GASNO STANJE MATERIJE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "GASNO STANJE MATERIJE"

Transcript

1 GASNO SANJE MAERIJE -IDEALNO GASNO SANJE-ZAKONI -JEDNAČINA SANJA IDEALNOG GASA -GUSINE GASOA I PARA -SMEŠE GASOA -ERMIČKA DISOCIJACIJA GASA -KINEIČKA EORIJA GASOA -REALNO GASNO SANJE-JEDNAČINE -PREARANJE GASOA U EČNOSI -RANSPORNE OSOBINE GASOA

2 ERMALNA (ERMIČKA) ENERGIJA ČESICA (l eergja termalog kretaja) ENERGIJA MEĐUMOLEKULSKIH INERAKCIJA odos ovh eergja određuje odos euređeost/uređeost odoso u kom agregatom staju će se ać materja GASNO SANJE - čestce (molekul gasova, atom lemeth gasova, atom ara metala) maju zatu termalu eergju, veću od eergje međumolekulskh terakcja, a se erekdo kreću slučajo, slobodo u svm ravcma ravoljsk, bez utcaja međumolekulskh terakcja, razlčtm rosečm brzama koje rastu sa orastom temerature; sudaraju se međusobo sa zdovma suda; s orastom kretaje je haotčje; gas ema stala oblk zaremu odoso zauzma oblk zaremu suda u kome se alaz. Mogo slobodog rostora, mala gusta, velka stšljvost, velka mešljvost u svm odosma. EČNO SANJE - rastojaja zmeđu čestca maja; međumolekulske terakcje zražee; defsaa zarema; tečost zauzma oblk suda u kome se alaz. ČRSO SANJE - veoma mala međusoba rastojaja; jake sle; rasored čestca ravla; ema slobodog kretaja; defsa oblk zarema. SANJE GASNE PLAZME - jo elektro; rrode (r ojav muje olare svetlost) veštačke lazme l tzv. hlada lazma (laboratorjsk uz geerator). Gas-ajjedostavje staje materje (grčk chaos-ered) Staklo teč krstal se e mogu svrstat u jedo staje materje. Moge sustace se mogu javt u svakom od staja zavso od uslova kojma su zložee.

3 Gas-staje materje sa defsam arametrma:,,. Dovoljo je dat 3 arametra a četvrt sled. Ošt oblk jedače staja: f,, Jeda od jedača staja ekslcto: ( ) R Prtsak -krterjum mehačke ravoteže (bez romee zareme) emeratura -krterjum termčke ravoteže (Nult zako termodamke) Svaka sustaca je osaa jedačom staja. Dva uzorka eke sustace koja maju ste fzčke osobe su u stom staju.

4 IDEALNO GASNO SANJE deala gas e ostoj govormo o rblžavaju oašaju dealog gasa čestce su a velkom rastojaju ukua zarema samh čestca je zaemarljva u odosu a zaremu koju gas zauzma zaemarljve su međumolekulske terakcje rsut su samo elastč sudar (ukua traslatora Ek se e meja) romea arametara staja vod rome staja sstema vezu zmeđu arametara staja osuju gas zako (formulsa u XII veku) Idealo gaso staje: sku čestca (materjalh tačaka) zaemarljvh zarema koje zbog velkh rastojaja međusobo e teraguju koje se erekdo haotčo kreću u svm ravcma (ketčka eergja se svod a traslatoru eergju molekula). Ideala gas je mooatomsk.

5 OSNONI GASNI ZAKONI. BOJL-MARIOO ZAKON (rac R. Boyle; fracuz E. Marotte-ezavso) Na kostatoj temeratur zarema određee kolče gasa je obruto roorcoala rtsku od kojm se gas alaz odoso a kostatoj temeratur rozvod određee kolče gasa je kostata. Ako se gasu smaj zarema (gas se sabja), ovećaće se jegova kocetracja, samm tm broj sudara čestca gasa sa zdovma, z čega rozlaz već rtsak. Nr. dsaje: r udsaju djafragma se sušta, zarema grude šulje se ovećava a okol vazduh a većem rtsku ulaz u luća. Obruto kod zdsaja. cost., :,-dva staja gasa c / c c ( ). cost. k, cost kostata roorcoalost drekta roorcoalost rtska guste gasa

6 DIFERENCIJALNI RAČUN, cost. d, d, d + d d d d d određeoj relatvoj rome zareme gasa odgovara jedaka relatva romea rtska al surotog zaka odoso ako se rtsak oveća za % zarema će se smajt za %.

7 OSNONA PRAILA IZODA Ako su: u u x v v(x) fukcje koje maju zvod u tačk x oda je: cost. u cost. u u ± v u ± v uv u v + v u u u v uv v v

8 OSNONA ABLICA IZODA cost. x x x x x x x a x a x la e x e x lx x

9 < < 3 ( rastu s orastom temerature z Gej-Lsakovog Šarlovog zakoa) ekstraolacja Zavsost rtska od recroče vredost zareme određee kolče gasa a razlčtm temeraturama, f(/) Zavsost rtska od zareme određee kolče gasa a razlčtm temeraturama, f() l - djagram -za raze temerature se dobjaju ravostrae herbole koje se azvaju Bojlove zoterme -zako važ za veću gasova samo za že rtske tj. kada rtsak tež ul ( ), tako da Bojl-Marotov zako redstavlja grač zako koj važ za ske rtske -reala gas se rblžava ovom zakou r žm rtscma všm temeraturama (vdećemo kasje zašto)

10 . GEJ LISAKO I ŠARLO ZAKON (fracuz J.L.Gay- Lussace J.A.Charles ) Defšu utcaj temerature a romeu zareme r kostatom rtsku (zobarsk roces) a romeu rtska r kostatoj zarem (zohorsk roces). Pr zobarskom ovećaju temerature date mase odoso kolče gasa, romea zareme gasa srazmera je temeratur kao zarem koju je gas mao a o C odoso r kostatom rtsku zarema određee kolče gasa learo raste sa temeraturom: t + t ( + t) t zarema gasa a o C koefcjet ovećaja zareme gasa (relatv rraštaj zareme, stee - ) Eksermetalo je okazao da koefcjet šreja gasa ma u šrokom osegu rtska temerature kostatu vredost za sve gasove,36699 stee - (grača vredost za male rtske za dealo gaso staje): ako se eka određea kolča gasa zagreje od do o C tada se jegova očeta zarema o oveća za /73 73,5 deo očete zareme 73,5 + t t 73,5 73,5 + t Aalogo rethodom, r zohorskom rocesu: t + α t t 73,5 koefcjet ovećaja rtska (relatv rraštaj rtska, stee - ) t

11 < < 3 < 4 ekstraolacja z Bojl-Marotovog zakoa -sta je zavsost f(t) t + t t - agb rave; t - odsečak a ordat za vredost t o C Zavsost zareme određee kolče gasa od temerature r razlčtm rtscma;f(t) -r smajeju temerature, odoso tež ul što ema realo začeje jer je masa euštva a a skm temeraturama gasov se kodezuju re ego da dostgu tu temeraturu to staje se e osuje zakoma koj važe za deale gasove. Sled da ovaj zako važ za ske rtske vsoke temerature. Pomerajem koordatog očetka u tačku -73,5 može se ascsa rkazat ovom romejvom (asoluta temeratura, K): t + 73,5 t t 73,5 + t 73,5 73,5 + t 73,5 t t c c

12 3. AOGADRO ZAKON l rc (talja A. Avogadro) Avogadro je ostavo hotezu: Jedake zareme svh gasova a stoj temeratur rtsku sadrže st broj čestca. Mol je jedca za kolču sustace (). Po defcj mol sustace sadrž oolko elemetarh čestca kolko ma atoma u, kg ugljeka 6 C e čestce mogu bt molekul, atom, jo, elektro td. Molara zarema m redstavlja zaremu jedog mola sustace: 3 m m mol Avogadrov broj l Avogadrova kostata, je broj čestca u jedom molu sustace. Obeležava se sa N A (L) zos 6,45 x 3 mol -. Zarema koju zauzma mol ma kog gasa r stadardm uslovma, raje zva ormal, (ozačavaju se sa SP, eg. Stadard emerature ad Pressure) tj. a temeratur od o C rtsku od atm zos m,44 dm 3 mol - Stadard uslov srede, tzv. ambjetal uslov, koj se ozačavaju sa SAP (eg. Stadard Ambet emerature ad Pressure) su temeratura od 5 o C rtsak od bar (bar 5 Pa; atm35 Pa). Molara zarema r ovm uslovma zos m 4,789 dm 3 mol - Avogadrov zako: molare zareme ( m ) razlčth gasova a stoj temeratur rtsku ste su za sve gasove.

13 JEDNAČINA SANJA IDEALNOG GASA rethod zako zražavaju međusobu zavsost dva arametra staja kada su druga dva kostata jedača staja dealog gasa osuje romee staja gasa kada se, mejaju. I faza: zotermsko šreje od staja A do staja X a o II faza: zobarsko šreje od staja X do staja B a I faza Bojl-Marotov zako: II faza Gej-Lsakov zako: x x - djagram uz zvođeje jedače dealog gasog staja cost. R mol 73,5K 3 3,44 m mol 35Pa 8, 345JK Pa Nm ; J Nm; N kgms R je kostata azva se uverzala gasa kostata R

14 za mol R za molova R jedača dealog gasog staja l Klaejroova jedača (fracuz B.P.E. Claeyro) raktčo obuhvata rethodo omeute zakoe Pošto mora da bude razlčto od, a blo kom rtsku, mora da bude veće l jedako (asoluta temeratura). -jedaču zadovoljava veća gasova a soboj temeratur atmosferskom rtsku, dok se r većm rtscma žm temeraturama javljaju zata odstuaja -osuje oašaje svh gasova r gračm uslovma, -gasov koj se okoravaju ovoj jedač oašaju se dealo odoso alaze se u uslovma dealog gasog staja -veća gasova okazuje maje l veće odstuaje odoso alaze se u realom gasom staju al se r avedem gračm uslovma oašaju rema jedač dealog gasog staja. R m M R masa molara masa

15 cost cost cost cost cost, cost; matematčk zas gash zakoa R jedača staja dealog gasa, cost; cost, cost; matematčk zas gash zakoa, cost;

16 Metoda za određvaje relatve molekulske mase lako sarljvh tečost a a osovu ove jedače azva se ktor-majerova (emac ctor-meyer) metoda. Korgova atmosfersk (barometarsk) rtsak: gusta vode, g cm -3 atmosfersk rtsak, Pa f x O H O b H H O gh ao vodee are, Pa vlažost vazduha odoso molsk udeo vodee are ubrzaje Zemlje teže, 9,8 m s - vsa vodeog stuba, cm Aaratura za određvaje molare mase o ktor-majeru hdrostatčk rtsak odoso rtsak vodeog stuba, Pa M mr

17 GUSINE GASOA I PARA R m R M R M 3, 4dm mol M M R 3, 4dm mol tzv. ormala gusta a o o Za reale gasove vrš se određvaje gase guste a razlčtm rtscma, jer je gusta realog gasa fukcja rtska. (ρ/p) -5 kgm -3 Pa -,95,95,948,946 ekstraolsaa vredost,944,94,94,938 M R,936,,,,3,4,5,6,7,8,9,, / f ( ) za CO P -5 Pa

18 Relatva gusta d-odos guste stvaog referetog gasa, odoso odos masa sth zarema stvaog referetog gasa, mereh od stm uslovma rtska temerature : d ρ x ρ ref d Nm x Nm H ukua masa svh molekula stvaog gasa ukua masa svh molekula referetog gas (ajčešće vodok) Broj molekula N je st za oba gasa jer su m zareme jedake, kao. Kada se brojlac melac omože Avogadrovom kostatom dobja se: d M x ) m u (x ) m u (ref ukua broj molekula N x masa jedog molekula m M x d merejem relatve guste gasa rema vodoku 4 4 M sr M O + M gmol - N M x 9d molara masa vazduha kao gase smeše merejem relatve guste gasa rema vazduhu

19 SMEŠE GASOA Eksermetalo je okazao da kada ojed gasov zadovoljavaju jedaču staja dealog gasa oda jhove smeše gde ema hem. reakcje tolotog efekta usled mešaja, zadovoljavaju tu jedaču r čemu staje smeše zavs od sastava zražeog reko broja molova, molskog udela, kocetracje (molale l molare). Daltoov (eglez J.Dalto) zako l zako arcjalh rtsaka: a kostatoj temeratur ukua rtsak gase smeše jedak je zbru arcjalh rtsaka sastojaka smeše: k k važ za sve gasove arcjal rtsak-rtsak koj b gas mao kada b a stoj temeratur zauzmao zaremu gase smeše (važ samo za deale gasove) R R R k k k R R k ukua boj molova broj molova -te komoete R R x molsk udeo -te komoete

20 x x k k k x k x x x x Amagatov zako (fracuz E.H. Amagat) arcjalh zarema: ukua zarema koju zauzma gasa smeša a ekom rtsku temeratur jedaka je sum arcjalh zarema komoeata smeše k k j j j P j x za blo koje dve komoete u gasoj smeš Zavsost ukuog rtska bare gase smeše od sastava gase smeše ( f(x A ))

21 Sredja (roseča) molara masa gase smeše: molara masa -te komoete masa smeše masa -te komoete gase smeše M sr m σ k m σk M + M + + k M k σ k k M x M broj molova -te komoete gase smeše ukua broj molova komoeata smeše molsk udeo -te komoete Pr termčkoj dsocjacj gasa: stee dsocjacje gasa je: X X mol molekula gasa dsosuje a mol atoma gasa U staju ravoteže bće broj molova gasa (molekulskog atomskog): r d ( ) + + broj molova gasa koj su dsosoval broj molova gasa re dsocjacje re dsocjacje dsosovalo atomsk gas molekulsk gas

22 Zbog dsocjacje, broj čestca se u staju ravoteže ovećava uta: r + ( ) Odos molare mase edsosovaog gasa M molare mase gase smeše se zračuat z relacje m M M sr r M M sr + ( ) M M sr r M sr, može R j-a staja dealog gasa u slučaju termčke dsocjacje mola gasa ( ) + R R ( ) ( )

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealo gaso staje-čisti gasovi Parametri P, V, T i isu ezavisi. Odos između jih eksperimetalo je utvrđei izražava se kroz gase zakoe. Gasi zakoi: 1. Bojl-Maritov: PVcost. pri kostatim T i. Gej-Lisakov:

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

Parcijalne molarne veličine

Parcijalne molarne veličine arcale molare velče 2.5.5. Hemsk potecal 2.5.6. 2.5.6.2. arcale molare velče. Ukolko e kolča supstace u sstemu promelva zbog razmee matere zmeđu sstema okole zbog reverzble hemske reakce l reverzble razmee

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealo gaso staje-čisti gasovi Parametri P, V, T i isu ezavisi. Odos izmeñu jih eksperimetalo je utvrñei izražava se kroz gase zakoe. Gasi zakoi: 1. ojl-aritov: PVcost. pri kostatim T i. Gej-Lisakov: V

Διαβάστε περισσότερα

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA PRIBLIŽNI BROJ I GREŠKA tača vredost ekog broja X prblža vredost ekog broja X apsoluta greška Δ = X X graca apsolute greške (gorja graca) relatva greška X X

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

Aritmetički i geometrijski niz

Aritmetički i geometrijski niz Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

SVEUČILIŠTE U ZAGREBU METALURŠKI FAKULTET

SVEUČILIŠTE U ZAGREBU METALURŠKI FAKULTET SEUČILIŠE U ZAGREBU MEALURŠI FAULE J. MALINA A. BEGIĆ HADŽIPAŠIĆ FIZIALNA EMIJA Zbrka rješeh zadataka PRI DIO Ssak,. ZAHALA Oslajajuć se a vše od ola stoljeća goda zvođeja vsokoškolske astave z Fzkale

Διαβάστε περισσότερα

Agregatna stanja materije

Agregatna stanja materije Agregata staja materije Četiri agregata staja materije: Gas: Ispujava i zauzima oblik suda u kome se alazi, sličo tečostima, sem što su čestice a tako velikim rastojajima pa su iterakcije između čestica

Διαβάστε περισσότερα

Ekonometrija 5. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković

Ekonometrija 5. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković Ekoometja 5 Ekoometja, Osove studje Pedavač: Aleksada Nojkovć Stuktua pedavaja Klasč dvostuk (všestuk) lea egeso model - metod ONK. Petpostavke všestukog KLM. Koelacja u všestukom KLM. Oča kogova. Dvostuk

Διαβάστε περισσότερα

10.1. Bit Error Rate Test

10.1. Bit Error Rate Test .. Bt Error Rat Tst.. Bt Error Rat Tst Zadata. Izračuat otrba broj rth formacoh bta u BER tstu za,, ogršo dttovaa bta a rjmu, tao da s u sstmu sa brzoom sgalzacj od Mbs mož tvrdt da j vrovatoća grš rosa

Διαβάστε περισσότερα

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

AKSIOMATIKA TEORIJE VEROVATNOĆE

AKSIOMATIKA TEORIJE VEROVATNOĆE AKSIOMATIKA TEORIJE VEROVATNOĆE E Aksomatka teorje verovatoće Polaz se od osovh stavova, tzv. aksoma, a osovu kojh se sve ostale osobe mogu dokazat. Za posmatra prostor el. shoda aksomatzacja daje odgovore

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

UNIVERZITET U NIŠU FAKULTET ZAŠTITE NA RADU U NIŠU TEHNIČKA MEHANIKA - PREZENTACIJA PREDAVANJA PREDAVANJE

UNIVERZITET U NIŠU FAKULTET ZAŠTITE NA RADU U NIŠU TEHNIČKA MEHANIKA - PREZENTACIJA PREDAVANJA PREDAVANJE UNIVERZITET U NIŠU FAKULTET ZAŠTITE NA RADU U NIŠU TEHNIČKA MEHANIKA - PREZENTACIJA PREDAVANJA - - 4. PREDAVANJE - Dr Darko Mhajlov, doc. 1. ČAS Sredšte (cetar) sstema paralelh sla; Težšte krutog tela;

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

Metoda najmanjih kvadrata

Metoda najmanjih kvadrata Metoda ajmajh kvadrata Moday, May 30, 011 Metoda ajmajh kvadrata (MNK) MNK smo već uvel u proučavaju leare korelacje; gdje smo tražl da suma kvadrata odstupaja ekspermetalh točaka od pravca koj h a ajbolj

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

GASNO STANJE.

GASNO STANJE. GASNO STANJE http://www.ffh.bg.ac.rs/geografi_fh_procesi.html AGREGATNA STANJA MATERIJE Četiri agregatna stanja materije na osnovu stepena uređenosti, tj. odnosa termalne energije čestica i energije međumolekulskih

Διαβάστε περισσότερα

ELEKTRONSKA FIZIKA ^VRSTOG TELA

ELEKTRONSKA FIZIKA ^VRSTOG TELA STOJA RISTI] ELEKTROSKA FIZIKA ^VRSTOG TELA PREDAVAJA Goda: II Semestar: III Elektrosk fakultet { 0010/11. SADR@AJ 1. OSIOCI AELEKTRISAJA U POLUPROVODICIMA 5 1.1. HEMIJSKE VEZE 5 1.1.1. Kovaleta veza

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

MATERIJALI ZA ELEKTRONIKU Računske vežbe 7. POLUPROVODNI MATERIJALI TEORIJSKI PREGLED

MATERIJALI ZA ELEKTRONIKU Računske vežbe 7. POLUPROVODNI MATERIJALI TEORIJSKI PREGLED ELEKTROSKI FKULTET MTERIJLI Z ELEKTROIKU Račuske vežbe 7. POLUPROOI MTERIJLI Katedra za kroelektroku TEORIJSKI PREGLE Polurovod aterjal (olurovodc) su aterjal čja elektrča svojstva zavse od kocetracje

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

HEMIJSKA RAVNOTEŽA.

