοποιήσετε μεταβλητές για να εκφράσετε με μια αλγεβρική παράσταση τις παρακάτω φράσεις: a. Η διαφορά δυο

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός ςες ΤΕΤΡΑΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους μαθητές

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0 1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:

Διαβάστε περισσότερα

Μαθηματικά. Γ'Λυκείου. Γενικής. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Λυκείου. Γενικής. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Λυκείου Γενικής Μαρίνος Παπαδόπουλος Πίνακας Περιεχοµένων Τίτλος Θεµατικές Ενότητες Σελίδες Προλογικό Σηµείωµα υο λόγια προς τους µαθητές 5-6 Μάθηµα Έννοια συνάρτησης Πεδίο ορισµού 7-4 Μάθηµα

Διαβάστε περισσότερα

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 007 Σχ. Έτος 006-007 ΤΑΞΗ Γ ΘΕΩΡΙΑ 1. α.) Να συμπληρώσετε τις ταυτότητες : 3 ( α + β ) = ( β ) = α 3 3 3 β.) Να αποδείξετε

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

4.2 Η ΣΥΝΑΡΤΗΣΗ y = αx 2 + βx + γ µε α 0

4.2 Η ΣΥΝΑΡΤΗΣΗ y = αx 2 + βx + γ µε α 0 1. Η ΣΥΝΑΡΤΗΣΗ y = α + + γ µε α 0 ΘΕΩΡΙΑ 1. Τετραγωνική συνάρτηση : Ονοµάζεται κάθε συνάρτηση της µορφής y = α + + γ, α 0. Γραφική παράσταση της συνάρτησης y = α + + γ, α 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων των προαγωγικών εξετάσεων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ Λυμένες Ασκήσεις 1. Στο παρακάτω σχήμα να βρείτε τις συντεταγμένες των σημείων Α, Β, Γ, Δ, Ε, Ζ, Η, Θ και Ι Οι συντεταγμένες των ζητούμενων σημείων είναι: Α(2,3),

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ

Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Για να βρούμε το πεδίο ορισμού μιας συνάρτησης, αρκεί να βρούμε τις τιμές του χ για τις οποίες ορίζονται οι πράξεις που αναγράφονται στο τύπο

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος, . ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ )

ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ) ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ) Έχουμε δύο κάθετους άξονες x x και y y με κοινή αρχή 0. Από ένα σημείο Μ του επιπέδου φέρνουμε τις κάθετες στους δύο άξονες x x και y y. Ονομάζουμε τετμημένη του σημείου

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x

Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x 8 Συνέχεια συνάρτησης Ορισμός της συνέχειας 8. α) Πότε μια συνάρτηση f :A λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού της; β) Έστω η συνάρτηση:, αν < f() =, αν i) Να αποδείξετε ότι f() = 7 και να

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις

Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις wwwzitigr Πρόλογος Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις ομάδες προσανατολισμού: ç Θετικών σπουδών ç Οικονομίας και Πληροφορικής Αναπτύσσονται διεξοδικά τα κεφάλαια:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα