1. Μία άλλη µορφή µη γραµµικής προσέγγιση µε ελάχιστα τετράγωνα, εκτός της εκθετικής είναι να επιλέξουµε µια συνάρτηση της µορφής: x
|
|
- Φιλύρη Ζάππας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΤΕΜΦΕ 4 ο Εξάµηνο Αριθµητική Ανάλυση Ι 3 η Εργαστηριακή Άσκηση. Μία άλλη µορφή µη γραµµικής προσέγγιση µε ελάχιστα τετράγωνα, εκτός της εκθετικής είναι να επιλέξουµε µια συνάρτηση της µορφής: x y = b a + x Την µορφή αυτή τη µετασχηµατίζουµε στη µορφή: a = + y b x b Άρα και αυτήν τη µορφή µε κατάλληλο µετασχηµατισµό των δεδοµένων µπορούµε να τη χειριστούµε µε τη θεωρία της γραµµικής προσέγγισης µε ελάχιστα τετράγωνα. Στον πίνακα που ακολουθεί εµφανίζονται πειραµατικά δεδοµένα: X Y Να δηµιουργήσετε αρχείο εντολών MATLAB (scrpt) µε το οποίο να συγκρίνετε, για τα πειραµατικά δεδοµένα, τις ακόλουθες τεχνικές προσέγγισης: α) το µοντέλο που περιγράφηκε παραπάνω και ελάχιστα τετράγωνα, β) εκθετική a ax yx ( ) = bx yx ( ) = be συνάρτηση και ελάχιστα τετράγωνα και γ) την εκθετική συνάρτηση και ελάχιστα τετράγωνα. Για κάθε περίπτωση να υπολογίζονται οι συντελεστές της µεθόδου προσέγγισης καθώς και το σφάλµα της κάθε error = ( y ) 2 p( x) µεθόδου και να εµφανίζεται σε ένα γράφηµα το αποτέλεσµα της παρεµβολής καθώς και τα πειραµατικά δεδοµένα. 2. Είναι δυνατό να εφαρµόσουµε τη θεωρία της προσέγγισης συνόλου δεδοµένων µε ελαχιστοποίηση ελαχίστων τετραγώνων και για πιο γενικές συναρτήσεις. Μία επιλογή θα µπορούσε να ήταν µία συνάρτηση της µορφής: aln( x) + bcos( x) + c e x Εφαρµόζοντας τη θεωρία (δείτε 9.2,9.3 σελ βιβλίου) οδηγούµαστε σε ένα γραµµικό σύστηµα µε τρεις αγνώστους τα abc,,. Αφού πρώτα βρείτε τη µορφή που θα έχει το σύστηµα των κανονικών εξισώσεων (όπως ονοµάζεται), καλείστε να δηµιουργήσετε συνάρτηση functon MATLAB µε όνοµα nopolyls το οποίο να λαµβάνει ως είσοδο τα δεδοµένα (x,y) σε δύο διανύσµατα, να ορίζει τους πίνακες του συστήµατος, να λύνει το σύστηµα και στη συνέχεια να επιστρέφει ένα διάνυσµα το οποίο να έχει ως στοιχεία τα abc,,. Να χρησιµοποιήσετε το nopolyls για την προσέγγιση των παρακάτω δεδοµένων: X Y ηλαδή, να δηµιουργηθεί αρχείο εντολών MATLAB (scrpt) το οποίο αφού καλεί την nopolyls, να εµφανίζει τα abc,, και σε ένα γράφηµα τα σηµεία (x,y) και την καµπύλη της συνάρτησης στο διάστηµα [0.,3.5] µε βήµα µεταβολής 0.. Οδηγίες Οι ηµεροµηνίες παράδοσης της εργασίας θα είναι µέσα στο πρώτο δεκαήµερο του Ιουλίου. Λόγω αντικειµενικών δυσκολιών θα ανακοινωθούν στην ιστοσελίδα του διδάσκοντα και θα αναρτηθούν στην πόρτα του γραφείου του γύρω τις 26 Ιουνίου. Θα πρέπει να παραδοθεί εκτυπωµένη εργασία συρραµµένη (απλά) έτσι ώστε να µπορεί κάποιος να την ξεφυλλίσει. Η εργασία θα πρέπει να έχει εξώφυλλο στο οποίο να αναφέρεται ο αύξων αριθµός της, το όνοµα και ο αριθµός µητρώου του φοιτητή, τα στοιχεία της σχολής και του µαθήµατος, η ηµεροµηνία παράδοσης και το τµήµα το οποίο παρακολουθεί εργαστήριο. Σε παράρτηµα θα πρέπει να υπάρχουν εκτυπωµένοι οι κώδικες (τα προγράµµατα, scrpts και.m αρχεία). Στο κύριο µέρος της εργασίας θα πρέπει να αναπτύσσονται η διαδικασία, τα σχόλια, τα γραφήµατα και µόνο όσα από τα αποτελέσµατα είναι απαραίτητα για τα συµπεράσµατα. Όλα αυτά θα πρέπει να έχουν τη συνοχή ενιαίου κειµένου. Εκτός από τις όποιες εκτυπώσεις θα πρέπει να παραδοθούν τα προγράµµατα και τα αποτελέσµατα τους σε ηλεκτρονική µορφή (δισκέτα). Τα αποτελέσµατα µπορείτε να τα αποθηκεύσετε µε τη χρήση της dary. Αν δεν υπάρχει δυνατότητα παράδοσης της εργασίας σε έντυπη (εκτυπωµένη) µορφή, γίνεται δεκτή και δισκέτα που να περιέχει όλα όσα αναφέρονται παραπάνω. ηλαδή, επιπλέον των προγραµµάτων και αποτελεσµάτων η δισκέτα θα πρέπει να περιέχει και ένα αρχείο Word που θα έχει ως περιεχόµενο όλα όσα θα παραδίδατε σε εκτυπωµένη µορφή. Τόσο η πληρότητα, τα σχόλια το αν ακολουθήθηκαν οι οδηγίες αλλά και ο τρόπος της παρουσίασης των αποτελεσµάτων της εργασίας που θα παραδοθεί θα ληφθούν υπ όψιν κατά την αξιολόγηση.
2 ΙΚΑΡΙΟΣ ΕΜΜΑΝΟΥΗΛ Α.Μ ο ΕΞΑΜΗΝΟ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Ι 3 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΓΡΑΜΜΙΚΗ ΚΑΙ ΠΟΛΥΩΝΥΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΜΗΜΑ: ΠΑΑ ΗΜ/ΝΙΑ ΠΑΡΑ ΟΣΗΣ 0/6/2003
3 ΕΡΩΤΗΜΑ Κατασκευάζουµε τη συνάρτηση newnl η οποία υπολογίζει τους συντελεστές Σελίδα 2 από 4 a A = και b B = b της εξίσωσης = A + B. y x Στη συνέχεια δηµιουργούµε το αρχείο εντολών queston.m το οποίο έχει ως έξοδο τα αποτελέσµατα που ζητούνται στο πρώτο ερώτηµα. Τα δύο αυτά m-fles είναι τα εξής: newnl.m functon p=newnl(x,y) %p=newnl(x,y) % Ths functon uses the least square functon n order % to form the functon y=b*x/(a+x) <=> /y=a/b*/x+/b % The nput s two vectors (x,y) whch are the result of our experment and % the output s a vector p whose frst element s A=a/b and second element s B=/b. lx=./x; ly=./y; p=lnls(lx,ly); queston.m clear all; clf; x=[ ]'; gven_y=[ ]'; %YPOLOGISMOS ME TH ME8ODO ELAXISTWN TETRAGWNWN p_lnls=lnls(x,gven_y); a0=p_lnls() b0=p_lnls(2) y=a0*x+b0; y_lnls=polyval(p_lnls,x); %ERWTHMA a p_newnl=newnl(x,gven_y); al=p_newnl() bl=p_newnl(2) lx=./x; ly=polyval(p_newnl,lx); y_newnl=./ly; subplot(2,2,); plot(x,y_lnls,'r',x,y_newnl,'b',x,gven_y,'m*'); ttle('least square VS y=b*x/(a+x)'); legend('least square','y=b*x/(a+x)','ponts',4) %ERWTHMA b lx=log(x); ly=log(gven_y); p2=lnls(lx,ly); a2=p2() b2=exp(p2(2)) y2=b2*x.^a2; subplot(2,2,2); plot(x,y_lnls,'r',x,y2,'b',x,gven_y,'m*'); ttle('least square VS y=b*x^a'); legend('least square','y=b*x^a','ponts',4) %ERWTHMA c ly=log(gven_y); p3=lnls(x,ly); a3=p3() b3=exp(p3(2)) y3=b3*exp(a3*x); subplot(2,2,3); plot(x,y_lnls,'r',x,y3,'b',x,gven_y,'m*'); ttle('least square VS y=b*exp(a*x)'); legend('least square','y=b*exp(a*x)','ponts',4) %YPOLOGISMOS SFALMATWN e0=sum((y-gven_y).^2) e=sum((y_newnl-gven_y).^2) e2=sum((y2-gven_y).^2)
4 e3=sum((y3-gven_y).^2) %EMFANISH THS AKRIBEIAS subplot(2,2,4); plot(0,-log0(e0),'r*',,-log0(e),'b*',2,- log0(e2),'m*',3,-log0(e3),'g*'); legend('least square','y=b*x/(a+x)','y=b*x^a','y=b*exp(a*x)',) ttle('accuracy'); Όταν εκτελούµε την εντολή >>queston προκύπτουν τα εξής αποτελέσµατα: a0 = b0 = al = bl = a2 = b2 = a3 = b3 = e0 = 0.23 e = e2 = e3 = Όπου µε δείκτη 0 είναι οι συντελεστές (a,b) και το σφάλµα (e) της µεθόδου ελαχίστων τετραγώνων, και µε δείκτες, 2, 3 των µεθόδων A a ax = + B, yx ( ) = bx και yx ( ) = be y x αντίστοιχα. Τα αποτελέσµατα όπως αυτά φαίνονται στο ζητούµενο γράφηµα είναι τα εξής: Σελίδα 3 από 4
5 Παρατηρούµε λοιπόν ότι καλύτερη προσέγγιση έχουµε µε τη συνάρτηση = A + B, όπου y x e= Σελίδα 4 από 4
6 ΕΡΩΤΗΜΑ 2 x Αν η µορφή προσέγγισης που αναζητούµε είναι η yx ( ) = a ln( x) + b cos( x) + ce τότε το σφάλµα της είναι n x Eabc (,, ) = ( y ( a ln( x) + b cos( x) + ce )) = Σύµφωνα µε τη θεωρεία προσέγγισης θα πρέπει το σφάλµα να γίνει το ελάχιστο δυνατό. Συνεπώς πρέπει: n x Eabc (,, ) = 0 2 ( y aln( x) bcos( x) ce )( ln( x)) = 0 a = n x Eabc (,, ) = 0 2 ( y aln( x) bcos( x) ce )( cos( x)) = 0 b = n Eabc (,, ) = 0 x x 2 ( y aln( x) bcos( x) ce )( e ) = 0 c = n n n n 2 x a ln ( x ) + b ln( x ) cos( x ) + c e ln( x ) = y ln( x ) a ln( x ) cos( x ) + b cos ( x ) + c e cos( x ) = y cos( x ) = = = = n n n n 2 x = = = = n n n n x x 2 x x a ln( x) e + b cos( x) e + c e = y e = = = = Συνεπώς το σύστηµα που θα πρέπει να δηµιουργεί η nopolyls και να λύνει καλώντας την συνάρτηση gauss είναι το εξής: 2 n n n n 2 x ln ( x) ln( x) cos( x) e ln( x) y ln( x) = = = = n n n n 2 x ln( x) cos( x) cos ( x) e cos( x) = y cos( x) = = = = n n n n x x 2x x ln( x) e cos( x) e e y e = = = = Η ζητούµενη λοιπόν συνάρτηση nopolyls και το αρχείο εντολών queston2.m που καλεί την nopolyls είναι τα παρακάτω: Σελίδα 5 από 4
7 nopolyls.m functon p=nopolyls(x,y); %p=nopolyls(x,y) % THE INPUT OF THS FUNCTION IS 2 VECTORS X,Y % WHICH ARE THE RESULTS OF OUR EXPERIMENT % THE OUTPUT (p) IS A VECTOR % WHERE p()=a, p(2)=b, p(3)=c % AND a,b,c ARE USED IN THE FUNCTION % y(x)=a*ln(x)+b*cos(x)+c*e^x f nargn<2, error('wrong nput, please type help nopolyls'); szex=sze(x); szey=sze(y); f szex~=szey, error('x and y must be of equal sze'); f szex()==, x=x'; f szey()==, y=y'; sln2x=sum(log(x).^2); slnxcosx=sum(log(x).*cos(x)); sexlnx=sum(exp(x).*log(x)); sylnx=sum(y.*log(x)); scos2x=sum(cos(x).^2); sexcosx=sum(exp(x).*cos(x)); sycosx=sum(y.*cos(x)); se2x=sum(exp(2*x)); syex=sum(y.*exp(x)); A=[sln2x slnxcosx sexlnx slnxcosx scos2x sexcosx sexlnx sexcosx se2x]; B=[sylnx sycosx syex]'; p=gauss(a,b); queston2.m clear all; clf; format long; x=[ ]; y=[ ]; p=nopolyls(x,y); dsplay('when y(x)=a*ln(x)+b*cos(x)+c*e^x, then') a=p() b=p(2) c=p(3) x=[0.:0.:3.5]; y=a*log(x)+b*cos(x)+c*exp(x); plot(x,y,'m*',x,y,'b'); legend('ponts','y(x)=a*ln(x)+b*cos(x)+c*e^x',4); Σελίδα 6 από 4
8 Εκτελώντας την εντολή >>queston2 Προκύπτουν τα εξής: When y(x)=a*ln(x)+b*cos(x)+c*e^x, then a = b = c = Σελίδα 7 από 4
9 ΠΑΡΑΡΤΗΜΑ M-FILES Gauss.m functon x=gauss(a,b); %Solvng ax=b, where a n R^nxn, x,b n R^n n=length(b); for =:n-, [amax,max]=max(abs(a(:n,))); f amax<eps, dsp('sngular Matrx'); break; end max=max+-; f max~=, sa=a(max,:n);sb=b(max); a(max,:n)=a(,:n);b(max)=b(); a(,:n)=sa;b()=sb; end b(+:n)=b(+:n)-b()*a(+:n,)/a(,); a(+:n,+:n)=a(+:n,+:n)-a(+:n,)*a(,+:n)/a(,); f abs(a(n,n))<eps, dsp('sngular Matrx'); break; end %Back Substtuton x(n,)=b(n)/a(n,n); for =n-:-:, x(,)=(b()-a(,+:n)*x(+:n,))/a(,); Σελίδα 8 από 4
10 lnls.m functon p=lnls(x,y); % lnear least squears n=length(x); sx=x'*ones(n,); sy=y'*ones(n,); sx2=(x.^2)'*ones(n,); sxy=(x.*y)'*ones(n,); par=n*sx2-sx^2; a=(n*sxy-sx*sy)/par; b=(sx2*sy-sxy*sx)/par; p=[a;b]; newnl.m functon p=newnl(x,y) %p=newnl(x,y) % Ths functon uses the least square functon n order % to form the functon y=b*x/(a+x) <=> /y=a/b*/x+/b % The nput s two vectors (x,y) whch are the result of our experment and % the output s a vector p whose frst element s A=a/b and second element s B=/b. lx=./x; ly=./y; p=lnls(lx,ly); Σελίδα 9 από 4
11 nopolyls.m functon p=nopolyls(x,y); %p=nopolyls(x,y) % THE INPUT OF THS FUNCTION IS 2 VECTORS X,Y % WHICH ARE THE RESULTS OF OUR EXPERIMENT % THE OUTPUT (p) IS A VECTOR % WHERE p()=a, p(2)=b, p(3)=c % AND a,b,c ARE USED IN THE FUNCTION % y(x)=a*ln(x)+b*cos(x)+c*e^x f nargn<2, error('wrong nput, please type help nopolyls'); szex=sze(x); szey=sze(y); f szex~=szey, error('x and y must be of equal sze'); f szex()==, x=x'; f szey()==, y=y'; sln2x=sum(log(x).^2); slnxcosx=sum(log(x).*cos(x)); sexlnx=sum(exp(x).*log(x)); sylnx=sum(y.*log(x)); scos2x=sum(cos(x).^2); sexcosx=sum(exp(x).*cos(x)); sycosx=sum(y.*cos(x)); se2x=sum(exp(2*x)); syex=sum(y.*exp(x)); A=[sln2x slnxcosx sexlnx slnxcosx scos2x sexcosx sexlnx sexcosx se2x]; B=[sylnx sycosx syex]'; p=gauss(a,b); Σελίδα 0 από 4
12 Scrpts queston.m clear all; clf; x=[ ]'; gven_y=[ ]'; %YPOLOGISMOS ME TH ME8ODO ELAXISTWN TETRAGWNWN p_lnls=lnls(x,gven_y); a0=p_lnls() b0=p_lnls(2) y=a0*x+b0; y_lnls=polyval(p_lnls,x); %ERWTHMA a p_newnl=newnl(x,gven_y); al=p_newnl() bl=p_newnl(2) lx=./x; ly=polyval(p_newnl,lx); y_newnl=./ly; subplot(2,2,); plot(x,y_lnls,'r',x,y_newnl,'b',x,gven_y,'m*'); ttle('least square VS y=b*x/(a+x)'); legend('least square','y=b*x/(a+x)','ponts',4) %ERWTHMA b lx=log(x); ly=log(gven_y); p2=lnls(lx,ly); a2=p2() b2=exp(p2(2)) y2=b2*x.^a2; subplot(2,2,2); plot(x,y_lnls,'r',x,y2,'b',x,gven_y,'m*'); ttle('least square VS y=b*x^a'); legend('least square','y=b*x^a','ponts',4) %ERWTHMA c ly=log(gven_y); p3=lnls(x,ly); a3=p3() b3=exp(p3(2)) y3=b3*exp(a3*x); subplot(2,2,3); plot(x,y_lnls,'r',x,y3,'b',x,gven_y,'m*'); ttle('least square VS y=b*exp(a*x)'); legend('least square','y=b*exp(a*x)','ponts',4) %YPOLOGISMOS SFALMATWN e0=sum((y-gven_y).^2) e=sum((y_newnl-gven_y).^2) e2=sum((y2-gven_y).^2) e3=sum((y3-gven_y).^2) %EMFANISH THS AKRIBEIAS subplot(2,2,4); plot(0,-log0(e0),'r*',,-log0(e),'b*',2,-log0(e2),'m*',3,-log0(e3),'g*'); Σελίδα από 4
13 legend('least square','y=b*x/(a+x)','y=b*x^a','y=b*exp(a*x)',) ttle('accuracy'); queston2.m clear all; clf; format long; x=[ ]; y=[ ]; p=nopolyls(x,y); dsplay('when y(x)=a*ln(x)+b*cos(x)+c*e^x, then') a=p() b=p(2) c=p(3) x=[0.:0.:3.5]; y=a*log(x)+b*cos(x)+c*exp(x); plot(x,y,'m*',x,y,'b'); legend('ponts','y(x)=a*ln(x)+b*cos(x)+c*e^x',4); Σελίδα 2 από 4
14 DIARIES queston.txt queston a0 = b0 = al = bl = a2 = b2 = a3 = b3 = e0 = 0.23 Σελίδα 3 από 4
15 e = e2 = e3 = dary off questonb2.txt queston2 ans = When y(x)=a*ln(x)+b*cos(x)+c*e^x, then a = b = c = dary off Σελίδα 4 από 4
( ) ( ) ( ) ( ) ενώ η εξίσωση της παραβολής είναι η
ΤΕΜΦΕ 4 ο Εξάµηνο Αριθµητική Ανάλυση Ι 1 η Εργαστηριακή Άσκηση Μέθοδος Müller Αν θέλαµε να ερµηνεύσουµε γεωµετρικά τη µέθοδο Secant θα βλέπαµε ότι σε κάθε βήµα φέρουµε την ευθεία που διέρχονται από τις
Εργαστήριο 2 - Απαντήσεις. Επίλυση Γραμμικών Συστημάτων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΟ Ι Ιστοσελίδα : http://www.math.ntua.gr/~fargyriou Εργαστήριο 2 - Απαντήσεις Επίλυση
. Από τις συνθήκες αυτές κατασκευάζουµε ένα γραµµικό σύστηµα εξισώσεων η λύση του οποίου καθορίζει τα
ΤΕΜΦΕ 4 ο Εξάµηνο Αριθµητική Ανάλυση Ι 2 η Εργαστηριακή Άσκηση Α. Άµεσες Μέθοδοι. Κατά την πολυωνυµική παρεµβολή Hermite αναζητούµε ένα πολυώνυµο το οποίο να διέρχεται από κάποια σηµεία µίας συνάρτησης
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ. ΜΗΤΣΟΤΑΚΗΣ ΑΘΗΝΑ 27 ΠΑΡΑ ΕΙΓΜΑ : ΜΕΘΟ ΟΣ NEWTON Πρόγραµµα Matlab για την προσέγγιση της ρίζας της εξίσωσης f(x)= µε την µέθοδο Newton. Συναρτήσεις f(x), f
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 15 Οκτωβρίου 2006
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.
( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.
Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική
Επίλυση Εξισώσεων. Συστήµατα γραµµικών εξισώσεων. λύση ... = ... ηµοκρίτειο Πανεπιστήµιο Θράκης Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Συστήµατα γραµµικών εξισώσεων m m... n... n mn M n b M b m µη-οµογενείς Μπορεί να υπάρχει µία, πολλές ή καµία λύση Προγραµµατισµός µε χρήση MATLAB 58 ΈστωΈστω το σύστηµα: 5 λύση: 7/3, 8/3 συντεταγµένες
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.
ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB
ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB 1. Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (Σ.Δ.Ε.) 1 ης τάξης έχει τη μορφή dy dt f ( t, y( t)) όπου η συνάρτηση f(t, y) είναι γνωστή,
Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη
Εργαστήρια Αριθμητικής Ανάλυσης Ι 9 ο Εργαστήριο Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη 2018 Απαλοιφή Gauss Με Μερική Οδήγηση Για την εύρεση του οδηγού στοιχείου στο k ο βήμα, αναζητούμε το μέγιστο
Παρεµβολή και Προσέγγιση Συναρτήσεων
Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε
Εργασία στην Αριθµητική Ανάλυση
Εργασία στην Αριθµητική Ανάλυση Κάντε πέντε (τουλάχιστον) από τις παρακάτω ασκήσεις. Ο βαθµός σας σ αυτές θ αποτελέσει το 0% του τελικού βαθµού σας στο µάθηµα. Όλες οι ασκήσεις (και τα µέρη τους) είναι
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ
5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΟΦΑΕΙΑΣ 5. Η συνάρτηση μέγιστης πιθανοφάνειας Έστω µία τυχαία µεταβλητή η οποία αντιπροσωπεύει την µέτρηση κάποιας συγκεκριµένης ποσότητας µε πραγµατική αλλά άγνωστη τιµή θ σε ένα
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Ηµεροµηνία αποστολής στον φοιτητή: Iανουαρίου 005. Τελική ηµεροµηνία αποστολής από τον φοιτητή: 8 Φεβρουαρίου
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 3 Ηµεροµηνία αποστολής στον φοιτητή: 3 Iανουαρίου 004. Τελική ηµεροµηνία αποστολής από τον φοιτητή: 8 Φεβρουαρίου
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 2)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 2) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 2) Σεπτέμβριος 2015
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
Αριθµητική Ολοκλήρωση
Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 2ο Μεταβλητές Μεταβλητή ονομάζεται ένα μέγεθος
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 4) Σεπτέμβριος 2015
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)
ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης
Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=
Ο ΗΓΙΕΣ ΕΠΕΞΕΡΓΑΣΙΑΣ Ε ΟΜΕΝΩΝ ΚΑΙ ΣΥΓΓΡΑΦΗΣ ΤΗΣ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΤΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ ΙΙ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Ο ΗΓΙΕΣ ΕΠΕΞΕΡΓΑΣΙΑΣ Ε ΟΜΕΝΩΝ ΚΑΙ ΣΥΓΓΡΑΦΗΣ ΤΗΣ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΤΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ ΙΙ Προετοιµασία ιαβάστε καλά
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Πρέπει να απαντήσετε σε όλα τα προβλήµατα
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ech and Math wwwtechandmathgr ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Νοεµβρίου 006 Ηµεροµηνία Παράδοσης της
Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)
Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014 1
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.
4. Εισαγωγή στο Matlab
ΠΠΜ 500: Εφαρμογές Μηχανικής με Ανάπτυξη Λογισμικού 4. Εισαγωγή στο Matlab Εαρινό εξάμηνο 2006 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www. www.eng. eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στο Matlab
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a
ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΤΡΟΦΙΜΩΝ Οδηγός Συγγραφής Εργαστηριακών Αναφορών
ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΤΡΟΦΙΜΩΝ Οδηγός Συγγραφής Εργαστηριακών Αναφορών Βασιλεία Ι. Σινάνογλου Ειρήνη Φ. Στρατή Παναγιώτης Ζουμπουλάκης Σωτήρης Μπρατάκος Εξώφυλλο Εργαστηριακό Τμήμα (ημέρα ώρα)
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 5) Σεπτέμβριος 2015 1
Εφαρμοσμένα Μαθηματικά 3η εργαστηριακή άσκηση
ΤΕΙ ΑΘΗΝΑΣ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ Εφαρμοσμένα Μαθηματικά 3η εργαστηριακή άσκηση ΣΠΟΥΔΑΣΤΗΣ: ΧΑΤΖΗΓΕΩΡΓΙΟΥ ΑΝΤΩΝΗΣ Α.Μ. 09036 Εξάμηνο ΠΤΧ ΚΑΘΗΓΗΤΗΣ: ΔΡ. ΜΠΡΑΤΣΟΣ ΑΘΑΝΑΣΙΟΣ Περιεχόμενα 3.1 Πολυωνυμική παρεμβολή...
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
f x και τέσσερα ζευγάρια σημείων
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 014 015, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 1 11 014 Ημερομηνία παράδοσης εργασίας: 18 11 014 Επιμέλεια απαντήσεων:
10 ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ
ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Αθροίσματα Riemann Στο κεφάλαιο αυτό θα ασχοληθούμε με αριθμητικές μεθόδους υπολογισμού του ορισμένου ολοκληρώματος b a f ( d ) όπου τα a, b είναι γνωστά και η συνάρτηση f() είναι
4 η ΕΝΟΤΗΤΑ Μητρώα και συνθήκες στο MATLAB
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 4 η ΕΝΟΤΗΤΑ Μητρώα και συνθήκες στο MATLAB Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας
Αριθµητική Ανάλυση 1 εκεµβρίου / 43
Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι
z(t) = 5.05e j(2πf 0t 0.209) sin 3 (5t)dt = 4 15 x(t) = 4 + cos(2π100t + π/3) cos(2π250t π/7) + 2 sin(2π300t π/4) (6)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 215-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 18/2/216
Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)
Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)
Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής
D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί
Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων
Σχολή Χημικών Μηχανικών ΕΜΠ Ανάλυση Συστημάτων Χημικής Μηχανικής, ο εξάμηνο Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων Διδάσκοντες: Χ. Κυρανούδης, Γ. Μαυρωτάς Εισαγωγή Με βάση κάποιο δείγμα
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν
MATLAB. Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών.
MATLAB Tι είναι το λογισµικό MATLAB? Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών. Σύστηµα αλληλεπίδρασης µε τοχρήστηγια πραγµατοποίηση επιστηµονικών υπολογισµών (πράξεις µε πίνακες επίλυση
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων Δειγµατοληψία και Κβαντισµός: Μια εικόνα (µπορεί να) είναι συνεχής τόσο ως προς τις συντεταγµένες x, y όσο και ως προς το πλάτος. Για να τη µετατρέψουµε
Το θεώρηµα πεπλεγµένων συναρτήσεων
57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης
Κεφάλαιο Πέµπτο: Η Εξάσκηση
Κεφάλαιο Πέµπτο: Η Εξάσκηση 1. Γενικά Η εξάσκηση στο Εργαστήριο προϋποθέτει τη γνώση των εντολών (τουλάχιστον) τις οποίες καλείται ο σπουδαστής κάθε φορά να εφαρµόσει. Αυτές παρέχονται µέσω της Θεωρίας
Μέθοδος προσδιορισμού συντελεστών Euler
Μέθοδος προσδιορισμού συντελεστών Euler Η προηγούμενη μέθοδος αν και δεν έχει κανένα περιορισμό για το είδος συνάρτησης του μη ογενούς όρου, μπορεί να οδηγήσει σε πολύπλοκες ολοκληρώσεις, πολλές φορές
Κεφάλαιο 7 Βάσεις και ιάσταση
Κεφάλαιο 7: Βάσεις και ιάσταση Σελίδα από 9 Κεφάλαιο 7 Βάσεις και ιάσταση n Στο Κεφάλαιο 5 είδαµε την έννοια της βάσης στο και στο Κεφάλαιο 6 µελετήσαµε διανυσµατικούς χώρους. Στο παρόν κεφάλαιο θα ασχοληθούµε
(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier
Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier
Εισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ /5/007 η Οµάδα Ασκήσεων ΑΣΚΗΣΗ (Θεωρία). α) Έστω fl() x η παράσταση
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις πρώτου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 208-9.. Για καθεμία από τις ανισότητες Λύσεις πρώτου φυλλαδίου ασκήσεων. x + > 2, x x +, x x+2 > x+3 3x+, (x )(x 3) (x 2) 2 0 γράψτε ως διάστημα ή ως ένωση διαστημάτων
ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Να κατατάξετε τις διαφορικές εξισώσεις, δηλ να δώσετε την τάξη της, να πείτε αν είναι γραμμική ή όχι, να δώσετε την ανεξάρτητη μεταβλητή
Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων
Σχολή Χημικών Μηχανικών ΕΜΠ Εισαγωγή στην Χημική Μηχανική, ο εξάμηνο Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων Εισαγωγή Με βάση κάποιο δείγμα (Χ,Υ) ζητούμε να εξάγουμε συμπεράσματα για
Διάστημα εμπιστοσύνης της μέσης τιμής
Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:
(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)
1 ΑΝΑΛΥΣΗ ΙΙ Μερική Παράγωγος Μερικές Παράγωγοι Ορισμός 1: a) Εστω f(x y) : U R R μία συνάρτηση δύο μεταβλητών και (a b) ένα σημείο του U. Θεωρούμε ότι μεταβάλλεται μόνο το x ένω το y παραμένει σταθερό
Interpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1
Iterpolatio () Τρίτη, 3 Μαρτίου 05 9:46 πμ 05.03.03 Σελίδα 05.03.03 Σελίδα 05.03.03 Σελίδα 3 05.03.03 Σελίδα 4 05.03.03 Σελίδα 5 05.03.03 Σελίδα 6 05.03.03 Σελίδα 7 05.03.03 Σελίδα 8 05.03.03 Σελίδα 9
ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)
ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,
Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός
Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού,
Μαθηµατικοί Υπολογισµοί στην R
Κεφάλαιο 3 Μαθηµατικοί Υπολογισµοί στην R Ενα µεγάλο µέρος της ανάλυσης δεδοµένων απαιτεί διάφορους µαθηµατικούς υπολογισµούς. Αυτό το κεφάλαιο εισαγάγει τον αναγνώστη στις διάφορες δυνατότητες που έχει
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /
Εργασία στο µάθηµα Ανάλυση εδοµένων
Μεταπτυχιακό Υπολογιστικής Φυσικής Εργασία στο µάθηµα Ανάλυση εδοµένων ηµήτρης Κουγιουµτζής E-mail: dkugiu@auth.gr 30 Ιανουαρίου 2018 Οδηγίες : Σχετικά µε την παράδοση της εργασίας ϑα πρέπει : Το κείµενο
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Η ύλη της εργασίας είναι οι ενότητες 5, 6 και 7 από τον Λογισµό µιας Μεταβλητής Η άσκηση αφορά στην έννοια
Διανύσµατα στο επίπεδο
Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή
Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:
Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.
Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα) Να µελετηθεί το απειρόβαθο κβαντικό πηγάδι µε θετικές ενεργειακές καταστάσεις ( E > ). Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Mαίου 8 Ηµεροµηνία Παράδοσης της Εργασίας από
8 ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
8 ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Στο παρόν κεφάλαιο θα ασχοληθούμε με μεθόδους επίλυσης εξισώσεων την μορφής f(x) = 0. Αναζητούμε μια ακολουθία { n} n 0 x προσεγγίσεων της λύσης, έτσι ώστε lim x = n =
Εισαγωγή στο MATLAB. Κολοβού Αθανασία, ΕΔΙΠ,
Εισαγωγή στο MATLAB Κολοβού Αθανασία, ΕΔΙΠ, akolovou@di.uoa.gr Εγκατάσταση του Matlab Διανέμεται ελεύθερα στα μέλη του ΕΚΠΑ το λογισμικό MATLAB με 75 ταυτόχρονες (concurrent) άδειες χρήσης. Μπορείτε να
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK
ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ. Ηµεροµηνία: Πέµπτη 7 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ
Ε_3Μλ2Θ(ε) ΤΑΞΗ: Β ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Πέµπτη 7 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1 ίνονται τα διανύσµατα a= ( x1, y1)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 04: ΣΥΜΠΙΕΣΗ ΚΑΙ ΜΕΤΑ ΟΣΗ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2007 2008, Χειµερινό Εξάµηνο 6 Νοεµβρίου 2007 Φροντιστηριακή Άσκηση 2: (I) Εντροπία,
Εισαγωγή στην Επιστήμη των Η/Υ ΙΙ. Παλινδρόμηση Δημιουργία Video Συναρτήσεις GUI Μάθημα 6
Εισαγωγή στην Επιστήμη των Η/Υ ΙΙ Παλινδρόμηση Δημιουργία Video Συναρτήσεις GUI Μάθημα 6 Σημειώσεις 1. Φορτώνουμε το αρχείο στη Matlab με την εντολή load και αποθηκεύουμε τα αποτελέσματα στην μεταβλητή
Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4)
-- Αριθµητική Ανάλυση και Περιβ. Υλοποίησης Απαντήσεις στα Θέµατα Ιουνίου (3 και 4) Θέµα 3 [6µ] Θεωρούµε ότι κατά την επίλυση ενός προβλήµατος προσέγγισης προέκυψε ένα γραµµικό σύστηµα Αxb, µε αγνώστους,
Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση
Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση Ηµεροµηνία επιστροφής : Τετάρτη 4/11/2010 18 Οκτωβρίου 2010 1 Γραµµική άλγεβρα (20 µονάδες) Η παράγωγος ενός µητρώου H ορίζεται ως η παράγωγος κάθε
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Συστήµατα και Βάσεις Πολυµέσων. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας
Συστήµατα και Βάσεις Πολυµέσων Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας Ενότητα : Μετασχηµατισµός/Κβαντοποίηση Δρ. Μαρία Κοζύρη Συστήµατα & Βάσεις Πολυµέσων Ενότητα 2 Διαδικαστικά Παράδοση:
Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. 1 το οποίο περιγράφεται από το δυναµικό µοντέλο
ΨΣΕ 3 η Εργαστηριακή Άσκηση Γραµµικοποιήση µε ανατροφοδότηση εξόδου και έλεγχος Κινούµενου Ανεστραµµένου Εκκρεµούς Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. το οποίο περιγράφεται
Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής
Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής email: dzavanti@cs.uoi.gr Περιεχόμενα Τι είναι η Matlab; Ιστορικά Χρήσεις και στοιχεία της Matlab