ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ -----
|
|
- Σπύρο Κυπραίος
- 5 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βθμός Ασφλείς: Ν διτηρηθεί μέχρι: Βθ. Προτεριότητς: ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΠΡΩΤΟΒΑΘΜΙΑΣ, ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΙ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Τχ. Δ/νση: Ανδρέ Ππνδρέου 37 Τ.Κ. Πόλη: 58 Μρούσι Ιστοσελίδ: Πληροφορίες: Α. Πσχλίδου B. Πελώνη Τηλέφωνο: ΠΡΟΣ: ΚΟΙΝ.: Αθήν, Αρ. Πρωτ. 4343/Δ Περιφερεικές Δ/νσεις Εκπ/σης Συντονιστές Εκπ/κού Έργου Δ.Ε. (μέσω των Περιφερεικών Δ/νσεων Εκπ/σης) Διευθύνσεις Δ/θμις Εκπ/σης Γενικά Λύκει (μέσω των Δ/νσεων Δ/θμις Εκπ/σης) Ινστιτούτο Εκπιδευτικής Πολιτικής ΘΕΜΑ: Διχείριση διδκτές-εξετστές ύλης των Μθημτικών της Γ τάξης Ημερησίου Γενικού Λυκείου κι Γ κι Δ τάξεων Εσπερινού Γενικού Λυκείου γι το σχολικό έτος 9- Σχετ.: Το με ρ. πρωτ. εισ. Υ.ΠΑΙ.Θ. 359/3-9-9 έγγρφο Μετά πό σχετική εισήγηση του Ινστιτούτου Εκπιδευτικής Πολιτικής (πράξη 34/9-8-9 του Δ.Σ) σάς ποστέλλουμε τη διχείριση διδκτές-εξετστές ύλης των Μθημτικών της Γ τάξης Ημερησίου Γενικού Λυκείου κι Γ κι Δ τάξεων Εσπερινού Γενικού Λυκείου γι το σχολικό έτος 9-. Γι το σχολικό έτος 9- η διδκτέ-εξετστέ ύλη των Μθημτικών της Γ τάξης περιλμβάνει την θεμτική της Ανάλυσης της οποίς η κυρίως διδσκλί κτλμβάνει 6 ώρες την εβδομάδ, ενώ διτίθετι επιπλέον μί ώρ την εβδομάδ γι επίλυση ποριών. Οι προύσες οδηγίες φορούν στην κυρίως διδσκλί. Οι διτιθέμενες ώρες διδσκλίς επιτρέπουν την ευχερέστερη υποστήριξη γνωστικών κι διδκτικών στόχων. Πιο συγκεκριμέν: ) την σύνδεση της νάλυσης με εφρμογές κι προβλήμτ που σχετίζοντι με την πργμτικότητ.
2 β) την υποστήριξη της μεγάλης πλειονότητς των μθητών/τριών στο ν εμπλκούν με τ Μθημτικά νεξάρτητ πό τη μέχρι τώρ μθησική πορεί τους. Η μεττόπιση της διδσκλίς προς τις διδικσίες επίλυσης προβλήμτος μπορεί ν προσφέρει μι επιπλέον νοημτοδότηση των σχετικών εννοιών κι διδικσιών. Γι την εμπλοκή των μθητών/τριών σε διδικσίες μθημτικής μοντελοποίησης κρίνετι σκόπιμη κτρχάς η ξιοποίηση προβλημάτων πό το υπάρχον διδκτικό υλικό (διδκτικό βιβλίο, υλικό κι βιβλί νρτημέν στο Έχει ιδιίτερη σημσί κτά τη διπργμάτευση των προβλημάτων ν πρέχετι επρκής χρόνος στους μθητές/τριες κι ν ντιμετωπίζοντι τυχόν γνωστικές ελλείψεις. Η ντιμετώπιση γνωστικών ελλείψεων ορισμένων μθητών/τριών μπορεί ν γίνετι με την νάδειξη ενδομθημτικών συνδέσεων εννοιών κι διδικσιών κθώς κι την νάκληση προηγούμενων γνώσεων. Αυτά ποτελούν σημντικές ευκιρίες φενός επνσύνδεσης μθητών που κινδυνεύουν ν χάσουν την επφή με τ μθημτικά κι φετέρου βθύτερης κτνόησης γι όλους. Τέτοιες πρεμβάσεις μπορούν ν γίνοντι κτά την κρίση του διδάσκοντ, είτε ως θεωρητική συζήτηση (στις ρχικές πργράφους συνρτήσεων, μονοτονίς, κροτάτων κ..), είτε ως πρεμβολή των νγκίων θεωρητικών στοιχείων γι μι άσκηση. Στον επόμενο πίνκ προυσιάζετι ο προτεινόμενος ελάχιστος ριθμός ωρών διδσκλίς νά πράγρφο του σχολικού βιβλίου. Πράγρφος Ελάχιστος ριθμός ωρών Πράγρφος Ελάχιστος ριθμός ωρών Πράγρφος Ελάχιστος ριθμός ωρών Κεφάλιο ο. Το περιεχόμενο της πργράφου υτής είνι σημείο νφοράς γι τ επόμεν. Οι περισσότερες πό τις έννοιες που περιέχοντι είνι ήδη γνωστές στους μθητές. Γι υτό η διδσκλί δεν πρέπει ν στοχεύει στην εξ υπρχής νλυτική προυσίση
3 γνωστών εννοιών, λλά στο ν δίνει φορμές στους μθητές ν ντρέχουν στ βιβλί των προηγούμενων τάξεων κι ν επνφέρουν στη μνήμη τους γνωστές έννοιες κι προτάσεις που θ τις χρειστούν στ επόμεν.. Ν δοθεί έμφση σε προβλήμτ μθημτικής μοντελοποίησης με κτσκευή συνάρτησης που περιγράφει έν φινόμενο ή μί κτάστση, όπως γι πράδειγμ οι σκήσεις 5 της Α ομάδς κι, 3 κι 4 της Β ομάδς. Η διδσκλί της πργράφου υτής είνι μί ευκιρί νάκλησης/συμπλήρωσης προηγούμενων γνώσεων πό οικείες συνρτήσεις (τριγωνομετρικές πολυωνυμικές, εκθετικές, λογριθμικές, κ..) κι των ντίστοιχων εξισώσεων κι νισώσεων. Επιπλέον, γεωμετρικές έννοιες κι σχέσεις είνι χρήσιμο ν συζητούντι με φορμή σχετικά προβλήμτ. Ανάλογες πρεμβάσεις είνι χρήσιμο ν γίνοντι κι σε επόμενες πργράφους σύμφων με την κρίση του διδάσκοντ. Η έννοι της συνάρτησης είνι άμεσ συνδεδεμένη με τη γρφική της πράστση κι η σύνδεση υτή πρέπει ν νδεικνύετι σε κάθε ευκιρί, διότι υποστηρίζει την κτνόηση των χρκτηριστικών της συνάρτησης. Ν επισημνθεί ότι μπορεί το γινόμενο δύο συνρτήσεων ν είνι η στθερή συνάρτηση μηδέν χωρίς κμί πό τις δύο ν είνι ίση με την συνάρτηση μηδέν. Έν κτάλληλο πράδειγμ ποτελούν οι συνρτήσεις g f των οποίων συνιστάτι ν γίνει κι η γρφική πράστση. Ν επισημνθεί ότι πό τον ορισμό της συνάρτησης προκύπτει ότι ν D κι, f κι ισχύει πάντ f f. Το ντίστροφο όμως δεν ισχύει πάντ (ισχύει μόνο ότν η συνάρτηση είνι έν προς έν, όπως θ φνεί σε επόμενη πράγρφο). Επιπλέον, είνι χρήσιμο ν συζητηθεί ότι ο ορισμός της ισότητς συνρτήσεων δεν μπορεί ν υποκτστθεί με τον «Δύο συνρτήσεις f κι g λέγοντι ίσες ότν έχουν το ίδιο πεδίο ορισμού κι τον ίδιο τύπο.» Κτρχάς, δεν έχουν όλες οι συνρτήσεις τύπο. Αλλά δύο συνρτήσεις με διφορετικό τύπο μπορεί ν είνι ίσες, όπως γι πράδειγμ οι ορισμένες στο R συνρτήσεις f κι g..3 Γι την νγνώριση των ιδιοτήτων της μονοτονίς κι του «έν προς έν» μις συνάρτησης είνι σημντικό ν ξιοποιηθούν οι γρφικές πρστάσεις. Γι το σκοπό υτό μπορούν ν ξιοποιηθούν οι γρφικές πρστάσεις των βσικών συνρτήσεων της προηγούμενης πργράφου. 3
4 Ν τονιστεί στους μθητές ότι γι την επίλυση σκήσεων μπορούν ν χρησιμοποιούντι, νπόδεικτ, οι προτάσεις : i) Αν η συνάρτηση είνι γνησίως ύξουσ σε έν διάστημ Δ, τότε γι f οποιδήποτε, ισχύει η συνεπγωγή : f f. ii) Αν η συνάρτηση f είνι γνησίως φθίνουσ σε έν διάστημ Δ, τότε γι οποιδήποτε, ισχύει η συνεπγωγή: f f. Γι λόγους διδκτικούς μπορεί ν προυσιστεί στην τάξη η πόδειξη υτών των προτάσεων: i) Έστω ότι υπάρχουν,, γι τ οποί ισχύει η υπόθεση κι δεν ισχύει το συμπέρσμ της συνεπγωγής. Τότε θ ισχύει: f f κι Αν ήτν,επειδή η είνι γνησίως ύξουσ, θ ίσχυε f f, που f ντίκειτι στην υπόθεση. Αν ήτν,πό τον ορισμό της συνάρτησης, θ ίσχυε: f f,που ντίκειτι κι υτό στην υπόθεση. Επομένως, ισχύει το ζητούμενο. ii) Αντίστοιχη με την i..4 Με δεδομένο ότι ο τυπικός ορισμός του ορίου δεν συμπεριλμβάνετι στην ύλη, ν δοθεί βάρος στη διισθητική προσέγγιση της έννοις του ορίου. Δηλδή, ν γίνει προσπάθει, μέσ πό γρφικές πρστάσεις κτάλληλων συνρτήσεων, ν ποκτήσουν οι μθητές μι κλή εικόν κι ν ποφευχθούν πρνοήσεις, που πό τη βιβλιογρφί έχει προκύψει ότι δημιουργούντι συχνά στους μθητές, γι την έννοι του ορίου. Ν τονιστεί ιδιίτερ, μέσ πό κτάλληλες γρφικές πρστάσεις, ότι η συμπεριφορά της συνάρτησης στο σημείο δεν επηρεάζει το όριο της ότν το τείνει στο, κθώς κι ότι η τιμή του lim f ( ) κθορίζετι, πό τις τιμές που πίρνει η συνάρτηση κοντά στο. Δηλδή, δύο συνρτήσεις που έχουν τις ίδιες τιμές σε έν διάστημ γύρω πό το λλά μπορεί ν διφέρουν στο (πίρνουν διφορετικές τιμές ή η μι ορίζετι κι η άλλη δεν ορίζετι ή κμί δεν ορίζετι) έχουν το ίδιο όριο ότν το τείνει στο. Ν τονιστεί, επίσης, ότι η ύπρξη του ορίου δεν συνεπάγετι μονοτονί, κάτι που όπως προκύπτει πό τη βιβλιογρφί είνι συνηθισμένη πρνόηση των μθητών, ούτε όμως κι τοπική μονοτονί δεξιά κι ριστερά του, δηλδή μονοτονί σε έν διάστημ ριστερά του κι σε έν διάστημ δεξιά του. Γι το σκοπό υτό μπορεί ν χρησιμοποιηθούν γρφικές πρστάσεις κτάλληλων συνρτήσεων, που 4
5 θ σχεδιστούν με τη βοήθει λογισμικού, όπως είνι γι πράδειγμ η f ( ) ημ (Σχήμ ). Σχήμ Επίσης, επειδή πολλοί μθητές θεωρούν ότι ότν έν όριο δεν υπάρχει τ πλευρικά όρι υπάρχουν κι είνι διφορετικά, ν δοθούν γρφικά κι ν συζητηθούν πρδείγμτ που δεν υπάρχουν τ πλευρικά όρι, όπως γι πράδειγμ η f ( ) ημ (Σχήμ ). Σχήμ.5 Στην ενότητ υτή δεν έχει νόημ μι άσκοπη σκησιολογί που οι μθητές υπολογίζουν όρι, κάνοντς χρήση λγεβρικών δεξιοτήτων. Στη λύση των 5
6 σκήσεων ν ζητείτι πό τους μθητές ν τονίζουν τις ιδιότητες των ορίων που χρησιμοποιούν, ώστε οι σκήσεις υτές ν ποκτούν ουσιστικό περιεχόμενο πό πλευράς Ανάλυσης, κάτι που θ βοηθήσει στην νάπτυξη της κτνόησης πό τους μθητές της έννοις του ορίου. Γι πράδειγμ σε ερωτήσεις όπως «ν βρεθεί το 4 6 lim» (άσκηση 3i) είνι χρήσιμο ν ζητείτι πό τους μθητές ν 3 8 ιτιολογήσουν ποιες ιδιότητες των ορίων χρησιμοποιούντι στ ενδιάμεσ στάδι μέχρι τον τελικό υπολογισμό, ν προβλημτιστούν ν οι g( ) ( 4) ( ) 4 6 f ( ) 3 8 κι είνι ίσες κι, φού διπιστώσουν ότι δεν είνι ίσες, ν 4 δικιολογήσουν γιτί έχουν ίσ όρι. Επίσης σε σκήσεις όπου η συνάρτηση ορίζετι με διφορετικό τύπο σε δύο συνεχόμεν διστήμτ, όπως π.χ. η άσκηση 5 της Α Ομάδς, ν ζητείτι ιτιολόγηση γιτί στο σημείο λλγής του τύπου είμστε υποχρεωμένοι ν ελέγχουμε τ πλευρικά όρι, ενώ στ άλλ σημεί του πεδίου ορισμού μπορούμε ν βρούμε το όριο χρησιμοποιώντς τον ντίστοιχο τύπο. Δηλδή, ν φίνετι ότι οι μθητές κτνοούν ότι το όριο κθορίζετι πό τις τιμές της συνάρτησης κοντά στο κι εκτέρωθεν υτού. Αυτό μς επιτρέπει στ σημεί τ διφορετικά πό το ν χρησιμοποιούμε τον έν τύπο, ενώ στο πρέπει ν πάρουμε πλευρικά όρι..6 Ν δοθεί βάρος στη διισθητική προσέγγιση της έννοις με τη χρήση γρφικών πρστάσεων. Εκτός πό τ πρδείγμτ του βιβλίου ν δοθούν, μέσ πό κτάλληλες γρφικές πρστάσεις, που θ σχεδιστούν με τη βοήθει λογισμικού, πρδείγμτ όπου το όριο δεν είνι πεπερσμένο λλά δεν υπάρχει μονοτονί, όπως π.χ. lim (Σχήμ 3), ώστε ν ποφευχθεί η πρνόηση που συνδέει την ύπρξη μη πεπερσμένου ορίου στο με τη μονοτονί. 6
7 Σχήμ 3.7 Ν δοθεί βάρος στη διισθητική προσέγγιση της έννοις. Ν δοθούν, μέσ πό κτάλληλες γρφικές πρστάσεις, πρδείγμτ συνρτήσεων των οποίων το όριο, ότν το τείνει στο +, υπάρχει λλά οι συνρτήσεις υτές δεν είνι ημ μονότονες, όπως είνι γι πράδειγμ η f ( ) (Σχήμ 4), κθώς κι συνρτήσεων των οποίων το όριο δεν υπάρχει, ότν το τείνει στο +, όπως είνι γι πράδειγμ η f ( ) ημ. Σχήμ 4 7
8 Τ όρι: lim n, lim n, lim n κι lim n, ν συζητηθούν με τη χρήση γρφικών πρστάσεων, που θ σχεδιστούν με τη βοήθει λογισμικού, κι πινάκων τιμών, με στόχο ν ντιληφθούν διισθητικά οι μθητές ποι είνι τ όρι υτά. Η τελευτί πράγρφος, πεπερσμένο όριο κολουθίς, ν συζητηθεί γιτί θ χρειστεί γι το ορισμένο ολοκλήρωμ. Ν δοθεί στους μθητές η δυντότητ ν χρησιμοποιούν, νπόδεικτ, τις πρκάτω προτάσεις οι οποίες δεν υπάρχουν στο σχολικό βιβλίο : Έστω, δύο συνρτήσεις που είνι ορισμένες κοντά στο R. f g i) Αν ισχύουν: ) f ( ) g( ) κοντά στο κι β) lim f ( ), τότε θ ισχύει κι lim g( ). ii) Αν ισχύουν: ) f ( ) g( ) κοντά στο κι β) lim g( ),, τότε θ ισχύει κι lim f ( ) Η προυσίση των πρπάνω προτάσεων μπορεί ν γίνει διισθητικά με την βοήθει κτάλληλων γρφικών πρστάσεων.8 Στην πρώτη ενότητ (ορισμός της συνέχεις) ν συζητηθούν κι γρφικά πρδείγμτ συνεχών συνρτήσεων με πεδίο ορισμού ένωση ξένων διστημάτων, όπως είνι γι πράδειγμ οι συνρτήσεις f ( ) (Σχήμ 5) κι g( ) (Σχήμ 6). Ν συζητηθεί γιτί το γράφημ των συνρτήσεων υτών δικόπτετι, πρόλο που είνι συνεχείς. Ν δοθούν στους μθητές κι σχετικές σκήσεις. 8
9 Σχήμ 5 Σχήμ 6 Επίσης, κτά τη διδσκλί των θεωρημάτων Bolzano, ενδιάμεσων τιμών κι μέγιστης κι ελάχιστης τιμής, κθώς κι της πρότσης ότι η συνεχής εικόν διστήμτος είνι διάστημ, ν δοθεί έμφση κι ν συζητηθούν οι γρφικές πρστάσεις που κολουθούν τις τυπικές διτυπώσεις υτών, ώστε οι μθητές ν βοηθηθούν στην ουσιστική κτνόηση τους. Το θεώρημ Bolzano είνι το πρώτο ουσιστικά θεώρημ που συνντούν οι μθητές στην Ανάλυση. Γι υτό είνι κλό ν γίνει μι συζήτηση που ν φορά την νγκιότητ των υποθέσεων του θεωρήμτος νάλογη με το σχόλιο του θεωρήμτος των ενδιάμεσων τιμών. Επίσης θ πρέπει ν τονισθεί ότι δεν ισχύει το ντίστροφο. Δηλδή ενδέχετι οι τιμές μις συνάρτησης στ άκρ ενός κλειστού διστήμτος [, β ] του πεδίου ορισμού της ν έχουν το ίδιο πρόσημο, η συνάρτηση ν μην είνι συνεχής στο [, β ] κι όμως ν πίρνει την τιμή σε έν εσωτερικό σημείο του [, β ]. Διευκρινίζετι ότι στο θεώρημ προσδιορισμού του συνόλου τιμών συνάρτησης της οποίς το πεδίο ορισμού είνι το νοιχτό διάστημ (,β), τ, β μπορεί ν είνι κι μη πεπερσμέν. 9
10 Ν τονιστεί στους μθητές ότι γι την επίλυση σκήσεων μπορεί ν χρησιμοποιείτι, νπόδεικτ, η πρότση: Αν μί συνεχής συνάρτηση ορισμένη σε έν νοικτό διάστημ, ιδιότητ lim f, lim f τότε το σύνολο τιμών της είνι το. Γι λόγους διδκτικούς μπορεί ν προυσιστεί στην τάξη η πόδειξη: έχει την Αρκεί ν δείξουμε ότι κάθε πργμτικός ριθμός y είνι τιμή της f. Θεωρούμε την συνεχή συνάρτηση g f y. Είνι lim g κι lim g. g Επομένως θ υπάρχουν,, ώστε κι g. Θ είνι κι πό το θεώρημ του Bolzano η g θ έχει μι ρίζ στο νοικτό διάστημ με άκρ,. Θ είνι κι επομένως f y δηλδή ο θ g είνι y είνι τιμή της f. Κεφάλιο ο. Ν δοθεί έμφση στην εισγωγή της έννοις μέσω του προβλήμτος της στιγμιίς τχύτητς κι της εφπτομένης. Μετά τον ορισμό της πργώγου κι της εφπτομένης γρφικής πράστσης συνάρτησης ν συζητηθεί νλυτικότερ η έννοι της εφπτομένης. Επίσης, ν δοθούν πρδείγμτ που θ βοηθήσουν τον μθητή ν νκτσκευάσει την εικόν της εφπτομένης που έχει πό τον κύκλο (η εφπτομένη έχει έν κοινό σημείο κι δεν κόβει την κμπύλη) κι ν σχημτίσει μι γενικότερη εικόν γι την εφπτομένη ευθεί. Γι πράδειγμ, προτείνετι ν συζητηθούν κι ν δοθούν στους μθητές γρφικά: i) Η εφπτομένη της γρφικής πράστσης της συνάρτησης f ( ) 3 στο σημείο Ο, ώστε ν κτλάβουν ότι η εφπτομένη μις κμπύλης μπορεί ν διπερνά την κμπύλη κι ii) Η εφπτομένη της γρφικής πράστσης της συνάρτησης, ν g( ) στο σημείο Ο, ώστε ν κτλάβουν ότι μι ημιευθεί της, ν εφπτομένης μις κμπύλης μπορεί ν συμπίπτει με έν τμήμ της κμπύλης κι επιπλέον ότι η εφπτομένη μις ευθείς σε κάθε σημείο της συμπίπτει με την ευθεί.
11 . Ν προσεχθεί ιδιίτερ το θέμ της κτνόησης πό τους μθητές των ρόλων του f ( h) f ( ) h κι του στην έκφρση f '( ) lim που χρησιμοποιείτι στο h h βιβλίο γι τον υπολογισμό της πργώγου των τριγωνομετρικών συνρτήσεων. Ν τονιστεί η διφορά πργώγου σε σημείο κι πργώγου συνάρτησης..3 Ν δοθεί βάρος στην πργώγιση σύνθετης συνάρτησης κθώς κι στην πρτήρηση σχετικά με το ότι το σύμβολο dy δεν είνι πηλίκο. d Στην εφ., ν τονιστεί ότι η εξίσωση της ευθείς που βρέθηκε με βάση τον νλυτικό ορισμό της εφπτομένης είνι ίδι με υτή που γνωρίζουμε πό την νλυτική γεωμετρί. Αυτό γι ν στθεροποιηθεί στους μθητές η ντίληψη ότι η έννοι της εφπτομένης που πργμτεύοντι στην νάλυση συνδέετι κι επεκτείνει την έννοι της εφπτομένης που γνώρισν στη γεωμετρί..4 Η έννοι του ρυθμού μετβολής είνι σημντική κι δείχνει τη σημσί της έννοις της πργώγου στις εφρμογές. Γι το λόγο υτό κλό είνι ν γίνει προσπάθει οι μθητές ν κτνοήσουν την έννοι κι ν δουν ορισμένες χρήσιμες εφρμογές..5 Ν δοθεί έμφση στη γεωμετρική ερμηνεί των Θεωρημάτων Rolle κι Μέσης Τιμής που υπάρχει στο σχολικό βιβλίο μετά τη διτύπωση των θεωρημάτων υτών. Στην εφρμογή 3 ν γίνει συζήτηση γι το τι εκφράζει το πηλίκο S(,5) S(),5 (μέση τχύτητ της κίνησης) με στόχο ν κτνοήσουν οι μθητές ότι υτό που ποδεικνύετι είνι ότι κτά τη διάρκει της κίνησης υπάρχει τουλάχιστον μι χρονική στιγμή κτά την οποί η στιγμιί τχύτητ θ είνι ίση με τη μέση τχύτητ που είχε το υτοκίνητο σε όλη την κίνηση. Ενλλκτικά, θ μπορούσε ν συζητηθεί στην ρχή του κεφλίου το γεγονός, ότι κτά τη διάρκει της κίνησης ενός υτοκινήτου κάποι στιγμή της διδρομής η στιγμιί τχύτητά του θ είνι ίση με τη μέση τχύτητά του (κάτι που οι μθητές το ντιλμβάνοντι διισθητικά). Στη συνέχει, ν διτυπωθεί η μθημτική σχέση που εκφράζει το γεγονός υτό, κι ν τεθεί το ερώτημ ν το συμπέρσμ μπορεί
12 ν γενικευθεί κι γι άλλες συνρτήσεις. Η πάντηση στην ερώτηση υτή είνι το Θεώρημ Μέσης Τιμής..6 Στην ρχή της διδσκλίς υτού του κεφλίου μπορεί ν συνδεθεί η μονοτονί μις συνάρτησης f σε έν διάστημ Δ του πεδίου ορισμού της με την διτήρηση του λόγου μετβολής f ( ) f ( ) ποδειχτεί ότι η συνάρτηση f είνι: i) γνησίως ύξουσ στο Δ, ν κι μόνο ν στο διάστημ υτό. Συγκεκριμέν, ν f ( ) f ( ), δηλδή, ν κι μόνο ν όλες οι χορδές της γρφικής πράστσης της f στο διάστημ Δ έχουν θετική κλίση. ii) γνησίως φθίνουσ στο Δ, ν κι μόνο ν f ( ) f ( ), δηλδή, ν κι μόνο ν όλες οι χορδές της γρφικής πράστσης της f στο διάστημ Δ έχουν ρνητική κλίση. Με τον τρόπο υτό θ συνδεθεί η μονοτονί με την πράγωγο κι θ δικιολογηθεί το γιτί στην πόδειξη του θεωρήμτος της μονοτονίς f ( ) f ( ) χρησιμοποιούμε το λόγο μετβολής..7 Τ προβλήμτ μεγίστων ελχίστων ποτελούν μί πό τις σημντικές εφρμογές του διφορικού λογισμού που δικιολογούν κι ποδίδουν ξί στη διδσκλί του. Συγχρόνως, συγκεντρώνουν στοιχεί πό τη διδσκλί προηγούμενων ενοτήτων κι έτσι ποτελούν μι κλή ευκιρί επνλήψεων κι συμπληρώσεων. Κρίνετι σκόπιμο ν συζητηθούν κτά το δυντόν περισσότερ προβλήμτ. Μετά την εφρμογή ν διδχθεί ως εφρμογή η άσκηση 3 ) i) της Β Ομάδς. Ως πόδειξη, εκτός πό εκείνη που περιέχετι στο βιβλίο λύσεων, μπορεί ν δοθεί κι η κόλουθη που είνι έμμεση συνέπει της εφρμογής. Ζητούμενο: Γι κάθε είνι e κι το «=» ισχύει μόνο γι. Απόδειξη: Γι όλους τους θετικούς ριθμούς ισχύει ln κι το «=» ισχύει ν κι μόνο ν. Επομένως κι γι τον θετικό e ισχύει ln e e κι το «=»
13 ισχύει μόνο γι e δηλδή. Επομένως e κι το «=» ισχύει μόνο γι. Άρ e κι το «=» ισχύει μόνο γι..8 Υπενθυμίζετι ότι θ μελετηθούν μόνο συνρτήσεις που είνι τουλάχιστον δύο φορές πργωγίσιμες στο εσωτερικό του πεδίου ορισμού τους. Γι το λόγο υτό δεν θ διδχτούν οι σκήσεις 3iv κι 3v της Α ομάδς..9 Γι μι διισθητική κτνόηση του κνόν De L Hospital προτείνετι, πριν τη ln διτύπωση του, ν δοθεί στους μθητές ν υπολογίσουν το lim, το οποίο είνι της μορφής. Οι μθητές θ διπιστώσουν ότι δυσκολεύοντι ν υπολογίσουν το όριο υτό με τις μεθόδους που γνωρίζουν μέχρι τώρ. Γι ν τους βοηθήσουμε ν υπολογίσουν το πρπάνω όριο προτείνουμε ν δοθεί σε υτούς η κόλουθη δρστηριότητ. ΔΡΑΣΤΗΡΙΟΤΗΤΑ i) Ν πρστήσετε γρφικά στο ίδιο σύστημ συντετγμένων τις συνρτήσεις ii) ln κι g f. Ν ποδείξετε ότι οι εφπτόμενες των γρφικών πρστάσεων των f κι g στο κοινό τους σημείο A(,) είνι οι ευθείες ε : y κι ζ : y ντιστοίχως κι ν τις χράξετε. iii) Ν κάνετε χρήση του γεγονότος ότι «κοντά» στο οι τιμές των συνρτήσεων f ln κι g προσεγγίζοντι πό τις τιμές των εφπτομένων τους y κι y γι ν κτλήξετε στο ln συμπέρσμ ότι «κοντά» στο η τιμή του πηλίκου είνι κτά προσέγγιση ίση με την τιμή του πηλίκου, δηλδή ότι «κοντά» στο ln ισχύει: ;, ( ) που είνι το πηλίκο των κλίσεων των πρπάνω ευθειών. 3
14 Επομένως, «κοντά» στο ισχύει γράφετι: f f lim g g f f ;, το οποίο υπό μορφή ορίου g g ΣΧΟΛΙΟ Η διπίστωση του γεγονότος ότι «κοντά» στο οι τιμές των συνρτήσεων ln κι g f προσεγγίζοντι πό τις τιμές των εφπτομένων τους y κι y μπορεί ν γίνει κι με τη βοήθει ενός δυνμικού λογισμικού (πχ. Geogebra), ως εξής: Πριστάνουμε γρφικά τις συνρτήσεις y y ln κι κι στη συνέχει χράσσουμε τις εφπτόμενες τους y κι y ντιστοίχως (σχήμ 7). Έπειτ, κάνουμε λλεπάλληλ ZOOM κοντά στο σημείο A (,) πρτηρήσουμε ότι η y. Θ y ln θ συμπέσει με την ευθεί y, ενώ η θ συμπέσει με την ευθεί y (σχήμ 8). Σχήμ 7 4
15 Σχήμ 8 Ν τονιστεί ότι οι κνόνες De l Hospital δεν είνι πάντ πρόσφοροι γι τον υπολογισμό ορίων προσδιόριστων μορφών. Έτσι, ν έχουμε το όριο lim κι επιχειρήσουμε ν εφρμόσουμε τον κνόν βρίσκουμε κι δηλδή επιστρέφουμε εκεί που ρχίσμε χωρίς ν βρούμε το όριο. Χωρίς τον κνόν βρίσκουμε: lim lim lim Ν τονιστεί ότι ενδέχετι μι συνάρτηση ν τέμνει μι πλάγι ή οριζόντι σύμπτωτη της. Ως πράδειγμ μπορεί ν δοθεί (ευκτίο ν δοθεί κι το γράφημ) η συνάρτηση f ( ) που έχει σύμπτωτη την y η οποί τέμνει την γρφική πράστση σε άπειρ σημεί.. Η γρφική πράστση μις συνάρτησης είνι μι περιεκτική μορφή νπράστσης που πρέχει πληροφορίες γι τη συνάρτηση με άμεσο κι εύληπτο τρόπο. Συγχρόνως η διδικσί μελέτης κι χάρξής της βοηθάει στην εμπέδωση κι ενοποίηση προηγούμενων γνώσεων. Στην περίπτωση που η συνάρτηση εκφράζει έν φινόμενο, η γρφική πράστσή της προσφέρει επιπλέον κτνόηση του φινομένου. Γι το λόγο υτό προτείνετι η χάρξη της γρφικής 5
16 πράστσης κι συνρτήσεων που μελετήθηκν σε προβλήμτ προηγούμενων πργράφων (πχ στην.7) Κεφάλιο 3 ο 3. Ν δοθεί έμφση στ προβλήμτ που διτυπώνοντι στο σχολικό βιβλίο στην ρχή της ενότητς κι ν τονιστεί η σημσί της ντίστροφης διδικσίς της πργώγισης. Θ ήτν κλό ν συζητηθούν διεξοδικά ορισμέν πό υτά ή άλλ νάλογ, ώστε ν προκύψει η σημσί της ρχικής συνάρτησης. Ν συζητηθεί μόνο η πρώτη πράγρφος που φορά στην πράγουσ συνάρτηση. Το όριστο ολοκλήρωμ πρλείπετι κι ντί του πίνκ όριστων ολοκληρωμάτων ν δοθεί ο πρκάτω πίνκς των πργουσών μερικών βσικών συνρτήσεων. Α/Α Συνάρτηση Πράγουσες f ( ) G( ) c, c R, f ( ) G( ) c, c R 3 f ( ) G( ) ln c, c R 4 f ( ) G( ) c, c 5 f ( ) συν G( ) ημ c, c 6 f ( ) ημ G( ) συν c, c 7 8 f ( ) G( ) εφ c, c R συν f ( ) G( ) σφ c, c R ημ 9 f ( ) e G( ) e c, c R f ( ) G( ) c, c ln 6
17 Σημείωση: Οι τύποι του πίνκ υτού ισχύουν σε κάθε διάστημ στο οποίο οι πρστάσεις του που εμφνίζοντι έχουν νόημ. Οι δύο ιδιότητες των όριστων ολοκληρωμάτων στο τέλος της πργράφου μπορούν ν νδιτυπωθούν ως εξής: Αν οι συνρτήσεις F κι G είνι πράγουσες των f κι g ντιστοίχως κι ο λ είνι ένς πργμτικός ριθμός, τότε: i) Η συνάρτηση F G είνι μι πράγουσ της συνάρτησης f g κι ii) Η συνάρτηση λf είνι μι πράγουσ της συνάρτησης λf. Οι εφρμογές κι οι σκήσεις ν γίνουν με τη χρήση των ρχικών συνρτήσεων. 3.4 Το πρώτο μέρος που φορά στον υπολογισμό του εμβδού πρβολικού χωρίου ν γίνει με τρόπο που ν νδεικνύει την ξιοποίηση των θροισμάτων κι της ορικής διδικσίς γι την εύρεση υπολογισμό του εμβδού. Στη συνέχει ν γίνει διισθητική προσέγγιση της έννοις του ορισμένου ολοκληρώμτος κι ν συνδεθεί με το εμβδόν ότν η συνάρτηση δεν πίρνει ρνητικές τιμές κι με τον υπολογισμό του πρβολικού χωρίου που προηγήθηκε. Ν γίνει η εφρμογή του βιβλίου γι το ολοκλήρωμ στθερής συνάρτησης κι οι ιδιότητες που κολουθούν. Ν δοθεί στους μθητές η δυντότητ ν χρησιμοποιούν, νπόδεικτ, τις πρκάτω προτάσεις φού προυσιστούν σύντομ οι, προφνείς, ποδείξεις τους: «Έστω f κι g δυο συνεχείς συνρτήσεις σε έν διάστημ, β. β β Αν f g γι κάθε, β, τότε θ ισχύει: f d g d. Αν, επιπλέον, οι συνρτήσεις f κι g δεν είνι ίσες στο [, β] (δηλδή, ν β β υπάρχει ξ [, β], με f ( ) g( ) ), τότε θ ισχύει: f d g d» Επισήμνση: Η ισότητ του πρώτου πλισίου είνι η εξής: β ν f d lim f ( ξκ )Δ ν κ 7
18 3.5 Η εισγωγή της συνάρτησης f t dt γίνετι γι ν ποδειχθεί το Θεμελιώδες Θεώρημ του ολοκληρωτικού λογισμού κι ν νδειχθεί η σύνδεση του Διφορικού με τον Ολοκληρωτικό Λογισμό. Γι το λόγο υτό δεν θ διδχθούν εφρμογές κι σκήσεις που νφέροντι στη συνάρτηση στη συνάρτηση g ( ) f t dt. f t dt κι γενικότερ 3.7 Κτά τη διδσκλί της πργράφου μπορεί ν χρειστεί ν συζητηθούν έννοιες κι διδικσίες πό τις προηγούμενες τάξεις, όπως επίλυση εξισώσεων κι νισώσεων, συστημάτων, γρφικές πρστάσεις βσικών συνρτήσεων. Επισήμνση: Από τη διδκτέ-εξετστέ ύλη εξιρούντι οι Ασκήσεις του σχολικού βιβλίου που νφέροντι σε τύπους τριγωνομετρικών ριθμών θροίσμτος γωνιών, διφοράς γωνιών κι διπλάσις γωνίς. Οι διδάσκοντες/ουσες ν ενημερωθούν ενυπόγρφ. Η ΥΦΥΠΟΥΡΓΟΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΟΦΙΑ ΖΑΧΑΡΑΚΗ Εσωτ. Δινομή Δ/νση Σπουδών, Προγρ/των & Οργάνωσης Δ.Ε., Τμ. Α Δ/νση Πιδείς, Ομογ., Διπ. Εκπ/σης, Ευρ. κι Μειον. Σχολείων Διεύθυνση Θρησκευτικής Εκπ/σης & Διθρ. Σχέσεων Δ/νση Ειδικής Αγωγής κι Εκπ/σης Αυτ. Διεύθυνση Ιδιωτικής Εκπ/σης Αυτ. Τμήμ Πρότυπων κι Πειρμτικών Σχολείων Διεύθυνση Εξετάσεων κι Πιστοποιήσεων, Τμ. Α ΑΚΡΙΒΕΣ ΑΝΤΙΓΡΑΦΟ 8
Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑ: Διχείριση της Διδκτές-Εξετστές ύλης των Μθημτικών της Γ τάξης Ημερησίου Γενικού Λυκείου κι της Δ τάξης Εσπερινού Γενικού Λυκείου γι το σχ. έτος 6-7 Μετά πό σχετική εισήγηση του Ινστιτούτου Εκπιδευτικής
Διαχείριση της διδακτέας-εξεταστέας ύλης των Μαθηματικών Προσανατολισμού της Γ' τάξης Ημερησίου ΓΕΛ για το σχολικό έτος
. Διχείριση της διδκτές-εξετστές ύλης των Μθημτικών Προσντολισμού της Γ' τάξης Ημερησίου ΓΕΛ γι το σχολικό έτος 7-8 Σύμφων με την ρ. πρωτ. 63573/Δ/--7 εγκύκλιο του ΥΠ.Π.Ε.Θ. Δημήτριος Σπθάρς Σχολικός Σύμβουλος
ΜΑΘΗΜΑΤΙΚΑ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας & Πληροφορικής Γ τάξης Ημερησίου Λυκείου για το σχ.
