Απειροστικός Λογισμός Ι (HY110)
|
|
- Βερενίκη Αγγελόπουλος
- 3 χρόνια πριν
- Προβολές:
Transcript
1 Απειροστικός Λογισμός Ι (HY110) Διάλεξη #1
2 Απειροστικός Λογισμός Ι Διδάσκοντες Τσαγκατάκης Γρηγόρης, Μάριος Πιτικάκης, Βοηθοί Αϊδίνη Αναστασία, Τρουλλινού Ειρήνη, Ζερβού Μιχαέλα Αρετή, Πεντάρη Αναστασία, Συμιακάκης Ανδρέας, Δρακωνάκης Κωνσταντίνος, Δροσάκης Δρόσος,
3 Διαλέξεις Πληροφορίες για το μάθημα Τρίτη 4-6 & Πέμπτη 2-4 Φροντιστήριο: Παρασκευή 4-6 Ώρες γραφείου: Τρίτη 3-4 B304 Υλικό μαθήματος 3
4 Πληροφορίες για το μάθημα Αξιολόγηση μαθήματος Ασκήσεις (20%) Πρόοδος (προαιρετική) (30%) Τελική Εξέταση (50% ή 80%) Ασκήσεις 4 υποχρεωτικές σειρές ασκήσεων και 1 άσκηση bonus (+10%) με χρήση προγραμμάτων όπως Matlab/octave/python/c + γραπτή αναφορά 4
5 Συγγράμματα Πληροφορίες για το μάθημα "Thomas Απειροστικός λογισμός" των Joel Hass, Chrisopher Heil & Maurice D. Weir. 14 έκδοση, Πανεπιστημιακές Εκδόσεις Κρήτης, 2018 Εγγραφή στην σελίδα του μαθήματος στο elearn Εγγραφή στην λίστα του μαθήματος: με στο: χωρίς subject με κείμενο: subscribe hy110-list 5
6 6
7 Επισκόπηση διαλέξεων Συναρτήσεις Όρια συναρτήσεων Συνέχεια Παραγώγιση Εφαρμογές παραγώγων Παράγωγοι ανώτερης τάξης Ορισμένο ολοκλήρωμα συνεχών συναρτήσεων Αριθμητική ολοκλήρωση Αόριστο ολοκλήρωμα Τεχνικές ολοκλήρωσης και γενικευμένα ολοκληρώματα Ακολουθίες & Σειρές Υπερβατικές συναρτήσεις 7
8 «Μεγάλα δεδομένα» 8
9 Μεγάλα δεδομένα στην αστροφυσική Sky Survey Project Volume Velocity Variety The Palomar Digital Sky Survey 3 PB Sloan Digital Sky Survey (SDSS) 50 TB 200 GB per day Images, redshifts Large Synoptic Survey Telescope (LSST ) ~ 200 PB 10 TB per day Images, catalogs Square Kilometer Array (SKA ) ~ 4.6 EB 150 TB per day Images, redshifts 9
10 Μεγάλα δεδομένα για το κλίμα 10
11 Μεγάλα δεδομένα στην νευροεπιστήμη 11
12 12
13 13
14 14
15 15
16 16
17 Εξέλιξη της Τεχνητής Νοημοσύνης Artificial intelligence-created medicine to be used on humans for first time, BBC news, 30/1/2020 Coronavirus: Can AI Make A Difference? Forbes, 2/2/
18 Εγκέφαλος και Νευρωνικά δίκτυα 86 Δις νευρώνες συνάψεις 18
19 (Τεχνητά) Νευρωνικά Δίκτια 19
20 Τεχνητά Νευρωνικά Δίκτυα Training Inference (Test) 20
21 Μοντελοποίηση 21
22 Μοντελοποίηση 22
23 Μοντελοποίηση Είσοδος: x Έξοδος: f x = [ 1,0,1] 23
24 Συναρτήσεις Συνάρτηση y = f(x) x : ανεξάρτητη μεταβλητή y : εξαρτημένη μεταβλητή Gottfried Wilhelm Leibniz Leonhard Euler
25 Συναρτήσεις Συνάρτηση y = f(x) x : ανεξάρτητη μεταβλητή y : εξαρτημένη μεταβλητή Gottfried Wilhelm Leibniz Leonhard Euler
26 Συναρτήσεις Συνάρτηση y = f(x) x : ανεξάρτητη μεταβλητή y : εξαρτημένη μεταβλητή Gottfried Wilhelm Leibniz Εναλλακτικά z = g(t) { x, f x : x R} f: x y Leonhard Euler
27 Συναρτήσεις Μια συνάρτηση f από το πεδίο ορισμού D στο πεδίο τιμών Y είναι ένας κανόνας που αναθέτει μια μοναδική τιμή f(x) Y για κάθε x D 27
28 Πεδία ορισμού και πεδία τιμών Να βρεθούν τα πεδία ορισμού και τιμών των f x = 1 + x 2 f t = 4 3 t g x = x 2 3x 28
29 Πεδία ορισμού και πεδία τιμών Να βρεθούν τα πεδία ορισμού και τιμών των f x = 1 + x 2, [1, ) f t = 4 3 t g x = x 2 3x 29
30 Πεδία ορισμού και πεδία τιμών Να βρεθούν τα πεδία ορισμού και τιμών των f x = 1 + x 2, [1, ) f t = 4 3 t, 3 3,, 0 0, g x = x 2 3x 30
31 Πεδία ορισμού και πεδία τιμών Να βρεθούν τα πεδία ορισμού και τιμών των f x = 1 + x 2, [1, ) f t = 4 3 t, 3 3,, 0 0, g x = x 2 3x, 0 3, [0, ) 31
32 Γραφικές Παραστάσεις Συναρτήσεων 32
33 Γραφικές Παραστάσεις Συναρτήσεων y = f(x) y f(x) x x (many-to-one) This is OK in a function (one-to-many) This is NOT OK in a function 33
34 Γραφικές Παραστάσεις Συναρτήσεων y = f(x) x y f(x) x Κριτήριο κατακόρυφης ευθείας (many-to-one) This is OK in a function (one-to-many) This is NOT OK in a function 34
35 Γραφικές Παραστάσεις Να σχεδιαστεί η γραφική παράσταση της συνάρτησης y = x 2 στο διάστημα [-2,2] Να παρασταθούν οι συναρτήσεις και εξηγήστε αν είναι γραφικές παραστάσεις του x y = x y 2 = x 2 35
36 Σχεδιασμός γραφικών παραστάσεων 36
37 Προσέγγιση γραφική παράστασης #x: 5 #x: 9 #x: 41 37
38 Διάγραμμα συνδιασποράς 38
39 Τμηματικές συναρτήσεις Η συνάρτηση απόλυτης τιμής x, x 0 x = ቊ x, x < 0 x, x < 0 f x = ቐx, 0 x 1 1, x > 1 39
40 Τμηματικές συναρτήσεις Να βρεθεί ο τύπος της συνάρτησης για τις παρακάτω γραφικές παραστάσεις 40
41 Συναρτήσεις μέγιστου/ελάχιστου ακεραίου Συνάρτηση μέγιστου ακεραίου: μέγιστος ακέραιος μικρότερος ή ίσος του x 2.5 = 2, 0 = 0, 1.5 = 2 Συνάρτηση ελάχιστου ακεραίου: ελάχιστος ακέραιος μεγαλύτερος ή ίσος του x 2.5 = 3, 0 = 0, 1.5 = 1 41
42 Συναρτήσεις μέγιστου/ελάχιστου ακεραίου 42
43 Αύξουσες και Φθίνουσες συναρτήσεις Έστω η συνάρτηση f x ορισμένη σε ένα διάστημα I και x 1, x 2 I Αν f x 2 > f x 1 για κάθε ( ) x 2 > x 1, τότε η f x ονομάζεται αύξουσα στο I Αν f x 2 < f x 1 για κάθε ( ) x 2 > x 1, τότε η f x ονομάζεται φθίνουσα στο I Το I μπορεί να είναι πεπερασμένο (φραγμένο) ή άπειρο (μη φραγμένο) 43
44 Αύξουσες και Φθίνουσες συναρτήσεις Σε ποια διαστήματα είναι αύξουσες/φθίνουσες οι παρακάτω συναρτήσεις y = 1 x y = 1 x 44
45 Άρτιες και Περιττές συναρτήσεις Η συνάρτηση y = f(x) είναι Άρτια συνάρτηση του x αν f x = f(x) Περιττή συνάρτηση του x αν f x = f(x) Προέλευση Σχέση με δυνάμεις του x y = x 2, y = x 4 -> άρτιες γιατί ( x) 2 = x 2 y = x 1, y = x 3 -> περιττές γιατί ( x) 3 = x 3 45