HEMIJSKA RAVNOTEŽA. HEMIJSA RAVOTEŽA htt://www.ffh.bg.ac.rs/geograf_fh_roces.html HEMIJSA RAVOTEŽA - regled Uslov hemjske ravnoteže Reverzblne hemjske reakcje arakterstke hemjske ravnoteže Termodnamčka, formalna koncentracona

Διαβάστε περισσότερα

1.1. Napisati relaciju kojom je moguće odrediti ukupan broj elektrona na nekoj orbiti: n

1.1. Napisati relaciju kojom je moguće odrediti ukupan broj elektrona na nekoj orbiti: n I ES EES - VAIJANA Zadatak bro... Nasat relacu koom e moguće odredt ukua bro elektroa a eko orbt: l 0 ( Z 0 l + ) [ + 3 + 5 + ( ) ].. Nasat relacu koa ovezue kocetrace elektroa šula kod čstog (trsc) oluvodča:.3.

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Trigonometrijski oblik kompleksnog broja

Trigonometrijski oblik kompleksnog broja Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

4.1 Zakon inercije prvi Newtonov zakon

4.1 Zakon inercije prvi Newtonov zakon FIZIK podloge za studj strojarsta 4. Daka 1 4.1 Zako ercje pr Newtoo zako Daka šr keatčke aalze uzajuć u obzr ase tjela (aterjale točke). Prje sega zučaa osost gbaja o slaa koje ga zazaju (pokreut auto

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

( ) Φ = Hɺ Hɺ. 1. zadatak

( ) Φ = Hɺ Hɺ. 1. zadatak 7.vježba iz ermodiamike rješeja zadataka. zadatak Komresor usisava 30 m 3 /mi zraka staja 35 o C i 4 bar te ga o ravotežoj romjei staja v kost. komrimira a tlak 8 bar. Komresor se hladi vodom koja tijekom

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA

OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA OSNOVI HEMIJSKE TERMODINAMIKE Hemjska termodnamka proučava promene energje (toplotn efekat) pr odgravanju hemjskh reakcja. MATERIJA ENERGIJA? Energja je dskontnualna

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa .vježba iz Terodiaike rješeja zadataka 1. Zadatak Kopresor usisava 0,5 kg/s zraka tlaka 1 bar i 0 o C, tlači ga i istiskuje u eizolirai tlači cjevovod. Na ulazo presjeku usise cijevi brzia je 15 /s. Izlazi

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

BIOFIZIKA TERMO-FIZIKA

BIOFIZIKA TERMO-FIZIKA BIOFIZIKA TERMO-FIZIKA Akademik, prof. dr Jovan P. Šetrajčić jovan.setrajcic@df.uns.ac.rs Univerzitet u Novom Sadu Departman za fiziku PMF Powered byl A T E X 2ε! p. / p. 2/ Termika FENOMENOLOŠKA TEORIJA

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

VJEROVATNOĆA-POJAM. Definicija vjerovatnoće Σ = f x f. f f. f x f. f f ... = Σ = Σ. i...

VJEROVATNOĆA-POJAM. Definicija vjerovatnoće Σ = f x f. f f. f x f. f f ... = Σ = Σ. i... VJEROVATNOĆA-OJAM Defiicija vjerovatoće f f f f f f f m X i i... ) + + + Σ p p p p f f f f f i i i i i i i ) )... ) )... + + + Σ + + Σ + Σ Σ Σ µ µ Aditivo i multiplikativo pravilo. Ako su E i E slučaji

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Slično važi i za bilo koje druge kombinacije nekondenzujućih ( O

Slično važi i za bilo koje druge kombinacije nekondenzujućih ( O 8. Vlažni gasovi 8.1 Uvod - smeše realnog i idealnog gasa - smeše kondenzujućeg i nekondenzujućeg gasa - arno gasne smeše - najoznatiji redstavnik ažan vazduh - smeša (suvog) vazduha idealnog gasa i age

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα