Računske naloge razl. 1.3 pripravil F. Dimc
|
|
- Βασίλης Βιτάλη
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Računske naloge razl. 1.3 pripravil F. Dimc 1. Kakšna sila deluje med dvema žicama, ki sta med seboj razmaknjeni za 20cm, dolgi 15m in po katerih teče tok 5A? 2. Koliko F znaša kapacitivnost, če s 100 V nanesemo 1 As naboja? Q 1 As C = = = 0, 01 F U 100 V 3. Koliko Ω znaša upornost, če upor priključimo na 100 V in teče tok 2 A? (1t) U 100 V R = = = 50 Ω I 2 A 4. Koliko Ω znaša reaktivna upornost kondenzatorja, če je priključen na 100 V, 50 Hz in ima kapacitivnost 1 mikrofarad? (1t) X C = = = = 3183 Ω ω π π 6 C 2 fc 2 50 Hz 10 F 5. Koliko Ω znaša reaktivna upornost tuljave, če je priključena na 100 V, 50 Hz in ima induktivnost 1 milihenri? (1t) X = ωl= 2π fl= 0,314Ω L
2 6. Koliko znaša izkoristek, če stroj, priključen 2 h na 100 V rabi tok 2 A, opravi mehansko delo 360 kj? (1t) 360 kj 360 kws Ws η= = = 100V 2A 2h 400 Wh Ws = 0, Koliko izgub (VA) nastane v 50 VA transformatorju s prestavnim razmerjem 100:5, ko ga priključimo na omrežje 250 V in skozi breme teče tok 2 A? (1t) U prim U prim 250 V prestava= U sek = = = 12, 5 V U prestava 20 sek moč na sekundarni strani= U I = 12, 5 V 2 A = 25 VA sek sek izgube= moč na primarni strani moč na sekundarni strani = 50 VA 25 VA = 25 VA 8. Koliko izgub (vatnih ur oz. Wh) nastane v grelniku vode, ko ga za 5 min (= 5/60 h) priključimo na omrežje 230 V in pri cos fi = 0,95 skozi njega teče tok 4 A? Za gretje vode izkoristimo 70 Wh toplote. (1t) energijske izgube= W W = UI cosϕt toplota= vložena izkoriščena 5 = 230 V 4 A 0, 95 h 70 Wh = 2, 8 Wh Imate elektriški filter, ki je sestavljen iz kondenzatorja s kapacitivnostjo 47 nf in upora z upornostjo 10 kω. Pri kateri frekvenci pade moč na izhodnem elementu na polovico? (1t) 1 AV f lomna = = = 339 Hz 4 9 2π RC 2π 10 V As 10. Antena oddaja s konično močjo 100 W, zmnožek dobitkov anten znaša 10, valovna dolžina 40 cm, moč šuma 1 W. Koliko znaša moč signala, če je sprejemnik 5 km stran od oddajnika? (1t) 2 2 λ 0,4m 8 Psignal = PT GT GR = 100W 10 = 4, W 3 4π R 4π 5 10 m
3 11. Antena oddaja s konično močjo 100 W. Kako bi omogočili, da znaša moč signala v sprejemniku 5 km stran od oddajnika vsaj 1 nw? (1t) Rešite sami, rešitve pošljite po e-pošti oz. sporočite kje se vam je zataknilo! 12. Elektromagnetno valovanje se širi od oddajnika v ravni črti do sprejemnika. Pri oddajni konični moči 10 mw (PT) sprejemamo na razdalji 1 km. Zanima nas na koliko vatov moramo moč PT povečati, da bomo z istim sprejemnikom, spet imeli enako razmerje signal/šum, na razdalji 2 km, če so ostali pogoji sprejema enaki? 13. Polna 12 V baterija s kapaciteto 2400 mah izgubi v prvih treh urah uporabe 25 % svoje energije. a. Koliko Wh električne energije je v bateriji po treh urah? b. Na kateremu uporu bomo iz baterije dobili večjo moč: na 40 omskem če je baterija polna ali na 30 omskem po treh urah uporabe? Rešite sami, rešitve pošljite po e-pošti oz. sporočite kje se vam je zataknilo!
4 14. Napravo, ki je zaporedna kombinacija 10 Ω upora in tuljave 27 mh, napajamo z 220 V frekvence 49,5 Hz. Nazivna vrednost cosφ znaša 0,79. Ali za napravo zadostuje 16 A varovalka? Ali cosφ pade v območje ± 5% okoli podatka proizvajalca? Skicirajte trikotnik impedanc! U U 220V 220V I = = = = = 16, 848A Z R + ( ωl ) 100Ω + 4π ( 49, ) Ω 13, 058Ω R 10Ω cos ϕ = 0, 766 0, 79( 1 0, 03 ) 2 2 R + ( ωl ) = 13, 058Ω = = varovalka ustreza cosφ v območju 5% R ϕ = arccos 2 2 R + ( ωl ) varovalka ne ustreza cosφ ni v območju 5% R + ( ωl ) 2 2 ϕ ωl R
5 15. Električni radiator ima pri nazivni napetosti 230V grelno moč 4000W. Zaradi obremenitve omrežja je na priključni točki, kjer je radiator priklopljen omrežna napetost samo 220V. S kakšno močjo bo v danem primeru grel električni radiator (pri napetosti 220V!)? Kakšen tok bo tekel pri napetosti 230V in kakšen pri napetosti 220V? R U U 230V 230V 4000W U na 230V na 230V na 220V = Rna 230V = = = I P na 230V na 230V na 230V ( U ) ( U ) P ( ) U na 220V na 220V na 220V na 230V na 220V na 220V na 220V ( na 220V) na 220V na 220V 2 Rna 220V Rna 220V Una 230V P = U I = I R = R = = = 3660W ( U ) na 220V 2 ( U ) 2 P R U U P 220V 4000W I = = = = = = = 16, 635A na 220V na 220V na 220V na 220V na 220V na 230V na 220V Una 220V Una 220V U na 220V Rna 220V ( U na 230V) ( Una 230V) ( 230V ) P 4000W na 230V I na 230V = = = 17, 391A Una 230V 230V P na 230V 16. Napetost izvora je 100 V. Zaporedno povežimo tri upore z upornostmi 10 Ω, 20 Ω in 30 Ω. Izračunajmo kolikšen tok, napetost in moč bi lahko izmerili na vsakem izmed njih.
6 17. Na omrežno napetost 100 V imamo priključenih deset žarnic, namenjenih za omrežno napetost. Skicirajte vezavo žarnic na omrežno napetost (na hrbtno stran). Skozi vsako od prvih štirih teče tok 1 A, zadnjih šest je 50 W. Vse gorijo od ponedeljka do petka povprečno deset ur na dan. Z izračunom potrdite ali stroške porabe električne energije vseh žarnic skupaj v enem delovnem tednu presegajo 10 evrov, če stane 1 kwh 30 centov? strošek = (4 100kW 10h/dan 5dni+6 0,050kW 10h/dan 5dni) 0,3evra/kWh = 10,5 evra stroški presegajo 10 evrov stroški ne presegajo 10 evrov Vezava naloge 17 ~ i žar i žar2 i žar9 i žar10 u(t) P žar P žar2 P žar9 P žar10
7 18. Napajalna moč radarja je 100W. Izsevana moč enega impulza znaša 3kW impulze trajajoče 1µs oddaja antena s frekvenco 1kHz. Izračunajte kolikšno moč seva radar in s kolikšnim izkoristkom deluje? 19. Na napetost 100 V priključimo upor, ki troši moč 200 W. Kolikšen tok bi izmerili na uporu in koliko sploh znaša njegova upornost?
8 20. Napravo, ki je zaporedna kombinacija 10 Ω upora in tuljave 27 mh, napajamo z 220 V frekvence 49,5 Hz. Nazivna vrednost cosφ znaša 0,79. Kateri kondenzator moramo vzeti, da dobimo z uporom 10 Ω enak cosφ kot s tuljavo? Skicirajte trikotnika: impedanc za RL in admitanc za RC! admitanca = 1/impedanca
9
10 21. Na omrežno napetost 230 V imamo priključena motorja dveh dvigal. Skozi vsakega teče tok 25A. Koliko evrov stane energija, ki jo rabita motorja v enem mesecu, če delata med delavniki (od ponedeljka do petka) povprečno po 16 ur, ob koncih tedna (v soboto in nedeljo) pa po 6 ur na dan, cena 1kWh pa znaša 25 centov? Za dolžino meseca lahko zaradi lažjega računanja vzamete kar 28 dni. Narišite vezavo motorjev na omrežje!
11 22. Napetost izvora je 100 V. Vzporedno povežimo tri upore z upornostmi 10 Ω, 20 Ω in 30 Ω. Izračunajmo kolikšen tok, napetost in moč bi lahko izmerili na vsakem izmed njih. Kolikšno moč bi izmerili na vseh uporih skupaj in koliko energije bi porabili vsi skupaj v dveh urah? 23. Vzemimo en kilometer dolgo žico s specifično upornostjo 0, Ωm. Proizvajalec žice zagotavlja, da ima njegov izdelek presek (površina, ki jo opazimo, ko žico presekamo) 5 mm 2. Kolikšno upornost bi izmerili žici?
12 24. Napetost izvora je 100 V. Vzporedno vezanima uporoma z upornostma 20 Ω in 30 Ω vežimo zaporedno še upor z upornostjo 10 Ω. Izračunajmo kolikšen tok, napetost in moč bi lahko izmerili na vsakem izmed njih. Kolikšno moč bi izmerili na vseh uporih skupaj in koliko energije bi porabili vsi skupaj v dveh urah?
13 25. Svetilka stoji en kilometer stran od izvora napetosti 100 V. V svetilko bomo vstavili žarnico, na kateri piše, da pri napetosti 100 V troši 100 W moči. Žarnico bomo povezali z izvorom z dvema žicama iz naloge 23. Koliko znašata v resnici moč in napetost na žarnici? 26. Koliko je dolga aluminijasta žica preseka 4 mm 2, če je njena upornost 0,745 Ω? Specifična upornost aluminija je 0, Ωm.
14 27. Proizvajalec naprave je na ohišje nalepil karakteristiko naprave I(U) na kateri podaja odvisnost toka I od napetosti U. Zanima nas kolikšno moč troši naprava pri napetosti 230 V in kolikšna je tedaj njena upornost? 28. Z električnim grelnikom segrejemo 1 liter vode za 80 stopinj. Za pridobitev tolikšne toplote porabimo 120 Wh električne energije. Kolikšen izkoristek ima grelnik?
15 29. Na izvor napetosti sta priključena vzporedno vezana upora z upornostma 10 Ω in 50 Ω. Kolikšno moč trošita oba upora skupaj? Ali bo upor 50 Ω prenesel izklop upora 10 Ω, če je na njem lahko največ 210 W moči? 30. Realno tuljavo modeliramo kot zaporedno vezavo omske upornosti 1 Ω in induktivnosti 10 mh. Na hrbtno stran skicirajte trikotnik upornosti! Kolikšen (skupni) tok rabi tuljava, če obratuje pri napetosti 100 V in frekvenci 1 khz? Koliko znaša absolutna vrednost impedance tuljave Z pri omenjenih pogojih?
16 31. Izgube v bakru enofaznega transformatorja moči 1 kva s prestavnim razmerjem 10 kv :0,4 kv znašajo 11W, izgube v železu pa 5,6 W. Napetost kratkega stika je 4% od nazivne napetosti, frekvenca pa 50 Hz. Izračunati moramo toka na primarni in sekundarni strani, dejansko napetost kratkega stika in izkoristek transformatorja. Pnaz = 1 kva U1 = 10 kv U2 = 0,4 kv PizgCu = 11 W = 0,011 kw PizgFe = 5,6 W = 0,0056 kw uk = 4 % (sorazmerno glede na nazivno napetost primarne strani) f = 50 Hz
17 32. Od proizvajalca smo dobili podatek, da v uporabljenem koaksialnem kablu pri frekvenci signalov 1 MHz slabljenje ne presega 10 db/km. Na začetku 20 m kabla smo izmerili 1,0 W na koncu kabla pa 0,95 W. Z izračunom potrdite ali ovrzite podatke proizvajalca. 33. Realni kondenzator modeliramo kot vzporedno vezavo omske upornosti 1 kω in kapacitivnosti 10 mf (glej nalogo 13). Skicirajte trikotnik upornosti! Kolikšen (skupni) tok rabi kondenzator, če obratuje pri napetosti 100 V in frekvenci 1 khz? Koliko znaša absolutna vrednost impedance kondenzatorja Z v omenjenih pogojih? 34. Ko tovornjak zapelje čez induktivno zanko (tuljavo), se zanki spremeni induktivnost L za L. Vzporedno k induktivni zanki je vezan kondenzator s kapacitivnostjo 10 µf, skupaj tvorita nihajni krog. Lastna oz. resonančna frekvenca f 0 samega kroga znaša 3,00 khz, ko pa je zapeljalo vozilo čez zanko, se je f 0 zmanjšala na 2,95 khz. Koliko znaša induktivnost zanke in za koliko henrijev (H) se je spremenila induktivnost (koliko znaša L), ko je čeznjo zapeljalo vozilo? ω µ 4 0 = L 0 = = = = 2, H = 281 H LC ω 3 0 C 2π f0 C 2π 3 10 Hz 10 F ( π 0) ( π ) 0 ( ) ( ) L v = = = 2, H = 291µ H f C 2 2, Hz 10 F 4 L= L L = 0, 1 10 H = 10µ H v
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Vaje: Električni tokovi
Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Državni izpitni center *M * JESENSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 27. avgust 2009 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M097711* ELEKTROTEHNIKA JESENSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Četrtek, 7. avgust 009 SPLOŠNA MATURA RIC 009 M09-771-1- A01 Z galvanizacijskim
2. Pri 50 Hz je reaktanca kondenzatorja X C = 120 Ω. Trditev: pri 60 Hz znaša reaktanca tega kondenzatorja X C = 100 Ω.
Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Trditev: idealni enosmerni tokovni vir obratuje z močjo
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Zaporedna in vzporedna feroresonanca
Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
OM3 (Obvezni modul 3) ELN, test2 Električne naprave
Ime in PRIIMEK: Letnik: Datum: OM3 (Obvezni modul 3) ELN, test2 Električne naprave Število točk/ocena: Teme preverjanja 1 test ELN, Osnovna temeljna znanja, el. veličine, delilniki, osnovni zakoni, kondenzator,
PRENOS SIGNALOV
PRENOS SIGNALOV 14. 6. 1999 1. Televizijski signal s pasovno širino 6 MHz prenašamo s koaksialnim kablom na razdalji 4 km. Dušenje kabla pri f = 1 MHz je,425 db/1 m. Koliko ojačevalnikov z ojačenjem 24
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji
Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):
ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti
Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Petek, 31. avgust 2007 / 180 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M0777111* JESENSKI ROK ELEKTROTEHNIKA Izpitna pola Petek, 31. avgust 007 / 180 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese s seboj
Izpit iz predmeta Fizika 2 (UNI)
0 0 0 4 1 4 3 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: Izpit iz predmeta Fizika 2 (UI) 26.1.2012 1. Svetloba z valovno dolžino 470 nm pada
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 29. maj 2008 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M877* SPOMLADANSK ZPTN ROK ELEKTROTEHNKA NAVODLA ZA OCENJEVANJE Četrtek, 9 maj 8 SPLOŠNA MATRA RC 8 M8-77-- A zračunajte gostoto toka v vodniku s presekom
March 6, tuljava in električna. napetost in. padanjem. Potrebujete. torej 8,8µF. priključen. napetosti. in ustrezen
DELAVNICA SSS: POSKUSI Z NIHANJEM V ELEKTRONIKI March 6, 2009 DUŠAN PONIKVAR: POSKUSI Z NIHANJEM V ELEKTROTEHNIKI Vsi smo poznamo električni nihajni krog. Sestavljataa ga tuljava in kondenzator po sliki
3. Dimenzioniranje in kontrola zaščitnih naprav
3. Dimenzioniranje in kontrola zaščitnih naprav V skladu z zahtevami elektrotehniškh standardov za el. Instalacije NN (do 1kV) morajo biti vsi el. stroji in naprave zaščiteni pred el. udarom. Poznamo dve
Metering is our Business
Metering is our Business REŠTVE ZA PRHODNOST UČNKOVTO UPRAVLJANJE ENERGJE STROKOVNE STORTVE POTROŠNKOM PRJAZNE REŠTVE Metering is our Business 1 Načrtovanje zapornega pretvornika Od tehničnih zahtev Do
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Zbirka rešenih nalog s kolokvijev in izpitov iz fizike. Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J.
Zbirka rešenih nalog s kolokvijev in izpitov iz fizike Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J. Kotar Prosim, da kakršnekoli vsebinske ali pravopisne napake sporočite
1. Enosmerna vezja. = 0, kar zaključena
1. Enosmerna vezja Vsebina polavja: Kirchoffova zakona, Ohmov zakon, električni viri (idealni realni, karakteristika vira, karakteristika bremena matematično in rafično, delovna točka). V enosmernih vezjih
EMV in optika, zbirka nalog
Barbara Rovšek EMV in optika, zbirka nalog z rešitvami 1 Električni nihajni krogi in EMV 1.1 Električni nihajni krogi, lastno nihanje 1. Električni nihajni krog z lastno frekvenco 10 5 s 1 je sestavljen
FS PAP Tehniška fizika Priporočene naloge za vaje v sredo,
FS PAP Tehniška fizika Priporočene naloge za vaje v sredo, 11. 1. 2017 Za nastop je potrebno pripraviti vsaj pet nalog. Študenti, ki že imajo točke iz nastopov pred tablo, morajo pripraviti vsaj dve težji
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Kotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
Transformator. Izmenični signali, transformator 22.
zmenični signali, transformator. Transformator Vsebina: Zapis enačb transformatorja kot dveh sklopljenih tuljav, napetostna prestava, povezava medd maksimalnim fluksom in napetostjo, neobremenjen transformator
S53WW. Meritve anten. RIS 2005 Novo Mesto
S53WW Meritve anten RIS 2005 Novo Mesto 15.01.2005 Parametri, s katerimi opišemo anteno: Smernost (D, directivity) Dobitek (G, gain) izkoristek (η=g/d, efficiency) Smerni (sevalni) diagram (radiation pattern)
0,00275 cm3 = = 0,35 cm = 3,5 mm.
1. Za koliko se bo dvignil alkohol v cevki termometra s premerom 1 mm, če se segreje za 5 stopinj? Prostorninski temperaturni razteznostni koeficient alkohola je 11 10 4 K 1. Volumen alkohola v termometru
Analiza nadomestnega vezja transformatorja s programskim paketom SPICE OPUS
s programskim paketom SPICE OPS Danilo Makuc 1 VOD SPICE OPS je brezplačen programski paket za analizo električnih vezij. Gre za izpeljanko simulatorja SPICE3, ki sicer ne ponuja programa za shematski
Elektrotehnika in elektronika
Elektrotehnika in elektronika 1. Zapišite pogoj zaporedne resonance, ter pogoj vzporedne resonance. a) Katera ima minimalno impedanco, katera ima minimalno admitanco? b) Pri kateri je pri napetostnem vzbujanju
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Državni izpitni center ELEKTROTEHNIKA. Izpitna pola 1. Četrtek, 5. junij 2014 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M477* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Četrtek, 5. junij 04 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
LASTNOSTI FERITNEGA LONČKA. 330 kω. 3400pF
Ime in priimek: Šolsko leto: Datum: ASTNOSTI FEITNEGA ONČKA Za tuljavo s feritnim lončkom določite: a) faktor induktivnosti A in kvaliteto izdelane tuljave z meritvijo resonance nihajnega kroga. b) vrednosti
BREZŽIČNI PRENOS ENERGIJE
UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO BREZŽIČNI PRENOS ENERGIJE Boštjan Berkopec Mentor: doc. dr. Primož Ziherl Ljubljana, 3. 5. 009 Povzetek Nikola Tesla je bil prvi,
Vzporedne, zaporedne, kombinirane in kompleksne vezave led diod in njihova zanesljivost
Vzporedne, zaporedne, kombinirane in kompleksne vezave led diod in njihova zanesljivost Led dioda LED dioda je sestavljena iz LED čipa, ki ga povezujejo priključne nogice ter ohišja led diode. Glavno,
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Osnovni pojmi pri obravnavi periodičnih signalov
Periodični signali, osnovni poji 7. Osnovni poji pri obravnavi periodičnih signalov Vsebina: Opis periodičnih signalov z periodo, frekvenco, krožno frekvenco. Razlaga pojov aplituda, faza, haronični signal.
Električni naboj, ki mu pravimo tudi elektrina, označimo s črko Q, enota zanj pa je C (Coulomb-izgovorimo "kulon") ali As (1 C = 1 As).
1 UI.DOC Elektrina - električni naboj (Q) Elementarni delci snovi imajo lastnost, da so nabiti - nosijo električni naboj-elektrino. Protoni imajo pozitiven naboj, zato je jedro pozitivno nabito, elektroni
Slika 5: Sile na svetilko, ki je obešena na žici.
4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno
Modeliranje električnih strojev
Modeliranje električnih strojev J 11 Potierova reaktanca sinhronskega generatorja Ime in priimek: Datum in ura: Ocena poročila: 1 Besedilo naloge a) Trifaznemu sinhronskemu generatorju določite Potierovo
Pripravil: Bruno Lubec, S51M ANTENE. Osnovni pojmi in vrste anten Predavanja za tečaj radioamaterjev, 20 ur
Pripravil: Bruno Lubec, S51M ANTENE Osnovni pojmi in vrste anten Predavanja za tečaj radioamaterjev, 20 ur Valovanje 1. Mehansko: zvok, valovanje vode, valovanje nihala. Širi se počasneje od radijskih
) produkta toka z vektorjem diferen razdalje v smeri. d - Sila je pravokotna na tokovni element in mag.polje
1.MAGNETOSTATIKA 1.1 Amperov zakon mag.sile: Sila med dvema vzporednima vodnikoma je sorazmerna produktu toka v obeh vodnikih in njuni dolžini in nasprotno sorazmerna razdalji med vodnikoma - Tokovni element
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
Transformatorji in dušilke
Univerza v Ljubljani Fakulteta za elektrotehniko Danilo Makuc Transformatorji in dušilke Zbirka nalog z rešitvami Danilo Makuc, FE UN LJ, januar 011 Predgovor Zbirka vsebuje rešene naloge iz preteklih
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
, kjer je t čas opravljanja dela.
3. Moč Vseina polavja: definicija moči, delo, moč na remenu, maksimalna moč, izkoristek. Moč (simol ) je definirana kot produkt napetosti in toka: = UI. V primeru, da se moč troši na linearnem uporu (na
NALOGE ZA SKUPINE A, C, E, G, I, K
Fizioterapija ESM FIZIKA - VAJE NALOGE ZA SKUPINE A, C, E, G, I, K 1.1 Drugi Newtonov zakon podaja enačba F = m a. Pokažite, da je N, enota za silo, sestavljena iz osnovnih enot. 1.2 2.1 Krogla z maso
Termodinamika in elektromagnetno polje
Termodinamika in elektromagnetno polje izbor nalog z rešitvami 1 Termodinamika 1.1 Temperaturno raztezanje 1. Kolikšna je bila končna temperatura 35 cm dolge bakrene palice, ki se je raztegnila za 0,29
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
Državni izpitni center ELEKTROTEHNIKA. Izpitna pola
Š i f r a k a n d i d a t a : Državni izpitni center *M07177111* SPOMLADANSKI ROK ELEKTROTEHNIKA Izpitna pola Sobota, 9. junij 2007 / 180 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese
VAJE IZ FIZIKE 2 ALEŠ IGLIČ VERONIKA KRALJ-IGLIČ TOMAŽ GYERGYEK MIHA FOŠNARIČ
UNIVERZA V LJUBLJANI FAKULTETA ZA ELEKTROTEHNIKO VAJE IZ FIZIKE 2 ALEŠ IGLIČ VERONIKA KRALJ-IGLIČ TOMAŽ GYERGYEK MIHA FOŠNARIČ LJUBLJANA, 2011 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna
Izmenični signali kompleksni račun
zenicni_signali-kopleksni_racun(8).doc /7.6.6 zenični signali kopleksni račun Kopleksni račun e poebno orode za analizo vezi z izeničnii haroničnii signali. V osnovi diferencialne enačbe lahko z uporabo
Zbirka rešenih nalog s kolokvijev in izpitov iz fizike
1 Zbirka rešenih nalog s kolokvijev in izpitov iz fizike Naravoslovnotehniška fakulteta, šolsko leto 2004/05 in 2005/06 Avtorji: S. Fratina, A. Gomboc in J. Kotar Verzija: 6. februar 2007 Prosim, da kakršnekoli
Moč s kompleksnim računom (19)
Izmenicni_sinali_kompleksna_moc(9).doc /8 8.5.007 Moč s kompleksnim računom (9) otovili smo že, da lahko moč na elementu (vezju) predstavimo s tremi»komponentami«. mim Delovno moč, ki predstavlja tudi
Stikalni pretvorniki. Seminar: Načrtovanje elektronike za EMC Boštjan Glažar
Stikalni pretvorniki Seminar: Načrtovanje elektronike za EMC 29. 3. 2017 Boštjan Glažar niverza v Ljubljani Fakulteta za elektrotehniko Tržaška cesta 25, SI-1000 Ljubljana Vsebina Prednosti stikalnih pretvornikov
Državni izpitni center. Izpitna pola 2. Četrtek, 2. junij 2016 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M1617711* SPOMLADANSKI IZPITNI ROK Izpitna pola Četrtek,. junij 016 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
ZBRIKA KOLOKVIJSKIH IN IZPITNIH NALOG IZ FIZIKE ZA ŠTUDENTE NARAVOSLOVNO TEHNIŠKE FAKULTETE. Matej Komelj
ZBRIKA KOLOKVIJSKIH IN IZPITNIH NALOG IZ FIZIKE ZA ŠTUDENTE NARAVOSLOVNO TEHNIŠKE FAKULTETE Matej Komelj Ljubljana, oktober 2013 Kazalo 1 Uvod 2 2 Mehanika 3 2.1 Kinematika....................................
EMV in optika, izbrane naloge
EMV in optika, izbrane naloge iz različnih virov 1 Elektro magnetno valovanje 1.1 Električni nihajni krogi 1. (El. nihanje in EMV/8) (nihajni čas) Nihajni krog sestavljata ploščati kondenzator s ploščino
Elektrotehnika. Študijsko gradivo za študente Pedagoške fakultete UL. Študijsko leto 2009/2010. Slavko Kocijančič
Elektrotehnika Študijsko gradivo za študente Pedagoške fakultete UL Slavko Kocijančič Študijsko leto 2009/2010 Ljubljana, marec 2010 Vsebina 1. OSNOVE ELEKTROTEHNIKE...1 OHMOV ZAKON...1 PRVI KIRCHHOFFOV
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Vaje iz Fizike 2 za študente fizike. Ljubljana, oktober 2013
Vaje iz Fizike 2 za študente fizike Saša Prelovšek Komelj Ljubljana, oktober 23 Kazalo 1 Uvod 2 2 Termodinamika 3 2.1 Termodinamika splošne snovi.......................... 3 2.2 Plinska enačba..................................
PROCESIRANJE SIGNALOV
Daum: 5.. 999. Izračuaje kompoee ampliudega spekra podaega periodičega sigala! Kolikša je osova frekveca ega sigala? Tabeliraje prvih šes ampliud! -,,,,3,4,5 - [ms]. Izračuaje Fourierjev rasform podaega
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Pisni izpit iz predmeta Fizika 2 (UNI)
0 0 0 0 3 4 0 0 0 0 0 0 5 Pisni izpit iz predmeta Fizika (UNI) 301009 1 V fotocelici je električni tok posledica elektronov, ki jih svetloba izbija iz negativne elektrode (katode) a) Kolikšen električni
ELEKTROTEHNIKA zbirka vaj
ELEKTROTEHIKA zbirka vaj Študijsko gradivo za študente Pedagoške fakultete v Ljubljani Janez Jamšek Študijsko leto 2005/2006 Kazalo 1. MODEL HIŠEGA ZVOCA...2 2. MODEL EOSMEREGA ELEKTROMOTORJA...3 3. EOSMERI
STANDARD1 EN EN EN
PRILOGA RADIJSKE 9,000-20,05 khz naprave kratkega dosega: induktivne aplikacije 315 600 khz naprave kratkega dosega: aktivni medicinski vsadki ultra nizkih moči 4516 khz naprave kratkega dosega: železniške
RANKINOV KROŽNI PROCES Seminar za predmet JTE
RANKINOV KROŽNI PROCES Seminar za predmet JTE Rok Krpan 16.12.2010 Mentor: izr. prof. Iztok Tiselj Carnotov krožni proces Iz štirih sprememb: dveh izotermnih in dveh izentropnih (reverzibilnih adiabatnih)
SLO - NAVODILO ZA NAMESTITEV IN UPORABO Št. izd. : OSNOVNI UČNI PAKET ZA MERJENJE IN TESTIRANJE. Št.
SLO - NAVODILO ZA NAMESTITEV IN UPORABO Št. izd. : 192290 www.conrad.si OSNOVNI UČNI PAKET ZA MERJENJE IN TESTIRANJE Št. izdelka: 192290 1 KAZALO UVOD... 3 GRADBENI DELI OSNOVE... 3 Baterija... 3 Upori...
Učni komplet Franzis ''Preizkusi s Teslino energijo''
SLO - NAVODILA ZA UPORABO IN MONTAŽO Kat. št.: 63 18 51 www.conrad.si NAVODILA ZA UPORABO Učni komplet Franzis ''Preizkusi s Teslino energijo'' Kataloška št.: 63 18 51 Kazalo Izključitev odgovornosti...
Fizika (BF, Biologija)
dr. Andreja Šarlah Fizika (BF, Biologija) gradivo za vaje 2013/14 Vsebina 1. vaje: Velikostni redi, leče, mikroskop 2 2. vaje: Newtnovi zakoni gibanja: kinematika, sile, navori, energija 4 3. vaje: Gravitacija,
Električni potencial in električna napetost Ker deluje na električni naboj, ki se nahaja v električnem polju, sila, opravi električno
FIZIKA 3. poglavje: Elektrika in magnetizem - B. Borštnik 1 ELEKTRIKA IN MAGNETIZEM Elektrostatika Snov je sestavljena iz atomov in molekul. Atome si lahko predstavljamo kot kroglice s premerom nekaj desetink
Univerza v Ljubljani Pedagoška fakulteta. Indukcijska plošča. Špela Jelinčič. Seminarska naloga pri predmetu Didaktika tehnike III
Univerza v Ljubljani Pedagoška fakulteta Indukcijska plošča Špela Jelinčič Seminarska naloga pri predmetu Didaktika tehnike III Mentor: doc. dr. Janez Jamšek Ljubljana, 2013 Povzetek Seminarska naloga
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
1. kolokvij iz predmeta Fizika 2 (VSŠ)
0 0 0 4 2 5 9 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: 1. kolokvij iz predmeta Fizika 2 (VSŠ) 4.4.2013 1. Kolikšen je napetost med poljubno
ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE
veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n
PRILOGA VI POTRDILO O SKLADNOSTI. (Vzorci vsebine) POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA
PRILOGA VI POTRDILA O SKLADNOSTI (Vzorci vsebine) A POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA Stran 1 POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA (1) (številka potrdila o skladnosti:)
SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W