46 Άρτιες και Περιττές συναρτήσεις Συμμετρίες Οι άρτιες είναι συμμετρικές ως προς y Οι περιττές είναι συμμετρικές ως προς (0,0) 46
47 Άρτιες και Περιττές συναρτήσεις Παραδείγματα f x = x 3 + x f x = 3 f x = x
48 Γραμμικές Συνήθης συναρτήσεις f x = mx + b όπου m (κλίση) και b σταθερές 48
49 Συναρτήσεις δυνάμεων Συνήθης συναρτήσεις f x = x a όπου a σταθερά 49
50 Συναρτήσεις δυνάμεων Συνήθης συναρτήσεις f x = x a όπου a σταθερά f x = x 1 f x = x 2 50
51 Συναρτήσεις δυνάμεων Συνήθης συναρτήσεις f x = x a όπου a σταθερά f x = x 1 2 f x = x 1 3 f x = x 3 2 f x = x
52 Συνήθης συναρτήσεις Πολυωνυμικές συναρτήσεις p x = a n x n + a n 1 x n a 1 x + a 0 n μη αρνητικός ακέραιος (βαθμός) a 0, a 1,., a n πραγματικές σταθερές (συντελεστές) 52
53 Ρητές συναρτήσεις f x = p(x) q(x) Συνήθης συναρτήσεις όπου p(x), q(x) πολυώνυμα 53
54 Συνήθης συναρτήσεις Αλγεβρικές συναρτήσεις Πολυώνυμα και αλγεβρικές πράξεις 54
55 Συνήθης συναρτήσεις Τριγωνομετρικές συναρτήσεις 55
56 Εκθετικές συναρτήσεις Συνήθης συναρτήσεις f x = α x όπου a > 0 και a 1 σταθερά, (0, ) 56
57 Συνήθης συναρτήσεις Λογαριθμικές συναρτήσεις f x = log α x όπου a > 0 και a 1 σταθερά (0, ), 57
58 Πράξεις συναρτήσεων Έστω η f x με πεδίο ορισμού D(f) και η g x με πεδίο ορισμού D(g). Για κάθε x D(f) D(g), ορίζουμε τις f + g x = f x + g(x) f g x = f x g x fg x = f x g(x) f f(x) x = όπου g(x) 0 g g(x) cf x = cf x όπου c σταθερa 58
59 Πρόσθεση συναρτήσεων 59
60 Παράδειγμα Έστω οι f x = x και g x = 1 x με πεδία ορισμού D f = [0, ) και D g = (, 1]. Τα κοινά σημεία ορισμού D(f) D g = [0,1] 60
61 Παράδειγμα 61
62 Μετατόπιση συναρτήσεων Κατακόρυφη μετακίνηση: y = f x + k 62
63 Μετατόπιση συναρτήσεων Οριζόντια μετακίνηση: y = f x + h 63
64 Μετατόπιση συναρτήσεων 64
65 Αλλαγή κλίμακας Για c > 1 y = cf x y = 1 f x c y = f cx επιμηκύνεται κατακόρυφα κατά c συμπιέζεται κατακόρυφα κατά c συμπιέζεται οριζόντια κατά c y = f 1 c x επιμηκύνεται οριζόντια κατά c 65
66 Αλλαγή κλίμακας 66
67 Αλλαγή κλίμακας Για c = 1 y = f x y = f x ανάκλαση ως προς άξονα x ανάκλαση ως προς άξονα y 67
Απειροστικός Λογισμός Ι
Απειροστικός Λογισμός Ι Διδάσκον Τσαγκατάκης Γρηγόρης, greg@csd.uoc.gr Βοηθοί Τρουλλινού Ειρήνη, troullinou@csd.uoc.gr Καραγιαννάκη Ιουλία, jkarayan@csd.uoc.gr Αϊδίνη Αναστασία, aidini@csd.uoc.gr Τζουγκαράκης
Joel Hass, Chrisopher Heil & Maurice D. Weir.
Διάλεξη 10: Εφαρμογές των παραγώγων: ακρότατα 1 Γενικά Φροντιστήριο Παρασκευή 26/10. Εναρξη μετά την λήξη της εκδήλωσης ( 4:30) Βιβλίο: Thomas Απειροστικός λογισμός των Joel Hass, Chrisopher Heil & Maurice
1ο Κεφάλαιο: Συστήματα
ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.
Σημειώσεις Μαθηματικών 2
Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 1 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 1 Συναρτήσεις 1.1 Έννοια συνάρτησης Ορισμός 1 Έστω Α, Β δύο υποσύνολα του R. Μια διαδικασία με το όνομα f ονομάζεται αν σε κάθε
( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α
.5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:
Περιεχόμενα. Λίγα λόγια για τους συγγραφείς
Περιεχόμενα Λίγα λόγια για τους συγγραφείς xii Εισαγωγή xiii 1 Συναρτήσεις 1 1.1 Ανασκόπηση των συναρτήσεων 1 1.2 Παράσταση συναρτήσεων 12 1.3 Τριγωνομετρικές συναρτήσεις 26 Ασκήσεις επανάληψης 34 2 Όρια
ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ
Μαθηματική Ανάλυση Ι
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 4: Συναρτήσεις Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17
Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...
f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,
Διάλεξη 7: Παράγωγοι συναρτήσεων 1 Γενικά Πρόοδος μαθήματος Σάββατο 24/11 στις 14:00 2 Παράγωγος ως συνάρτηση Η παράγωγος της f (x) ως προς x, είναι η συνάρτηση f (x) και η οποία ισούται με f (x) = lim
Περιεχόμενα. Λίγα λόγια για τους συγγραφείς
Περιεχόμενα Λίγα λόγια για τους συγγραφείς xii Εισαγωγή xiii 1 Συναρτήσεις 1 1.1 Ανασκόπηση των συναρτήσεων 1 1.2 Παράσταση συναρτήσεων 12 1.3 Τριγωνομετρικές συναρτήσεις 26 Ασκήσεις επανάληψης 34 2 Όρια
ProapaitoÔmenec gn seic.
ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία
Ι. Πραγματικές ΣΥΝΑΡΤΗΣΕΙΣ πραγματικής μεταβλητής (έως και ΑΝΤΙΣΤΡΟΦΗ)
Ι. Πραγματικές ΥΝΑΡΤΗΕΙ πραγματικής μεταβλητής (έως και ΑΝΤΙΤΡΟΦΗ). Η γραφική παράσταση της συνάρτησης f βρίσκεται κάτω από τον άξονα.. Δίνεται η συνάρτηση = f (). Οι τετμημένες των σημείων τομής της C
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
Εαρινό Εξάμηνο ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Εαρινό Εξάμηνο 2010-2011 Εισαγωγή Διδάσκων: (cpanag@csd.uoc.gr), Επισκέπτης Καθηγητής www.csd.uoc.gr/~cpanag Γραφείο: Δ215 - Τηλέφωνο: 2810 393588 Ώρες γραφείου: Δευτέρα
- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία
40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)
Άσκηση η 4 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ) Έστω f, g είναι συνεχείς συναρτήσεις στο διάστημα, να δείξετε: Α. (Ανισότητα των Cauchy-Schwarz) Β.( Ανισότητα του Minkowski)
Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :
Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την
Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1o ΜΕΡΟΣ
Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ 1o ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Η εφαπτοµένη της γραφικής παράστασης µιας σταθερής συνάρτησης σε οποιοδήποτε σηµείο του πεδίου ορισµού της συµπίπτει µε τη γραφική
ΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1
ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 1.1 Εισαγωγή... 1 1.2 Λύση ΔΕ, αντίστροφο πρόβλημα αυτής... 3 Ασκήσεις... 10 1.3 ΔΕ πρώτης τάξης χωριζομένων μεταβλητών... 12 Ασκήσεις... 15 1.4 Ομογενείς
Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Πραγματική Συνάρτηση ρισμός Έστω Α ένα υποσύνολο του R. νομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο
Εαρινό Εξάμηνο ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Εαρινό Εξάμηνο 2008-2009 Εισαγωγή ιδάσκων: (cpanag@csd.uoc.gr), Επισκέπτης Καθηγητής www.csd.uoc.gr/~cpanag Γραφείο: 215 - Τηλέφωνο: 2810 393588 Ώρες γραφείου: ευτέρα 3:00μμ-5:00μμ
. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:
Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω
ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ
Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
Εαρινό Εξάμηνο ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Εαρινό Εξάμηνο 2011-2012 Εισαγωγή Διδάσκων: Email: cpanag@csd.uoc.gr webpage: www.csd.uoc.gr/~cpanag Επισκέπτης Καθηγητής, Τμήμα Επιστήμης Υπολογιστών, Παν/μιο Κρήτης Επίκουρος
II. Συναρτήσεις. math-gr
II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική
- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2 η : Εισαγωγικές Ένvοιες Ι Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΣΥΝΑΡΤΗΣΕΙΣ Γενικές έννοιες
ΣΥΝΑΡΤΗΣΕΙΣ Γενικές έννοιες Συνάρτηση Συνάρτηση ονομάζουμε μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο ενός συνόλου Α (πεδίο ορισμού) αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου
ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.
ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΚΑΠΟΙΟΙ ΒΑΣΙΚΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΚΑΙ ΕΝΝΟΙΕΣ Ν = {1,2,3,...} το σύνολο των φυσικών αριθμών Ζ = {0, ±1, ±2, ±3,..
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΕΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ : ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΛΟΓΟΣ Σε κάθε ενότητα αυτού του βιβλίου θα βρείτε : Βασική θεωρία με τη μορφή ερωτήσεων Μεθοδολογίες και σχόλια
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
Ημερομηνία: Κυριακή 29 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Ημερομηνία: Κυριακή 9 Οκτωβρίου 017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1 Να δώσετε τους ορισμούς των: α) Ολικό μέγιστο συνάρτησης β) Γνησίως
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ
ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Θεωρία Συνόλων, Συναρτήσεις Πραγματικής Μεταβλητής, Όριο και Συνέχεια Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής
ΣΥΝΑΡΤΗΣΗ ΠΕΔΙΟ ΟΡΙΣΜΟΥ
ΣΥΝΑΡΤΗΣΗ A y Ορισμός: Η αντιστοιχία : λέγεται συνάρτηση αν για κάθε x αντιστοιχίζεται ένα μόνο : συνάρτηση, με ( x ) ( x ) ή ισοδύναμα 1 2 1 2 1 2 : συνάρτηση, με (x ) ( x ) x x 1 2 1 2 1 2 Το σύνολο
Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης
Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό
Επαναληπτικές Ασκήσεις
Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x
ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ
Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί
Ημερομηνία: Παρασκευή 28 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Ημερομηνία: Παρασκευή 8 Οκτωβρίου 016 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α Α1. Να δώσετε τους ορισμούς των: α) Γνησίως φθίνουσα συνάρτηση β) Ολικό ελάχιστο
Ρυθµοί µεταβολής Παράγωγος σε σηµείο Όρια. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης
3 η Διάλεξη Ρυθµοί µεταβολής Παράγωγος σε σηµείο Όρια 26 Σεπτεµβρίου 2016 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Finney R.L. / Weir M.D. / Giordano F.R. Πανεπιστημιακές
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διάλεξη 2 - Σημειώσεις
Διάλεξη 2 - Σημειώσεις Συναρτήσεις 1. Συνάρτηση: μία συνάρτηση είναι ένας κανόνας που αναθέτει σε κάθε στοιχείο του συνόλου ακριβώς ένα στοιχείο του συνόλου. Το σύνολο καλείται πεδίο ορισμού της συνάρτησης
Γιώργος Μπαρακλιανός τηλ ( ) Κώστας Τζάλλας τηλ ( ) Παραγγελίες : τηλ.
Γιώργος Μπαρακλιανός τηλ. 69377886 ( mparakgeo@gmail.com ) Κώστας Τζάλλας τηλ. 69733004 ( tzallask@gmail.com ) Παραγγελίες : τηλ. 5407604 Email : mparakgeo@gmail.com Messenger : Giorgos Mparaklianos Πρόλογος
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,
Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι
ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης
ΘΕΩΡΙΑ ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ. Να δώσετε τον ορισμό της συνάρτησης Συνάρτηση από το σύνολο Α στο Β λέγεται μια διαδικασία με την οποία κάθε στοιχείο x του Α, αντιστοιχίζεται
α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.
ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ
Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
1. Δύο συναρτήσεις f,g είναι ίσες μόνο όταν έχουν ίδιο πεδίο ορισμού και ίδιο τύπο. Η πρόταση είναι Λάθος. Αντιπαράδειγμα:
1. Δύο συναρτήσεις f,g είναι ίσες μόνο όταν έχουν ίδιο πεδίο ορισμού και ίδιο τύπο. 3 017 f(), D { 1,0,1} και g() D { 1,0,1} f f έχουμε D D και f( 1) g( 1), f(0) g(0), f(1) g(1) g Άρα f()=g() για Df =Dg
OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω
Μαθηματική Ανάλυση Ι
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 8: Ολοκληρώματα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mil: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr
VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ
Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή
ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
( x ), x είναι ίσες. x,x είναι ίσες. x 5, x δεν είναι ίσες
(1). ΣΥΝΑΡΤΗΣΕΙΣ (Απαντήστε με σωστό ή λάθος) Να διευκρινίσουμε το εξής σημείο. Αν η ερώτηση είναι πχ, η συνάρτηση φ ικανοποιεί το τάδε, εννοείται η λέξη ΠΑΝΤΑ, οπότε αν υπάρχει έστω και μία φ που δεν
Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3
Βασικά σύνολα αριθμών -Σύνολο φυσικών: Ν = {0,., } ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ -Σύνολο ακεραίων: Ζ= { -.-.0.,, } Συμβολίζουμε με ν=κ και τους άρτιους και τους περιττούς αντίστοιχα. * -Σύνολο ρητών: Q =, Z &
ΕΡΓΑΣΤΗΡΙΟ ΙV. ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος
ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος ΕΡΓΑΣΤΗΡΙΟ ΙV Συναρτήσεις στο Mathematica Στο Mathematica υπάρχουν ορισμένες πολλές βασικές συναρτήσεις όπως ημίτονο, συνημίτονο,
ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1
ΘΕΜΑ Α ΦΥΛΛΟ 1 Α1. Να αποδείξετε ότι το υπόλοιπο υ της διαίρεσης ενός πολυωνύμου P(x) με το x - ρ είναι ίσο με την τιμή του πολυωνύμου για x = ρ. Είναι δηλαδή υ = P(ρ). Α. Να χαρακτηρίσετε τις προτάσεις
Ερωτήσεις πολλαπλής επιλογής
Ερωτήσεις πολλαπλής επιλογής. * Έστω µια συνάρτηση f για την οποία ισχύουν οι υποθέσεις του θεωρήµατος του Rolle στο διάστηµα [α, β]. Τότε θα υπάρχει ξ (α, β), ώστε η εφαπτοµένη της C f στο (ξ, f (ξ))
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας
Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις
wwwzitigr Πρόλογος Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις ομάδες προσανατολισμού: ç Θετικών σπουδών ç Οικονομίας και Πληροφορικής Αναπτύσσονται διεξοδικά τα κεφάλαια:
Συναρτήσεις. 1.1 Ανασκόπηση των συναρτήσεων. Προεπισκόπηση κεφαλαίου
Συναρτήσεις Προεπισκόπηση κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί
ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΤΕΛΙΚΕΣ ΔΙΟΡΘΩΣΕΙΣ
Συναρτήσεις Προεπισκόπηση κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί
ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Κεφάλαιο 4ο: Ερωτήσεις πολλαπλής επιλογής. 1. * Το πεδίο ορισµού της συνάρτησης µε τύπο f (x) = 2 (Σχ.1) είναι. Γ το διάστηµα ( 0,
Κεφάλαιο 4ο: ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ Ερωτήσεις πολλαπλής επιλογής 1. * Το πεδίο ορισµού της συνάρτησης µε τύπο f () = 2 (Σχ.1) είναι Α. το διάστηµα [ 0, Β. το διάστηµα Γ. το σύνολο R ( 0,. το σύνολο R - {1}
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ
Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ασύμπτωτες. Διαφορικός Λογισμός μιας μεταβλητής Ι
Ασύμπτωτες Διαφορικός Λογισμός μιας μεταβλητής Ι Άπειρα όρια: Οριζόντιες και κατακόρυφες ασύμπτωτες Έστω η f()=1/, τότε παρατηρούμε ότι: καθώς +, (1/) 0 & καθώς -, (1/) 0 & 1 lim ( ) = 0 + 1 lim ( ) =
ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.
Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),
Επανάληψη. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. 62 Ασκήσεις 27 Ερωτήσεις θεωρίας Σε 7 σελίδες. Συναρτήσεις Παράγωγοι. Kglykos.gr. εκδόσεις.
Επανάληψη Κώστας Γλυκός Συναρτήσεις Παράγωγοι Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 6 Ασκήσεις 7 Ερωτήσεις θεωρίας Σε 7 σελίδες Kglys.gr / 7 / 0 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση
3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Μια συνάρτηση με πεδίο ορισμού το σύνολο Α, λέγεται περιοδική, όταν υπάρχει πραγματικός αριθμός Τ>0 τέτοιος, ώστε για κάθε να ισχύει ότι και ( ) και ( ). Ο αριθμός Τ
ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ)
ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ) A. Εύρεση Πεδίου Ορισμού Συναρτήσεων-Άρτια και περιττή Συνάρτηση Η ανάλυση των πεδίων ορισμού για τις διαφορετικές πραγματικές
16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0
6 Ασύμπτωτες Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορίζουμε μια ευθεία ( ε ) ως ασύμπτωτη της γραφικής παράστασης της αν η απόσταση ενός μεταβλητού σημείου Ρ της γραφικής παράστασης από την ευθεία ( ε ) γίνεται
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ
Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε
1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 008 α). Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το πρωτοβάθμιο πολυώνυμο x ρ ισούται με την αριθμητική τιμή του Ρ(x) για x =
ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις.
ΚΕΦΑΛΑΙΟ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Σκοπός: Σκοπός του κεφαλαίου είναι αρχικά η υπενθύμιση βασικών εννοιών που αφορούν τον ορισμό, τις πράξεις και τη γραφική παράσταση της συνάρτησης αφ ενός και η μελέτη της
Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο
Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο Ακριβής ορισμός του πλευρικού ορίου Έστω ότι το πεδίο ορισμού της f x περιέχει ένα διάστημα d, c στα αριστερά του c. Η f x έχει αριστερό όριο L στο c
ΣΤ ΕΝΟΤΗΤΑ. Βασικές έννοιες των συναρτήσεων. ΣΤ.1 (6.1 παρ/φος σχολικού βιβλίου) ΣΤ.2 (6.2 παρ/φος σχολικού βιβλίου)
ΣΤ ΕΝΟΤΗΤΑ Βασικές έννοιες των συναρτήσεων ΣΤ. (6. παρ/φος σχολικού βιβλίου) Η έννοια της συνάρτησης ΣΤ. (6. παρ/φος σχολικού βιβλίου) Γραφική παράσταση συνάρτησης ΣΤ.3 (6.3 παρ/φος σχολικού βιβλίου) Η
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής
mail:
Λογισμός Ι - Τμήμα 1Β Κ. Δασκαλογιάννης Γραφείο 18, 3ος όροφος ΣΘΕ τηλ: 2310-998074 mail: daskalo@math.auth.gr ιστοσελίδα: users.auth.gr/daskalo 2014 ΛΟΓΙΣΜΟΣ CALCULUS (Διαφορικός Λογισμός, Απειροστικός
ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B.
Ασκήσεις, Φυλλάδιο. Βρειτε το συνολο Φ A ολων των ανω ϕραγματων του A, και το συνολο φ A ολων των κατω ϕραγματων του A, οταν: a) A = m :, m N}, b) A = + m 2. Βρειτε το if και sup οποτε υπαρχουν) των συνολων
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις
Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις
β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)
ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Γενικής Παιδείας Κ Ε Φ Α Λ Α Ι Ο 4ο - Φ Υ Λ Λ Ο Νο 2 Δ Ι Α Ι Ρ Ε Σ Η ΠΟΛΥΩΝΥΜΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΑΝΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ 1. Ένα πολυώνυμο Δ(x),
ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί α) (Κατακόρυφη ασύμπτωτη) Αν ένα τουλάχιστον απ' τα όρια f(), o o λέγεται κατακόρυφη ασύμπτωτη της C f. f() είναι +, ή -, τότε η ευθεία o β) (Οριζόντια
KEΦΑΛΑΙΟ 1ο : Διαφορικός Λογισμός
KEΦΑΛΑΙΟ 1ο : Διαφορικός Λογισμός 1.1 Συναρτήσεις. Ορισμός : Εστω ΑR. Ονομάζουμε (πραγματική) συνάρτηση με πεδίο ορισμού το Α, μια διαδικασία f Παραδείγματα i) με την οποία στοιχείο xα yβr. ii) Ανεξάρτητη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων
Είμαστε τυχεροί που είμαστε δάσκαλοι ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων 05-10-1 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; ( μον.) ii. Πότε
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Συνέχεια - Παράγωγος ως συνάρτηση. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης
4 η Διάλεξη Συνέχεια - Παράγωγος ως συνάρτηση 27 Σεπτεµβρίου 2016 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Finney R.L. / Weir M.D. / Giordano F.R. Πανεπιστημιακές
Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.
Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις