ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ
|
|
- Πρίαμ Χριστόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ
2 Η Συγκριτική Στατική Ανάλυση ασχολείται µε την σύγκριση διαφόρων καταστάσεων ισορροπίας οι οποίες συνδέονται µε διαφορετικά σύνολα τιµών των παραµέτρων και των εξωγενών µεταλητών Στη συγκριτική στατική ανάλυση αγνοούµε την διαδικασία προσαρµογής των µεταλητών Απλά συγκρίνουµε την αρχική πριν την αλλαγή κατάσταση ισορροπίας µε την τελική µετά την αλλαγή κατάσταση ισορροπίας Ποιοτική συγκριτική στατική ανάλυση: ενδιαφέρεται για την κατεύθυνση της µεταολής Ποσοτική συγκριτική ανάλυση: ενδιαφέρεται για το µέγεθος της της µεταολής Το ασικό πρόληµα στην συγκριτική στατιστική ανάλυση είναι η εύρεση του ρυθµού µεταολής ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ Η µεταολή του ανα µονάδα µεταολής του :
3 Η έννοια της κλίσης της καµπύλης είναι η αντίστοιχη γεωµετρική έννοια της παραγώγου C C C C C } C K A D F E B G H Ηκλίση της ευθείας KG µετράει την κλίση της καµπύλης συνολικού κόστους στο σηµείο Α
4 ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Κανόνας Σταθερής συνάρτησης Κανόνας υναµοσυνάρτησης k n n n Γενίκευση του κανόνα της δυναµοσυνάρτησης c n cn n 4
5 ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΥΟ Ή ΠΕΡΙΣΣΟΤΕΡΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΤΗΣ Ι ΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Κανόνας αθροίσµατος διαφοράς [ ] πχ Γενίκευση του κανόνα αθροίσµατος [ h ] h
6 ΣΥΝΟΛΙΚΗ ΚΑΙ ΟΡΙΑΚΗ ΣΥΝΑΡΤΗΣΗ o 5 5 < > o - o - < >
7 Κανόνας γινοµένου: ] [ ] [ πχ ] [ h h h h Γενίκευση του κανόνα Οικονοµικό παράδειγµα MR AR MR R MR AR R AR R MR AR R AR
8 Κανόνας Πηλίκου: πχ 5 Οικονοµικό παράδειγµα: Σχέση µεταξύ οριακού κόστους και µέσου κόστους C και AC C / C [ C C ] C [ C ] MC 4 6 > > > C C εάν και µ όνον εάν C < < 6 Ηκλίση της καµπύλης AC θα είναι θετική, µηδέν ή αρνητική εάν και µόνον εάν η καµπύλη του οριακού κόστους θα ρίσκεται επάνω, θα τέµνει ή θα ρίσκεται κάτω της καµπύλης AC 6 AC 6
9 ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΣΥΝΑΤΡΗΣΕΩΝ ΙΑΦΟΡΕΤΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ Ο Αλυσιδωτός κανόνας z Γενίκευση του κανόνα Οικονοµικό παράδειγµα: z z w z z w µ έσωτης µ έσω της z h w R R L L R L L R/MR /L MPP L R/LMRP L MRP L MR*MPP L
10 ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΣΥΝΑΤΡΗΣΕΩΝ ΙΑΦΟΡΕΤΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ Μονοτονικές συναρτήσεις Ο κανόνας της αντίστροφης συνάρτησης > > Αύξουσα ή µονοτονικά αύξουσα συνάρτηση > < Φθίνουσα ή µονοτονικά φθίνουσα συνάρτηση πχ > ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΙΣΗ,,, n i Η µερική παράγωγος του ως προς i,,, n,,, n
11 ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΤΙΚ ΑΝΑΛΥΣΗ Α το υπόδειγµα της αγοράς a bp c P a, b c, > > P a c b a bc b Παράγωγοι συγκριτικής στατικής P a b P b a c a c b b b P a P c > α α Αύξηση του α S D Αύξηση του b S D P P c b a P b a c a c P b b b P b P < Αύξηση του c D S S P D S S D P Αύξηση του D -C P P -C
12 ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΤΙΚΗ ΑΝΑΛΥΣΗ B: Υπόδειγµα Εθνικού Εισοδήµατος Y T T Y a C G I C Y δ γ,, < < > < < > δ γ a Λύνουµε ως προς Υ δ γ α I G Y > Υ δ G Πολλαπλασιαστής ηµοσίων απανών < Υ δ γ Πολλαπλασιαστής του µη εισοδηµατικού φόρου < Υ δ δ γ α δ Y G I Πολλαπλασιαστής φόρου εισοδήµατος
13 ΙΑΚΩΒΙΑΝΕΣ ΟΡΙΖΟΥΣΕΣ Οι µερικές παράγωγοι αποτελούν έναν τρόπο ελέγχου της συναρτησιακής γραµµικής ή µη εξάρτησης µεταξύ των στοιχείων ενός συνόλου n συναρτήσεων nµεταλητών n n n n J ΗΙακωιανή J θα είναι ταυτοτικά µηδέν για όλες τις τιµές των,, n εάν και µόνο εάν οι n συναρτήσεις είναι συναρτησιακά γραµµικά ή µη εξαρτηµένες 9 4
14 ΙΑΦΟΡΙΚΑ Όταν το είναι απειροελάχιστο τότε και το θα είναι απειροελάχιστο και το πηλίκο / θα γίνει η παράγωγος / Τα διαφορικά και αναφέρονται σε απειροελάχιστες µεταολές Εάν θέσουµε µία µεταολή του ουσιαστικού µεγέθους τότε το µπορεί να θεωρηθεί µόνο ως µία προσέγγιση της ακριούς τιµής της µεταολής CB/AC*ACCB CD/AC*ACCD A C B D
15 Εφαρµογή των ιαφορικών: Ελαστικότητα σηµείου ε P P Ηελαστικότητα ορίζεται ως / / P / / DP P P / / P Μέση συνάρτηση Οριακή συνάρτηση Παράδειγµα: Βρείτε την ε εάν η συνάρτηση ζήτησης είναι -P P P P P ε P P P 5 P
16 Εφαρµογή των ιαφορικών στην Ελαστικότητα σηµείου A A θ α θ m B θ α θ m B
17 , Συνολική µεταολή του Παραδείγµατα: S Y, i ΟΛΙΚΑ ΙΑΦΟΡΙΚΑ Ρυθµός µεταολής Μεταολή της S S Y S Y i i S SY Y S i i U,, n U U U U n n n i U i i
18 ΟΛΙΚΕΣ ΠΑΡΑΓΩΓΟΙ, w όπου w w Ολικό ιαφορικό w w ιαιρούµεκαι τα δύο µέλη µε w w w w w w w w
19 ΟΛΙΚΕΣ ΠΑΡΑΓΩΓΟΙ w,, w όπου h w h w Ολικό ιαφορικό w w ιαιρούµεκαι τα δύο µέλη µε w w w w w w w w w w
ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ
ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Η Συγκριτική Στατική Ανάλυση ασχολείται με την σύγκριση διαφόρων καταστάσεων ισορροπίας οι οποίες συνδέονται με διαφορετικά σύνολα τιμών των παραμέτρων
Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17
Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Διαφορικός Λογισμός Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 1 Σκοποί ενότητας 4
1 Μερική παραγώγιση και μερική παράγωγος
Περίγραμμα διάλεξης 5 Βιβλίο Chiang και Wainwright (κεφ 74,75,76) 1 Μερική παραγώγιση και μερική παράγωγος Έστω η συνάρτηση (x) όπου x R ή εναλλακτικά γράφουμε ( 1 2 ) Το διάνυσμα x περιέχει τις ανεξάρτητες
Επιχειρησιακά Μαθηματικά
Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1
i ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1 ΚΕΦΑΛΑΙΟ 1 Αριθµοί και Μεταβλητές... 5 1.1. Το σύνολο των φυσικών αριθµών Φ... 5 1.2. Το σύνολο Φ 0 των ακέραιων της Αριθµητικής... 7 1.3. Το σύνολο των σύµµετρων αριθµών Σ...
Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές
Παράγωγοι ανώτερης τάξης
Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 3 / 1 0 / 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα
Ο Νόµος της Ζήτησης και της Προσφοράς Ισορροπία Αγοράς. Τεχνικές αριστοποίησης και σύγχρονα εργαλεία
Ο Νόµος της Ζήτησης και της Προσφοράς Ισορροπία Αγοράς Τεχνικές αριστοποίησης και σύγχρονα εργαλεία µάνατζµεντ 1 Ο Νόµος της Ζήτησης Μια µείωση στην τιµή ενός αγαθού, ενώ όλα τα άλλα µεγέθη παραµένουν
Η ακόλουθη συνάρτηση συνδέει συνολικό κόστος TC και παραγόμενη ποσότητα Q: TC = Q + 3Q 2
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΟ13 ΑΣΚΗΣΗ 1 [Μέρος Α] Η ακόλουθη συνάρτηση συνδέει συνολικό κόστος TC και παραγόμενη ποσότητα : TC = 000 +10 + 3 (A)Γράψτε τις συναρτήσεις του Οριακού Κόστους (Marginal Cost
ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι
Η εξίσωση ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι αβ+ α = ορίζει πλεγμένα το ως συνάρτηση των {α,β}. Να βρεθούν η παράγωγος και η ελαστικότητα του ως προς β, στις τιμές: {α=,β =, = }. Λύση. Ο τύπος πλεγμένης παραγώγισης
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ENATO ΤΙΜΕΣ & ΠΑΡΑΓΩΓΗ ΣΤΟ ΜΟΝΟΠΩΛΙΟ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2011-2012 ΕΠΙΧ Μικροοικονοµική ιαφάνεια 1 Χαρακτηριστικά του
ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1
ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1 ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ: ΜΟΝΟΜΕΤΑΒΛΗΤΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Αλγεβρικές συναρτήσεις... 3 1.1 Η έννοια της συνάρτησης... 3 1.2 Ασαφείς και σαφείς συναρτήσεις... 3 1.3 Γραφικές απεικονίσεις των
Επιχειρησιακά Μαθηματικά (1)
Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής
ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ
ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗ ΔΕΟ 13 ΚΟΣΤΗ TC = FC + VC ή TC = AC* SOS TC ATC = Το μέσο κόστος ισούται με το
dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1
I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1
i ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1 ΚΕΦΑΛΑΙΟ 1 Αριθµοί και Μεταβλητές... 5 1.1. Το σύνολο των φυσικών αριθµών Φ... 5 1.2. Το σύνολο Φ 0 των ακέραιων της Αριθµητικής... 7 1.3. Το σύνολο των σύµµετρων αριθµών Σ...
(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:
http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΔΕΟ -: Άσκηση I. (α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής
g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα
ΔΙΑΓΩΝΙΣΜΑ 0 Μέρος Α. (.6 μονάδες) α). Οι μεταβλητές {,,} συνδέονται με τις εξισώσεις κανόνας αλυσωτής παραγώγισης. { = e +, = ln}. Να επαληθευτεί ο β). Οι μεταβλητές {, y} συνδέονται με μια εξίσωση. Για
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,
3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
1 2 3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 31 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΣ: Έστω δύο σύνολα Α και Β ΑΠΕΙΚΟΝΙΣΗ του συνόλου Α στο Β είναι η διμελής σχέση f A B για την οποία A αντιστοιχεί ένα και μόνο ένα y B δηλαδή
Διάλεξη 13. Καµπύλες κόστους. Μορφές καµπυλών κόστους
Μορφές καµπυλών κόστους Διάλεξη 13 Καµπύλες κόστους Καµπύλη συνολικού κόστους είναι η γραφική απεικόνιση της συνάρτησης συνολικού κόστους. Καµπύλη µεταβλητού κόστους είναι η γραφική απεικόνιση της συνάρτησης
ΣΗΜΑΣΙΑ ΤΗΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ
ΕΛΑΣΤΙΚΟΤΗΤΑ ΣΗΜΑΣΙΑ ΤΗΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ Οι οικονοµολόγοι ενδιαφέρονται να µετρήσουν ορισµένες µεταβλητές για να µπορέσουν να κάνουν προβλέψεις και για να εκτιµήσουν µε σχετική ακρίβεια τι αποτέλεσµα θα
Επαναληπτικές ερωτήσεις πολλαπλής επιλογής: Κεφάλαιο 1 ο
Επαναληπτικές ερωτήσεις πολλαπλής επιλογής: Κεφάλαιο 1 ο 1. Σε γραµµική ΚΠ της µορφής Y = a+ β X : α. Η µέγιστη ποσότητα για το αγαθό Υ παράγεται όταν Y = β β. Η µέγιστη ποσότητα για το αγαθό Χ παράγεται
Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος.
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 6 ιάρκεια εξέτασης: ώρες Θεωρία. (4 µονάδες) α) Να γίνει το γράφηµα µιας συνεχούς συνάρτησης f() της οποίας η παράγωγος f () έχει το γράφηµα του παραπλεύρως
Af(x) = και Mf(x) = f (x) x
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,
Θεώρημα Bolzano. ΑΠΑΝΤΗΣΗ. Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει
Θεώρημα Bolzno. ΑΠΑΝΤΗΣΗ Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει f f 0, τότε υπάρχει ένα, τουλάχιστον, 0 (, ) τέτοιο, ώστε f( 0
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας
II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c
II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών
ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f
ΤΕΣΤ Α ΟΜΑΔΑ Ι Θεωρούμε την συνάρτηση: f() = pln(+ ) για, με p>. Να διερευνηθεί αν είναι κυρτή η κοίλη. Να βρεθούν οι τιμές της παραμέτρου p για τις οποίες η μέγιστη τιμή της βρίσκεται στο =.. Η συνάρτηση
Παράγωγοι ανώτερης τάξης
Παράγωγοι ανώτερης τάξης Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικά Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglks.gr 2 3 / 1 0 / 2 0 1 6 σε μερικές παραγώγους σε μέγιστα, ελάχιστα
οριακό έσοδο (MR) = οριακό κόστος (MC)
1 ΤΥΠΟΛΟΓΙΟ ΔΕΟ34 H ισορροπία της επιχείρησης Μάθημα 6: Η ισορροπία της επιχείρησης Σχέση οριακού εσόδου και οριακού κόστους Η επιχείρηση σε κάθε μορφή αγοράς (τέλειο ανταγωνισμό, μονοπώλιο, μονοπωλιακό
20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ
ΕΚΔΣΕΙΣ ΚΕΛΑΦΑ 19 Μιγαδικός αριθμός λέγεται η έκφραση α + i, με α, ΙR. Φανταστικός αριθμός λέγεται η έκφραση i, με ΙR. Αν z = α + i, α, ΙR, το α λέγεται πραγματικό μέρος του z. Αν z = α + i, α, ΙR, το
A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ
A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία
ΑΡΙΣΤΕΣ ΤΙΜΕΣ ΚΑΙ ΑΚΡΟΤΑΤΕΣ ΤΙΜΕΣ
ΑΡΙΣΤΕΣ ΤΙΜΕΣ ΚΑΙ ΑΚΡΟΤΑΤΕΣ ΤΙΜΕΣ Κοινό κριτήριο επιλογής µεταξύ εναλλακτικών τρόπων παραγωγής είναι η µεγιστοποίηση (κέρδος ήηελαχιστοποίηση (κόστος κάποιου µεγέθους. Αυτά τα προβλήµατα µεγιστοποίησης
ΚΕΦΑΛΑΙΟ 4. Προσφορά των Αγαθών
ΚΕΦΑΛΑΙΟ 4 Προσφορά των Αγαθών Καμπύλη Προσφοράς Υποθέσεις 1. Η επιχείρηση είναι αποδέκτης τιμών (price taker) και όχι διαμορφωτής τιμών (price maker). 2. H επιχείρηση στοχεύει στην μεγιστοποίηση του κέρδους.
ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ MARSHALL ΚΑΙ HICKS. 1. Η καµπύλη Engel
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ ARSALL ΚΑΙ ICKS. Η καµπύλη Egel Η καµπύλη Egel παράγεται από την
Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του
ΣΥΜΒΟΛΙΣΜΟΙ - ΕΝΝΟΙΕΣ Q ή q : Ποσότητα (Quantity) προϊόντος ρ, Ρ : τιμή (Price) προϊόντος ανά μονάδα προϊόντος. Συνάρτηση τηςζητησης; Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του. Δηλαδή Qd = f(p).
ΠΕΡΙΕΧΟΜΕΝΑ. ΜΕΡΟΣ Α Θεωρία Ζήτησης Ενός Αγαθού - Ανάλυση Συμπεριφοράς Καταναλωτή
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α Θεωρία Ζήτησης Ενός Αγαθού - Ανάλυση Συμπεριφοράς Καταναλωτή ΕΙΣΑΓΩΓΗ Έννοια και Στόχοι της Μικροοικονομικής Θεωρίας 1. Γενικά...27 2. Το Πρόβλημα της Επιλογής...29 ΚΕΦΑΛΑΙΟ 1 Θεωρία
Γενικά Μαθηματικά (Φυλλάδιο 1 ο )
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 3 ο Μάθημα: Παράγωγος Συνάρτησης Διδάσκουσα: Κοντογιάννη
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 3 ο Μάθημα: Παράγωγος Συνάρτησης Διδάσκουσα: Κοντογιάννη Αριστούλα Σχέση με τα οικονομικά Στην επιστήμη των οικονομικών
Κεφάλαιο 6 Παράγωγος
Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της
Πρώτο πακέτο ασκήσεων
ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Μικροοικονομική Θεωρία ΙΙ Εαρινό εξάμηνο Ακαδ. έτους 08-09 Αν. Παπανδρέου, Φ. Κουραντή, Ηρ. Κόλλιας Πρώτο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή Απριλίου. Θα υπάρξει
Κεφάλαιο 3. x 300 = = = Άσκηση 3.1
Άσκηση. Κεφάλαιο Έστω χ η πόσοτητα ενός αγαθού που παράγει μια επιχείρηση. Η κάθε μονάδα αυτής της ποσότητας μπορεί να πουλήθει στην τιμή που δίνεται από τη συνάρτηση P = 00. Το συνολικό κόστος για την
ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Β. Καθ. Π. Κάπρος ΕΜΠ 2003
ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Β Καθ. Π. Κάπρος ΕΜΠ 2003 ΑΘΡΟΙΣΤΙΚΗ ΖΗΤΗΣΗ & ΠΡΟΣΦΟΡΑ 1. Αθροιστική Καµπύλη Ζήτησης 2. Ειδικές Περιπτώσεις 3. Ελαστικότητα τιµής της ζήτησης 4. Εισόδηµα, απάνη, Έσοδο
ΔΕΟ34. Ενδεικτική Απάντηση 1ης γραπτής εργασίας Επιμέλεια: Γιάννης Σαραντής
ΔΕΟ34 Ενδεικτική Απάντηση 1ης γραπτής εργασίας 2016-17 Επιμέλεια: Γιάννης Σαραντής 16/11/2016 2 Ερώτηση 1 α1) Αρχικό σημείο ισορροπίας της αγοράς είναι το σημείο Δ και η τιμή ισορροπίας του κλάδου είναι
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές
3. Η παρακάτω συνάρτηση παραγωγής παρουσιάζει φθίνουσες, σταθερές, ή αύξουσες οικονοµίες κλίµακας; παραγωγής παρουσιάζει σταθερές αποδόσεις κλίµακας.
1. Μια επιχείρηση έχει συνάρτηση παραγωγής την f(k,l), όπου Κ είναι οι µονάδες κεφαλαίου και L είναι οι µονάδες εργασίας που χρησιµοποιεί. Αν ξέρουµε ότι το οριακό προϊόν της εργασίας είναι θετικό, αλλά
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΚΑΠΟΙΟΙ ΒΑΣΙΚΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΚΑΙ ΕΝΝΟΙΕΣ Ν = {1,2,3,...} το σύνολο των φυσικών αριθμών Ζ = {0, ±1, ±2, ±3,..
Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1
Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1 Βασική ιάκριση: Προϊόντα κάθετα διαφοροποιηµένα (κοινός δείκτης ποιότητας) Προϊόντα οριζόντια διαφοροποιηµένα (δεν υπάρχει κοινός δείκτης ποιότητας) Προϊόντα Χώρος
Παράγωγος συνάρτησης. Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου. ελαστικότητα Οριακές συναρτήσεις
Παράγωγος συνάρτησης Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου ελαστικότητα Οριακές συναρτήσεις Έννοια Στην οικονομική επιστήμη μας ενδιαφέρει πολλές φορές να προσδιορίσουμε την καλύτερη επιλογή, π.χ
ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 1 1. (4 μονάδες) α). Η συνάρτηση () έχει το παραπλεύρως γράφημα. () Να βρεθούν τα γραφήματα της μέσης τιμής: A() = () / και του οριακού ρυθμού: M() = (), στο ίδιο σύστημα συντεταγμένων.
ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH»
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΟΥ ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH»
(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w :
ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι Οι εξισώσεις: {=, + = w} ορίζουν πλεγμένα τα {,} ως συναρτήσεις των {,w}. Να βρεθεί η μερική παράγωγος του ως προς. Λύση. Με τους τύπους πλεγμένης παραγώγισης: (,g) (,,, w) = = (,)
A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ
A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ.Ελαστικότητα.Χαρακτηρισµός ελαστικότητας 3.Ελαστικότητα αντίστροφης 4. ιαφορικά 5.Οµογενείς συναρτήσεις 6.Λογισµός ρυθµών και διαφορικών 7.Λογαριθµική κλίµακα. 8.Σχετικός
Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =
από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης.
ΕΛΑΣΤΙΚΟΤΗΤΑ ΖΗΤΗΣΗΣ Ορισμός: Η ελαστικότητα ζήτησης, ενός αγαθού ως προς την τιμή του δίνεται από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία μεταβολή της τιμής του. Δηλαδή %
Ιδιότητες καµπυλών ζήτησης
Ιδιότητες καµπυλών ζήτησης Διάλεξη 6 ΖΗΤΗΣΗ Συγκριτική στατική ανάλυση των συναρτήσεων της κανονικής ζήτησης είναι η µελέτη του πώς οι συναρτήσεις κανονικής ζήτησης (, 2,) και (, 2,) αλλάζουν όταν οι τιµές,
ΕΝΟΤΗΤΑ ΔΕΟ 13 ΕΡΓΑΣΙΑ 2 Η
ΕΝΟΤΗΤΑ ΔΕΟ 1 ΕΡΓΑΣΙΑ Η 8 9 Η λύση της εργασίας είναι ενδεικτική και ο υποψήφιος θα πρέπει να βασιστεί σε αυτή και να επιφέρει τις δικές του αλλαγές. Ενημερωθείτε για τις προσφορές πακέτου για όλες τις
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ
ΘΕΜΑ Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας,
Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;
σελ 1 από 5 ΚΕΦΑΛΑΙΟ 1 Ο Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; 1. Σ-Λ Η σχέση με:, είναι συνάρτηση. 2. Σ-Λ Η σχέση είναι συνάρτηση.
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΕΒΔΟΜΟ ΘΕΩΡΙΑΣ-ΜΗ ΓΡΑΜΜΙΚΕΣ ΜΟΡΦΕΣ ΟΙΚΟΝΟΜΕΤΡΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2008-2009
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 24 ιάρκεια εξέτασης: 2 ώρες Θεωρία. 2 (4 µονάδες)
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 4 ιάρκεια εξέτασης: ώρες Θεωρία (4 µονάδες) (α) Μια συνάρτηση f() έχει την παράγωγο του f () γραφήµατος παραπλεύρως. Να βρεθεί η µέγιστη τιµή της για, υποθέτοντας
Αρχές Οικονομικής Θεωρίας μάθημα επιλογής
ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Γ ΓΕΛ Μάρτιος Αρχές Οικονομικής Θεωρίας μάθημα επιλογής Α. α. Λάθος β. Σωστό γ. Σωστό δ. Λάθος ε. Λάθος Α. δ Α. α ΟΜΑΔΑ Α ΟΜΑΔΑ Β Β. Σελ. 8-8 σχολικού βιβλίου: παρ. (β) Η Τεχνολογία
ΕΡΓΑΣΙΕΣ 4 ου ΚΕΦΑΛΑΙΟΥ. 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής
ΕΡΓΑΣΙΕΣ 4 ου ΚΕΦΑΛΑΙΟΥ 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής 1. Σύμφωνα με το νόμο της προσφοράς: α) Η προσφερόμενη ποσότητα ενός αγαθού αυξάνεται όταν μειώνεται η τιμή του στην αγορά β) Η προσφερόμενη
Καμπύλη Προσφοράς. (α) Καμπύλη Προσφοράς. Σκοπός Επιχειρήσεων Μεγιστοποίηση Κέρδους
ΕΙΣΩΗ Καταναλωτής Παραγωγός-Επιχείρηση Χρησιμότητα Παραγωγή-Κόστος Σημεία ΠΙΝΚΣ ΠΡΟΣΦΟΡΣ Οριακό Κόστος (MC) Τιμή () Παραγόμενο Προϊόν (Q) Προσφερόμενη Ποσότητα () MC11 1 MC22 Q22 MC33 Q33 Καμπύλη Προσφοράς
ΟΙΚΟΝΟΜΕΤΡΙΑ. σε μη γραμμικές μορφές. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 7: Επεκτάσεις του γραμμικού υποδείγματος σε μη γραμμικές μορφές Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ. max. ( ) (16 ) Q Q = +. [1]
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ Θέµα ο. (α) Η µονοπωλιακή επιχείρηση µεγιστοποιεί το κέρδος της οποίο δίνεται από τη συνάρτηση π µε τύπο π ( ) = (6 ), δηλαδή λύνει το πρόβληµα max. π ( ) = (6 ) π '( ) =
1 = = = x x = x. 4 u = = = MRS MRS. x x. MRS = MRS = = x = x x [1] x12 x x W W
Θέµα ο (α) Μια κατανοµή στο εσωτερικό του κουτιού Edgeworth είναι άριστη κατά areto αν MRS MRS Έχουµε τα ακόλουθα MRS 3 3 4 4 4 3 3 4 4 4, MRS 3 3 3 3 3 3 Στην αρχική κατανοµή βρίσκουµε 00 MRS(50, 00)
Ερωτήσεις πολλαπλών επιλογών
Ερωτήσεις πολλαπλών επιλογών 1. Έστω ότι μία οικονομία, που βρίσκεται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων, παράγει σε μία συγκεκριμένη χρονική στιγμή 10 τόνους υφάσματος και 00 τόνους τροφίμων.
ΟΜΑ Α Α. Το οριακό κόστος είναι ο λόγος της µεταβολής του µέσου συνολικού κόστους προς τη µεταβολή του προϊόντος. Μονάδες 3
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 7 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)
ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ΑΠΑΝΤΗΣΕΙΣ. Α1 α. Λάθος β. Λάθος γ. Λάθος δ. Σωστό ε. Σωστό. Α2. α. Α3. γ
ΠΝΤΗΣΕΙΣ ΟΜ ΠΡΩΤΗ 1 α. Λάθος β. Λάθος γ. Λάθος δ. Σωστό ε. Σωστό. α 3. γ ΟΜ ΕΥΤΕΡΗ Β1. πό το 4 ο κεφάλαιο του σχολικού βιβλίου σελίδες 83-84 ή η ενότητα 5. «Προσδιοριστικοί παράγοντες της προσφοράς» Η
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α
ΑΡΧΕΣ ΟΙΟΝΟΜΙΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου
Διάστημα εμπιστοσύνης της μέσης τιμής
Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:
= δ P η ελαστικότητα ως προς την τιµή
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 9 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής Α1. Η τεχνολογία παραγωγής του αγαθού
ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις.
ΚΕΦΑΛΑΙΟ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Σκοπός: Σκοπός του κεφαλαίου είναι αρχικά η υπενθύμιση βασικών εννοιών που αφορούν τον ορισμό, τις πράξεις και τη γραφική παράσταση της συνάρτησης αφ ενός και η μελέτη της
Σύνολο ασκήσεων 5. Άσκηση 1. Υπολογίστε τις μερικές παραγώγους ως προς 1 ή κτλ (συμβολισμός ή κτλ) για τις παρακάτω συναρτήσεις
Σύνολο ασκήσεων 5. Άσκηση 1 Υπολογίστε τις μερικές παραγώγους ως προς 1 ή κτλ (συμβολισμός ή κτλ) για τις παρακάτω συναρτήσεις = 1 3 Για τη συνάρτηση CES (σταθερής ελαστικότητας υποκατάστασης) = ( ) =
και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 7 Διάρκεια εξέτασης: ώρες Μέρος Α. (4 μονάδες) (α). Μια συνάρτηση () έχει το γράφημα του παραπλεύρως σχήματος. Να γίνουν τα γραφήματα των συναρτήσεων () οριακής τιμής:
Εισαγωγή στην Οικονομική Ανάλυση. Εξετάσεις περιόδου Ιανουαρίου Ιανουαρίου Νίκος Θεοχαράκης Θανάσης Μανιάτης
ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Εισαγωγή στην Οικονομική Ανάλυση Εξετάσεις περιόδου Ιανουαρίου 010 1 Ιανουαρίου 010 Νίκος Θεοχαράκης Θανάσης Μανιάτης Απαντήστε 6
ΑΣΚΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΔΥΝΑΤΟΥΣ ΛΥΤΕΣ
ΑΣΚΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΔΥΝΑΤΟΥΣ ΛΥΤΕΣ 1. Σε γραμμική ΚΠΔ της μορφής Y a X : α. Η μέγιστη ποσότητα για το αγαθό Υ παράγεται όταν Y β. Η μέγιστη ποσότητα για το αγαθό Χ παράγεται όταν Y a γ. Η μέγιστη
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Διάκριση Μαθηματικών Οικονομικές συναρτήσεις Ορισμοί Μαθηματικά στα οικονομικά φαινόμενα Βελτιστοποίηση κερδών Μέτρηση χρησιμότητας Οριακά μεγέθη Ελαστικότητα Πολλαπλασιαστής
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 14 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ
ΘΕΜΑ A ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 14 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ A1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας, δίπλα στο γράµµα που αντιστοιχεί σε
Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α ÏÅÖÅ
' ΛΥΚΕΙΟΥ ΕΠΙΛΟΗΣ ΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΙΣ ΕΚΦΩΝΗΣΕΙΣ ΟΜ ια τις προτάσεις από. µέχρι και.5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η πρόταση είναι σωστή,
Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )
Κατανομή συνάρτησης τυχαίας μεταβλητής =() Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ3 ( ) Κατανομή συνάρτησης τυχαίας μεταβλητής Έστω τ.μ. Χ με γνωστή κατανομή. Δηλαδή
(2 µονάδες) Α2. Η αύξηση της τιµής ενός αγαθού σηµαίνει: β) Αύξηση της ζήτησης για τα αγαθά που είναι συµπληρωµατικά προς αυτό
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 7 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής: Α1. Η στενότητα του κεφαλαίου οφείλεται:
Ημερομηνία: Τετάρτη 24 Απριλίου 2019 Διάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Ημερομηνία: Τετάρτη 24 Απριλίου 2019 Διάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑΔΑ Α Να σημειώσετε την ένδειξη «Σωστό» ή «Λάθος» στις παρακάτω προτάσεις
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Το συνολικό προϊόν παίρνει την μέγιστη τιμή
ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α ÏÅÖÅ. Αγοραία ζήτηση ενός αγαθού είναι το άθροισµα των ποσοτήτων που όλοι οι καταναλωτές ζητούν από αυτό σε κάθε τιµή.
Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η πρόταση
ΔΙΑΓΩΝΙΣΜΑ 13. A παραπλεύρως σχήματος. Να βρεθούν τα πρόσημα των μερικών
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 3. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() f () της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Οι μεταβλητές {,} συνδέονται
αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x
A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός
ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Μη γραµµικά υποδείγµατα παλινδρόµησης Έστω µία συνάρτηση f = f(x 1,..., X K ) των µεταβλητών X 1,...,
Να χαρακτηρίσετε ως σωστές ή λανθασµένες τις επόµενες προτάσεις: Α3. Τα ελεύθερα αγαθά αποτελούν αντικείµενο µελέτης της Οικονοµικής Επιστήµης.
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 8 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής Α1. Όταν η ζήτηση αποδίδεται γραφικά
Θεωρία: dq1 dq1 dq1 P1 E1. dq2 dq2 dq2 P2 E2 1 1 P E E. d π dp dc dq dq dq. dp dc dq dq
Θεωρία: Θέµα ο Η συνάρτηση κέρδους του µονοπωλητή ο οποίος πραγµατοποιεί διάκριση τιµών τρίτου βαθµού µεταξύ δύο αγορών και είναι η π µε τύπο π (, ) = R ( ) + R ( ) C( + ) Συνθήκες α' τάξης = R ' C ' =
ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ
ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ Άσκηση 1 Αν το επιτόκιο είναι 10%, ποια είναι η παρούσα αξία των κερδών της Monroe orporation στα επόμενα 5 χρόνια; Χρόνια στο μέλλον
B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ
B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ 1.Συναρτήσεις δύο µεταβλητών.μερικές παράγωγοι 3.Γραφήµατα-Επιφάνειες 4.Ειδικές συναρτήσεις 5.Μερικές ελαστικότητες 6.Γραµµική προσέγγιση-εφαπτόµενο επίπεδο 7.Μονοτονία
IV.11 ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ
IV. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ.Ελαστικότητα.Χαρακτηρισμός ελαστικότητας 3.Σχετικά διαφορικά 4.Ελαστικότητα αντίστροφης 5.Ομογενείς συναρτήσεις 6.Λογισμός ρυθμών και διαφορικών 7.Λογαριθμική κλίμακα.