ΜΑΘΗΜΑΤΙΚΑ Ομάδς Προσντολισμού Θετικών Σπουδών κι Σπουδών Οικονομίς & Πληροφορικής Γ τάξης Ημερησίου Λυκείου γι το σχ έτος 7-8 Αγπητέ Μθητή, Αγπητή Μθήτρι Στις φετινές οδηγίες διδσκλίς κι διχείρισης της
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.
Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.
Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι
( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x
ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε
Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3
Βθμός: /25 Τεστ Μθημτικών Εξετζόμενος-η: Προσντολισμού, Γ Λυκείου Θεωρί 1 Κθηγητής: Ιορδάνης Χτζηνικολάου Συνρτήσεις Θέμ Α Α1. Ν ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων f κι f 1 είνι συμμετρικές
Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.
1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d
3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A
3ο Επνληπτικό διγώνισμ στ Μθημτικά κτεύθυνσης της Γ Λυκείου 17-18 Θέμ A Α1 Έστω f μι συνεχής συνάρτηση σ έν διάστημ β ν ποδείξετε ότι: f t dt G β G Α Πότε μι συνάρτηση λέγετι 1-1; Α3 Πότε μι συνάρτηση
β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,
ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση
ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)
ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f
Θεωρήματα, Προτάσεις, Εφαρμογές
Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε
Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας
Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι
E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E.
ΘΕΜΑ Α Α i Σχολικό βιβλίο σελίδ 6 ii Σχολικό βιβλίο σελίδ 6 Α Σχολικό βιβλίο σελίδ 85 Α3 Ισχύει ότι 7 3 7 ()d ()d ()d () 3 Στο,3 είνι () οπότε το εμβδό του χωρίου Ω που ορίζετι πό την κι τις ευθείες, 3
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΑΞΗ: ΜΑΘΗΜΑ: 3 η ΤΑΞΗ ΕΠΑ.Λ. (Β ΟΜΑ Α ΜΑΘΗΜΑΤΙΚΑ II Ηµεροµηνί: Μ. Τετάρτη Απριλίου ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε Σχολικό Βιβλίο, σελίδ 7 την πόδειξη του Θεωρήµτος. Α. Βλέπε Σχολικό Βιβλίο,
ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ
Γι μθητές Β & Γ Λυκείου ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Πολλές συνρτήσεις μπορούν ν πρστθούν γρφικά, χωρίς τη
4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση
ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΚΑΜΠΟΥΡΗΣ ΘΕΟΔΩΡΟΣ ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΕΣ ΠΡΑΓΜΑΤΙΟΙ
ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α)
Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός
Τάξη Γ Κεφάλιο Ολοκληρωτικός Λογισμός Θεωρί-Μεθοδολογί-Ασκήσεις Κεφάλιο 3 Ολοκληρωτικός Λογισμός Σε κάθε μί πό τις πρκάτω περιπτώσεις ορίζετι πό τη γρφική πράστση μις τουλάχιστον συνάρτησης κι πό κάποιες
Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α
Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ 4 Ν υπολογίσετε το ολοκλήρωµ: 5 + d (988) 4 Αν I v π 4 v = εϕ d, ν Ν*, τότε: ) Ν ποδείξετε ότι γι κάθε ν>, ισχύει: Iv = Iv v β) Ν υπολογίσετε το Ι 5 (99) 4 Ν βρεθεί
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ
Φ4 ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΛΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ ΚΕΝΤΡΙΚ 3ο ΓΕΝΙΚ ΛΥΚΕΙ Ν. ΣΜΥΡΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤ-ΛΑΘΣ ΠΛΛΑΠΛΗΣ ΕΠΙΛΓΗΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΑΣΚΗΣΕΙΣ Α &
ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ
εθοδολογί Πρδείγµτ σκήσεις πιµέλει.: άτσιος ηµήτρης ΡΩ-Ρ ΡΩ διότητες: Ρ Πρδείγµτ:. υπολογίσετε τ πρκάτω ολοκληρώµτ: 5 d d συν π ( + ) d 4 Π ΡΩ ΡΩΩ. d c 6. d. d. d 4. d 5. συνd f '( ) d f ( ) + c. ηµ συν
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει ν είνι σε θέση:. Ν γνωρίζει τις έννοιες πράγουσ ή ρχική συνάρτηση, όριστο ολοκλήρωμ κι ν μπορεί ν υπολογίζει πλά όριστ ολοκληρώμτ με τη οήθει των μεθόδων
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Ι. Σε κθεμιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράμμ Α, ν ο ισχυρισμός είνι ληθής κι το γράμμ Ψ, ν ο ισχυρισμός είνι ψευδής δικιολογώντς συγχρόνως την
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν
1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι
Έςτω :RR, ςυνεχήσ ςυνάρτηςη κι,,cr Αποδείξτε ότι ) d d β) d d γ) d c c d c c δ) d c c c d ε) d στ) d Απάντηση:, εάν η είνι περιττή d, εάν η είνι άρτι Πρόκειτι γι πολύ βσική άσκηση, που είνι εφρμογή της
114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x
Ν εξετάσετε ν είνι ίσες οι συνρτήσεις f() N ποδείξετε ότι f g, ότν γι κάθε Η συνάρτηση f : f,. 4 σκήσεις έν ερώτημ - σε όλη την ύλη ln κι g ln ln ισχύει η σχέση: είνι περιττή κι ισχύει ότι 4 Ν οριστεί
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν
Η συνάρτηση F(x)= 13/3/2010 ΘΕΩΡΗΜΑ Αν f είναι συνάρτηση συνεχής σε διάστημα Δ και α είναι ένα σημείο του Δ, τότε
Μθημτικός Η συνάρτηση F()= //200 ΘΕΩΡΗΜΑ Αν f είνι συνάρτηση συνεχής σε διάστημ Δ κι είνι έν σημείο του Δ, τότε η συνάρτηση F()=, Δ είνι μι πράγουσ της f στο Δ. Δηλδή ισχύει: = f() γι κάθε Δ. (H πργώγιση
με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής,
Μθημτικά κτεύθυνσης Γ Λυκείου ο Διγώνισμ διάρκεις ωρών στις Συνρτήσεις κι τ Όρι Οκτώβριος Θέμ Α Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη Σωστό ή Λάθος δίπλ στο
4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A
4ο Επνληπτικό διγώνισμ στ Μθημτικά κτεύθυνσης της Γ Λυκείου 7-8 Θέμ A Α Έστω η συνάρτηση Ν ποδείξετε ότι η είνι πργωγίσιμη στο,, δηλδή κι ισχύει Ν ποδείξετε ότι η δεν είνι πργωγίσιμη στο μονάδες 7 A Ν
1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:
1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει
Συγκεκριμένα: ΜΕΡΟΣ Β : Ανάλυση. Κεφάλαιο 1ο (Προτείνεται να διατεθούν 37 διδακτικές ώρες) Ειδικότερα:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου για το σχολικό έτος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.
Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας
1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ
5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΕΡΟΣ Α
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Δίνετι η εκθετική συνάρτηση: f a Γι ποιες τιμές του η ) γνησίως ύξουσ; β) γνησίως φθίνουσ; ( ) είνι:. Δίνοντι οι
Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές
. ίνετι η συνάρτηση f() e. Α) Ν ποδείξετε ότι η νιοστή πράγωγος της συνάρτησης f µπορεί ν πάρει τη µορφή (ν) f () ( + ν + ν )e όπου ν ν είνι συντελεστές εξρτηµένοι πό το ν τους οποίους κι ν υπολογίσετε.
Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Αρχική Συνάρτηση Ορισμός Έστω f μι συνάρτηση ορισμένη σε έν διάστημ Δ. Αρχική συνάρτηση ή πράγουσ της f στο Δ ονομάζετι κάθε συνάρτηση F που είνι πργωγίσιμη στο
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))
Η έννοια της συνάρτησης
Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν
ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1
ΑΚΟΛΟΥΘΙΕΣ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Ακολουθί στοιχείων ενός συνόλου Ε ονομάζετι κάθε πεικόνιση : Ε Στην πεικόνιση υτή η εικόν του θ σηιώνετι κι θ ονομάζετι γενικός ή -οστός όρος της κολουθίς Η κολουθί υτή θ σηιώνετι
ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι
Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι
Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρ Ιουνίου 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απντήσεις) ΘΕΜΑ Α Α. () Ορισμός σχολικού βιβλίου σελ.5 (β) (i) Μι συνάρτηση
f(x) dx ή f(x) dx f(x) dx
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο
Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»
Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι
qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui
qwertyuiopasdfghjklzcvbnmq wertyuiopasdfghjklzcvbnmqw ertyuiopasdfghjklzcvbnmqwer tyuiopasdfghjklzcvbnmqwerty ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ uiopasdfghjklzcvbnmqwertyui ΟΛΟΚΛΗΡΩΤ ΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου. και Δ τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ
just ( u) Πατρόκλου 66 Ίλιον
just f ( u) du it Πτρόκλου 66 Ίλιον 637345 6944 www.group group-aei aei.gr Νίκος Σούρµπης - - Γιώργος Βρδούκς Ν χρκτηρίσετε τ πρκάτω, σηµειώνοντς Σ (σωστό) ή Λ (λάθος). Αν z, z C, τοτε zz = zz. Η εξίσωση
ΚΕΦΑΛΑΙΟ 4. α > α. Γνωρίζουµε ότι για κάθε x ( 0, + ) l οg x. Αυτό σηµαίνει ότι σε κάθε x ( 0, ) l οg x, εποµένως έχουµε τη συνάρτηση:
Λυµέν Θέµτ κι Ασκήσεις κ.λ.π. ΚΕΦΑΛΑΙΟ 4 Επιµέλει: Σκουφά Σωτήρη Βούρβχη Κώστ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Λογριθµική συνάρτηση >. Γνωρίζουµε ότι γι κάθε ( 0, + ) l οg. Αυτό σηµίνει ότι σε κάθε ( 0, ) Θεωρούµε
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 28 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΜΕΡΟΣ Α. Ν βρείτε το ολοκλήρωμ: (8x 3 ημx 5 + 7) dx ex (8x 3 ημx 5 e x + 7) dx = (8x3 ημx 5e x + 7)dx =
Μελέτη συνάρτησης f(x) = α x. α f(x) είναι περιττή α 0 x. Να μελετηθεί ως προς την μονοτονία η συνάρτηση f με f(x),α 0
Z. 7. Μελέτη συνάρτησης f() = Απρίτητες γνώσεις Θεωρίς Θεωρί 4. Ν ποδείξετε ότι η συνάρτηση: f() είνι περιττή 0 Απόδειξη: Το πεδίο ορισμού της f είνι το R* R 0 Γι κάθε R*, R* κι f(-) f() ( ) Επομένως η
7 Βήματα στον Ολοκληρωτικό Λογισμό Κεφάλαιο 3ο - Γ Λυκείου Κατεύθυνσης
7 Βήμτ στον Ολοκληρωτικό Λογισμό Κεφάλιο 3ο - Γ Λυκείου Κτεύθυνσης (Τελευτί ενημέρωση: 7/3/7) 7 μθήμτ (ήμτ) 38 ερωτήμτ θεωρίς 76 Άλυτες - λυμένες σκήσεις Μεθοδολογί σκήσεων - Προλημτισμοί 6 Κτηγορίες σκήσεων
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Αν η συνάρτηση f είνι συνεχής στο, πργωγίσιμη στο κι γι κάθε ισχύει f f ( ) d = e e e Α) Ν ποδείξετε ότι: f = e i) η f είνι πργωγίσιμη στο κι ισχύει ii) f() = e Β)
που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.
. Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών
ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ρρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλει: Τομές Μθημτικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ευτέρ, 5 Μ ου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μι συνάρτηση, η οποί είνι ορισμένη σε έν κλειστό
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Κεφάλιο ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ο Ρ Ι Σ Μ Ο Σ Τι ονομάζετι ορισμένο ολοκλήρωμ μις συνεχούς συνάρτησης f: [, ] πό το έως κι το κι πώς συμολίζετι ; Αν F είνι πράγουσ
( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:
Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο
ΠΡΟΣ : ΠΡΟΣ : Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
άρα ο μετασχηματισμός Τ είναι κανονικός 1 1 (ε) : 2x - y + 5 = y - - x + 5 =
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ ΜΑÏΟΥ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Α Σχολικό βιβλίο τεχνολογικής σελίδ 6 β Σχολικό βιβλίο τεχνολογικής σελίδ 67
ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου
ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΕΠΙΜΕΛΕΙΑ: Κωνστντόπουλος Κων/νος Μθημτικός ΜSc ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κτεύθυνσης Γ Λυκείου ΑΠΑΝΤΗΣΕΙΣ -ΥΠΟΔΕΙΞΕΙΣ ΤΟΥ ου ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΘΕΜΑ Α Α. (i) Βλέπε σχολικό
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o ΕΚΦΩΝΗΣΕΙΣ A Έστω µι συνεχής συνάρτηση σ' έν διάστηµ [, β] Αν G είνι µι πράγουσ της στο [, β], τότε ν δείξετε ότι β d Gβ G
γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση
Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
ολοκληρωτικος λογισμος
γ λυκειου ` κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο ολοκληρωτικος λογισμος επιμελει : τκης τσκλκος 7 ... ρχικη συνρτηση... ορισμενο ολοκληρωμ... η συνρτηση F()= f()d... εμδον επιπεδου χωριου γιτι...
Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. α Rκαι. Rτότε
Αλγεβρ Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΤΥΠΟΙ Ι ΙΟΤΗΤΕΣ ΥΝΑΜΕΩΝ I. ν... ν πράγοντες, ν, ν ν> ν Rκι ν Ν II. ν, ν µ, ν Ν µ ν ν µ, >, µ Ζ, µ ν ν Ν κι εάν Ορισµός : Αν > κι
4o Επαναληπτικό Διαγώνισμα 2016
wwwaskisopolisgr ΘΕΜΑ A 4o Επνληπτικό Διγώνισμ 6 Διάρκει: ώρες Α Έστω μι συνάρτηση f πργωγίσιμη σ έν διάστημ,, με εξίρεση ίσως έν σημείο του f διτηρεί πρόσημο στο,,, ν,στο οποίο όμως η f είνι συνεχής Αν
ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών
Σ ENA ΣΧΗΜ ΜΕ ΕΝΙΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΣΕΙΣ Κόσυβς ιώργος ο Πειρμτικό υμνάσιο θηνών ε υτή την εργσί προυσιάζοντι ορισμένες ξιοσημείωτες πρτηρήσεις πάνω σε έν πλούσιο σχήμ, το οποίο επιτρέπει ποικίλες προσεγγίσεις
2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.
. Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Έστω z, z C με (z ) = κι (z ) = Αν f() ( z )( z )( z )( z ) = κι f(i ) = 64 8i, τότε ν ποδείξετε ότι: ) f( i )
Ερωτήσεις θεωρίας βασισμένες στο βιβλίο των μαθηματικών της Γ τάξης
Ερωτήσεις θεωρίς βσισμένες στο βιβλίο των μθημτικών της Γ τάξης 1ο ΕΠΑΛ ΣΑΛΑΜΙΝΑΣ 27 Απριλίου 29 2 Μθημτικά Γ Τάξης 1. Τι είνι πληθυσμός, άτομο κι μέγεθος ενός πληθυσμού; Πληθυσμός ονομάζετι το σύνολο
Θέμα 1 ο. Θέμα 2 ο. Θέμα 3 ο. Θέμα 4 ο
ΑΣΚΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΎΠΟΥ Θέμ ο 6 Αν υπάρχουν,β R ώστε οι εξισώσεις: ( + ) β = 4( ) κι + 4 3 + β( + ) = ( + 3) ν έχουν κοινή λύση τότε ν ποδειχθεί ότι η εικόν του + z = + βi στο μιγδικό επίπεδο νήκει σε
Γ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Β
Γ. Ε. ΛΥΚΕΙΟ 008 81 Γ. Ε. ΛΥΚΕΙΟ 008 8 Α. Ν ποδείξετε ότι ν συν( + β) 0, συν 0 κι συνβ 0 ισχύει: εφ + εφβ εφ( + β) = 1 εφ εφβ Β. Ν χρκτηρίσετε με Σ(σωστό) ή Λ(λάθος)κάθε μι πό τις πρκάτω προτάσεις:. Αν
sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx
I. ΟΛΟΚΛΗΡΩΜΑ.Ορισμένο ολοκλήρωμ.πράγουσ.θεμελιώδες Θεώρημ.Βσικά ολοκληρώμτ 5.Γρμμικότητ 6.Ολοκλήρωση με λλγή μετλητής ή με ντικτάστση 7.Ολοκλήρωση κτά μέρη 8.Ολοκληρώμτ ρητών 9.Ολοκληρώμτ τριγωνομετρικών.γενικευμένο
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x.
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ o ΘΕΜΑΤΑ Θεωρούµε τη συνάρτηση ( ) = ( + ) ( + ) µε κι. I. Ν ποδείξετε ότι η γρφική πράστση της δεν έχει σηµεί που ν ρίσκοντι πάνω πό τον άξον. II. Ν ποδείξετε ότι
ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα:
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ Π/ΘΜΙΑΣ ΚΑΙ /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΙΕΘΥΝΣΗ ΣΠΟΥ ΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ.
ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)
θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις
ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ
ΚΑΡΑΓΕΩΡΓΟ ΒΑΙΗ - ΜΑΥΡΑΓΑΝΗ ΤΑΘΗ ΠΑΝΕΗΝΙΕ ΕΞΕΤΑΕΙ 5 - - Οι πρκάτω σημειώσεις βσίστηκν στ έντυπ του Κ.Ε.Ε. (999 ) κι στη θεμτοδοσί των Πνελλδικών Εξετάσεων στ Μθημτικά Κτεύθυνσης της Γ υκείου. τις επόμενες
Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ
Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Εισγωγή: Όπως στη κθημερινή μς ζωή, γι ν συνεννοηθούμε χρησιμοποιούμε προτάσεις, έτσι κι στ Μθημτικά χρησιμοποιούμε «Μθημτικές» προτάσεις. Γι πράδειγμ στη κθημερινή
EI.3 ΠΛΕΟΝΑΣΜΑΤΑ 1.Αξία κατανάλωσης 2.Πλεόνασμα καταναλωτή 3.Κόστος προμηθευτή 4.Πλεόνασμα προμηθευτή 3.Συνολικό πλεόνασμα
EI.3 ΛΕΟΝΑΣΜΑΤΑ.Αξί κτνάλωσης.λεόνσμ κτνλωτή 3.Κόστος προμηθευτή 4.λεόνσμ προμηθευτή 3.Συνολικό πλεόνσμ. ργμτική ξί (Χρησιμότητ) της κτνάλωσης Η ντίστροφη συνάρτηση ζήτησης: = () έχει κτρχήν την γνωστή
µε Horner 3 + x 2 = 0 (x 1)(x
998 ΘΕΜΑΤΑ. Η συνάρτηση f: ικνοποιεί τη σχέση f(f()) +f ) Ν ποδείξετε ότι η f είνι «έν προς έν». β) Ν λύσετε την εξίσωση f( 3 + ) f(4 ),. 3 () + 3,. ) Έστω, µε f( ) f( ). Τότε f(f( )) f(f( )) κι f 3 (
Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ
ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς
ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ
ΠΕΡΙΚΛΗΣ Γ ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΚΕΝΤΡΙΚΗ ΔΙΑΘΕΣΗ Τρυλντώνη 8, 577 Ζωγράφου Τηλ: 747344 747395 email:info@orosimoeu wwworosimoeu ISBN: 978-68-873--4 ΕΚΔΟΣΕΙΣ
ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο
996 ΘΕΜΑΤΑ. ίνοντι οι πργµτικές συνρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο. Αν οι f κι g έχουν συνεχείς πρώτες πργώγους κι συνδέοντι µετξύ τους µε τις σχέσεις f = g, g = - f τότε ν ποδείξετε ότι:
ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα
Ορισμό ΚΕΦΑΛΑΙΟ Αόριστ & Ορισμέν Ολκλήρωμ Αρχική-Πράγυσ Πράγυσ ή Αρχική ή Αντιπράγωγ μι συνάρτηση f, σε έν διάστημ Δ νμάζετι η πργωγίσιμη συνάρτηση F γι την πί ισχύει F ( ) = f ( ) γι κάθε Ξ D π.χ. π.χ.
Θεωρήματα και προτάσεις με τις αποδείξεις τους
Θεωρήμτ κι προτάσεις με τις ποδείξεις τους Μιγδικοί Ιδιότητες συζυγώ: Α i κι i δ γ είι δυο μιγδικοί ριθμοί, τότε: 3 4 Αποδεικύοτι με εφρμογή του ορισμού κι πράξεις Γι πράδειγμ έχουμε: i δ γ δi γ i i i
ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015
ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 05 ΘΕΜΑ Α. Γι μι συνεχή συνάρτηση f ν γράψετε τις τρείς κτηγορίες σημείων, τ οποί εινι πιθνές θέσεις τοπικών κροτάτων. (6 Μονάδες). Ν χρκτηρίσετε τις προτάσεις
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ:..4 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Ν υολογίσετε το ολοκλήρωμ ( + ) d. Εειδή ( ) ( + ) =
ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ A Έστω µι συνάρτηση, η οποί είνι συνεχς σε έν διάστηµ Ν ποδείξετε ότι: Αν >0 σε κάθε εσωτερικό σηµείο του, τότε η είνι γνησίως
ΝΕΟ ΦΡΟΝΤΙΣΤΗΡΙΟ. Λύσεις. Θέμα Α. Α1. Σχολικό βιβλίο σελίδα 262. Α2. Σχολικό βιβλίο σελίδα 169. Α3. α) (1) κάτω, (2) το σημείο επαφής τους
Λύσεις Θέμ Α Α. Σχοικό ιίο σείδ. Α. Σχοικό ιίο σείδ 9. Α. ) () κάτω, () το σημείο επφής τους ) () Α4. ) Σωστό ) Λάθος γ) Λάθος Θέμ Β ν ( ν κ= f(ξ κ )Δ ), f()d Β. Επειδή τ σημεί Α(,), Β(,) νήκουν στη γρφική
ίνονται οι πραγµατικές συναρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη και δεύτερη παράγωγο και g(x) f(α) g(α) f(x) g (x) για κάθε x { α}
1997 ΘΕΜΑΤΑ 1 ίνοντι οι πργµτικές συνρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη κι δεύτερη πράγωγο κι πργµτικός ριθµός Θέτουµε Α f() g(), που γι κάθε Έστω κι Β f () Α g () Αν φ g() είνι πργµτική συνάρτηση