1 = = = x x = x. 4 u = = = MRS MRS. x x. MRS = MRS = = x = x x [1] x12 x x W W
|
|
- Ισίδωρα Παπακώστας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Θέµα ο (α) Μια κατανοµή στο εσωτερικό του κουτιού Edgeworth είναι άριστη κατά areto αν MRS MRS Έχουµε τα ακόλουθα MRS , MRS Στην αρχική κατανοµή βρίσκουµε 00 MRS(50, 00) 4 MRS(00, 0) 0 Άρα η αρχική κατανοµή δεν είναι άριστη κατά areto Ο 50 γεωµετρικός τόπος όλων των κατά areto άριστων κατανοµών είναι η καµπύλη αποτελεσµατικών συµφωνιών (ΚΑΣ) Άρα η επάνω στην ΚΑΣ ικανοποιείται η συνθήκη (00 ) 00 MRS MRS (καµπύλη αποτελεσµατικών συµφωνιών/κασ) (β) Η κλίση της εισοδηµατικού περιορισµού ο οποίος διέρχεται ϖάντοτε αϖό την αρχική κατανοµή και αϖό την κατανοµή γενικής ισορροϖίας, έστω (, ), είναι 00 και ισούται επιπλέον µε τους οριακούς 50 []
2 λόγους υποκατάστασης των καταναλωτών και Άρα λύνουµε ως προς την εξίσωση και βρίσκουµε (βάλαµε το µείον στον οριακό λόγο υποκατάστασης επειδή η κλίση του εισοδηµατικού περιορισµού είναι αρνητική αλλά πριν είχαµε εκφράσει τον MRS σε απόλυτη τιµή) Αλλά έχουµε (από ΚΑΣ) Λύνουµε ως προς την εξίσωση και βρίσκουµε Άρα ο ζητούµενος λόγος ανταλλαγής είναι ίσος µε λ Θέµα ο Μια κατανοµή στο εσωτερικό του κουτιού Edgeworth είναι άριστη κατά areto αν MRS MRS Έχουµε τα ακόλουθα MRS και MRS Στην αρχική κατανοµή βρίσκουµε 00 MRS(50, 300) 6 MRS(50, 0) 0 MRS(50, 00) 4 MRS(00, 0) 0 Άρα αυτή δεν 50 είναι αποτελεσµατική κατά areto Ο γεωµετρικός τόπος όλων των κατά areto άριστων κατανοµών είναι η καµπύλη αποτελεσµατικών συµφωνιών τα σηµεία της οποίας ικανοποιούν τη συνθήκη (300 ) 600 MRS MRS (ΚΑΣ) []
3 (β) Η κλίση της εισοδηµατικού περιορισµού ο οποίος διέρχεται ϖάντοτε αϖό την αρχική κατανοµή και την κατανοµή γενικής ισορροϖίας, έστω (, ), είναι και ισούται επιπλέον µε τους οριακούς λόγους υποκατάστασης των καταναλωτών και Άρα λύνουµε ως προς την εξίσωση (βάζουµε το µείον επειδή η κλίση του εισοδηµατικού περιορισµού είναι αρνητική αλλά πριν είχαµε εκφράσει τον MRS σε απόλυτη τιµή) και βρίσκουµε 300 Αλλά έχουµε (από ΚΑΣ) Λύνουµε ως προς την εξίσωση και βρίσκουµε Άρα ο ζητούµενος λόγος ανταλλαγής είναι ίσος µε λ Θέµα 3ο η-τάξη, Φάκελος " ιαλέξεις 06", αρχείο pdf µε τίτλο "Γενική ισορροπία-άσκηση" Θέµα 4ο η-τάξη, Φάκελος " ιαλέξεις 06", αρχείο pdf µε τίτλο "Θεµελιώδη θεωρήµατα" Θέµα 5ο Ο καταναλωτής λύνει το πρόβληµα δεσµευµένης µεγιστοποίησης ma u (, ), a a [3]
4 s t ω ω Σχηµατίζει τη συνάρτηση Lagrange L(,, λ) λ( ω ω ) a a και βρίσκει τις Συνθήκες α' τάξης a λ 0 a a ( a) λ 0 a a L λ ω ω 0 απ' όπου βρίσκουµε a ( ω ω ) ( )( ), a ω ω (συναρτήσεις ζήτησης, ) Ο καταναλωτής λύνει το πρόβληµα δεσµευµένης µεγιστοποίησης ma u (, ), β β s t ω ω Σχηµατίζει τη συνάρτηση Lagrange L(,, λ) λ( ω ω ) β β και βρίσκει τις [4]
5 Συνθήκες α' τάξης β λ 0 β β ( β ) λ 0 β β L λ ω ω 0 β ( απ' όπου παίρνουµε ω ω ) ( β )( ), ω ω (συναρτήσεις ζήτησης, ) (β) Στη γενική ισορροπία ισχύει εξ ορισµού ζήτηση προσφορά, δηλαδή ω ω ω ω Χρησιµοποιώντας την πρώτη εξίσωση (ή τη δεύτερη αν θέλουµε) βρίσκουµε a( ω ω) β ( ω ω) ω ω Λύνοντας ως προς βρίσκουµε ( a) ω ( β ) ω aω βω ( a) ω ( β ) ω (γ) Από ερ (α) σε συνδυασµό µε το γεγονός ότι aω βω (ερ (β)) έχουµε τα ακόλουθα [5]
6 a( ) ( a) ( ) ω ω aω aω ω β ω aω βω, ( a)( ω ω ) aω βω ( a) ω ( a) ω ( a) ω ( β ) ω β ( ω ω ) ( a) ω ( β ) ω βω βω βω βω aω βω, ( β )( ω ω ) aω βω ( β ) ω ( β ) ω ( β ) ω ( β ) ω ( a) ω ( β ) ω (δ) Αν a β, τότε οι σχέσεις του ερ (γ) γράφονται ( a) ω ( β ) ω ( a) ω ( a) ω ( a) ω aω aω aω aω aω aω, aω βω aω aω aω aω βω aω aω ( a) ω ( a) ω ( a) ω ( a) ω ( a) ω ( β ) ω ( a) ω ( a) ω aω ( a) ω ( ) ( a) ω a ω ( a) ω ( β ) ω ( a) ω ( a) ω ( a) ω βω βω aω aω ω aω, aω βω aω aω aω aω βω ( β ) ω ( β ) ω ( a) ω ( β ) ω aω aω aω ( a) ω ( a) ω ( a) ω ( a) ω ( a) ω ( a) ω ( a) ω Θέµα 6ο (α) Το άτοµο/επιχειρηµατίας λύνει το πρόβληµα [6]
7 ma y, 0,5 0,5 y w ry και βρίσκει τις Συνθήκες α' τάξης 0,5 0,5 0,5y r 0 0,5 0,5 0,5y w 0 (β) Θέτουµε µέσα στις παραπάνω δύο εξισώσεις y οπότε αυτές γράφονται 0,5 0,5 r 0 και 0,5 0,5 w 0 Λύνοντας και τις δύο ως προς βρίσκουµε 4r και 4w Με δεδοµένο ότι τα πρώτα µέλη είναι ίσα, τότε και τα δεύτερα µέλη είναι ίσα, δηλαδή 4r r 4w 4w (γ) Ο εισοδηµατικός περιορισµός δίνεται από την εξίσωση w Άρα το άτοµο/καταναλωτής λύνει 4w ma u(, ) a ( ), a s t w 4w Σχηµατίζουµε τη συνάρτηση Lagrange a L(,, λ) ( ) λ( w ) 4w a και βρίσκουµε τις [7]
8 Συνθήκες α' τάξης L a a a λ ( ) 0 L ( a a a) ( ) wλ 0 L w 0 λ 4w ιαιρώντας κατά µέλη τη δεύτερη εξίσωση µε την πρώτη βρίσκουµε aw( ) a την οποία αντικαθιστούµε µέσα στον εισοδηµατικό περιορισµό τον οποίο λύνουµε στη συνέχεια ως προς οπότε βρίσκουµε τη συνάρτηση προσφοράς εργασίας (4 ) ( ) a w S w 4w Θέµα 7ο Η νέα κατανοµή την οποία προτείνει ο στον είναι η ((5,5),(, )) Στη νέα κατανοµή ο έχει χρησιµότητα u(, ) 4 < u(5,) 5 Άρα ο δεν θα δεχθεί την ανταλλαγή Θέµα 8ο Για την κατανοµή ((, y),(, y )) ((3,5),(4,)) έχουµε τα ακόλουθα y y 5 0 MRS MRS (3,5) 3 3 y και MRS y 0 MRS (4, ) Άρα η συγκεκριµένη κατανοµή δεν είναι άριστη κατά areto 3 y Για την κατανοµή ((, y),(, y )) ((6,3),(3,3)) έχουµε > 7 Αδύνατο Τέλος για [8]
9 την κατανοµή ((, y ),(, y )) ((4,8),(3,4)) έχουµε,8 5,6 4, MRS(4, 8), 4 MRS(3, 4) και 7, y y 7 Άρα η ((, y ),(, y )) ((4,8),(3,4)) είναι άριστη κατά areto Θέµα 9ο Λύνουµε το πρόβληµα ma u (, ),,, s t u(, ) u T ( X, X ) 0 Η συνάρτηση T ( X, X ) 0 είναι η συνάρτηση παραγωγικών δυνατοτήτων της οικονοµίας της οποία το γράφηµα λέγεται καµπύλη παραγωγικών δυνατοτήτων (ΚΠ ) Οι µεταβλητές X, X είναι απλά τα αθροίσµατα X (, ), X (, ) Η κλίση µιας δοσµένης ΚΠ λέγεται οριακός λόγος µετασχηµατισµού (MRT) και είναι ίσος µε Σχηµατίζουµε τη συνάρτηση Lagrange dt dx dx MRT X X dx T X T T dx 0 X L u u u T X X (,,,, λ, λ ) (, ) λ ( (, ) ) λ (, ) και βρίσκουµε τις Συνθήκες α' τάξης X λ 0 [9]
10 X λ 0 λ λ 0 X λ λ 0 X u u λ (, ) 0 T X X λ (, ) 0 ιαιρώντας κατά µέλη τις δύο πρώτες εξισώσεις βρίσκουµε X X ιαιρώντας κατά µέλη την τρίτη κατά σειρά εξίσωση µε την τέταρτη κατά σειρά εξίσωση βρίσκουµε X X Με δεδοµένο ότι τα δεύτερα µέλη των παραπάνω εξισώσεων είναι τα ίδια, τότε το ίδιο ισχύει και για τα πρώτα οπότε έχουµε ότι X u u T X ή εξ ορισµού του MRS και του MRT, MRS MRS MRT Θέµα 0ο Το άτοµο/παραγωγός λύνει ma w, [0]
11 s t Η διαφορά w είναι το κέρδος του ατόµου/παραγωγού Αντικαθιστώντας τον ισοτικό περιορισµό µέσα στην αντικειµενική συνάρτηση λύνουµε ma w και βρίσκουµε τη Συνθήκη α' τάξης 6 36 w ( w) D w D 36 7 Άρα ( ) w w Το άτοµο/καταναλωτής λύνει ma u(, ), 9 s t w π, όπου π κέρδος από την επιχ/ση της οποίας είναι ιδιοκτήτης Σχηµατίζουµε τη συνάρτηση Lagrange L(,, λ) λ( w π ) 9 και βρίσκουµε τις Συνθήκες α' τάξης []
12 L λ 0 L λw 0 9 L w π 0 λ Από τις δύο πρώτες εξισώσεις συνεπάγεται S 9w ( w ) Αντικαθιστώντας το αποτέλεσµα στην τρίτη εξίσωση βρίσκουµε D 9w D S 36 9w π Σε γενική ισορροπία ισχύει εξ ορισµού ότι w w S D S 36 (αµοιβή εργασίας σε γενική ισορροπία) 9 Άρα () 36 και D 9w 9 π 36 π π 8 Συνοψίζοντας η ανταγωνιστική (Βαλρασιανή, γενική) ισορροπία είναι το διάνυσµα (, ) (9,36) []
Θεωρία: dq1 dq1 dq1 P1 E1. dq2 dq2 dq2 P2 E2 1 1 P E E. d π dp dc dq dq dq. dp dc dq dq
Θεωρία: Θέµα ο Η συνάρτηση κέρδους του µονοπωλητή ο οποίος πραγµατοποιεί διάκριση τιµών τρίτου βαθµού µεταξύ δύο αγορών και είναι η π µε τύπο π (, ) = R ( ) + R ( ) C( + ) Συνθήκες α' τάξης = R ' C ' =
Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές
ΑΝΤΑΛΛΑΓΗ. Οι συναρτήσεις χρησιμότητας των ατόμων Α και Β είναι αντίστοιχα. και. και το αρχικό απόθεμα και.
ΑΝΤΑΛΛΑΓΗ Άσκηση 5 Οι συναρτήσεις χρησιμότητας των ατόμων Α και Β είναι αντίστοιχα u ( x, x ) = x + x 1 2 1 2 και u ( x, x ) = x + x 1 2 1 2 Ω = (2,0) Ω = (0,1) και το αρχικό απόθεμα και. Να προσδιοριστεί
Διάλεξη 11. Μεγιστοποίηση κέρδους. Οικονοµικό κέρδος. Η ανταγωνιστική επιχείρηση
Οικονοµικό κέρδος Διάλεξη Μεγιστοποίηση Μια επιχείρηση χρησιµοποιεί εισροές j,m για να παραγάγει n προϊόντα i, n. Τα επίπεδα του προϊόντος είναι,, n. Τα επίπεδα των εισροών είναι,, m. Οι τιµές των προϊόντων
Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία
Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία Βασικές Υποθέσεις (i) Οι αγορές όλων των αγαθών είναι τέλεια ανταγωνιστικές. Οι καταναλωτές και οι επιχειρήσεις
Άριστες κατά Pareto Κατανομές
Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή
Διάλεξη 7. Εξίσωση Slutsky. Οι επιδράσεις µιας µεταβολής της
Οι επιδράσεις µιας µεταβολής της τιµής Διάλεξη 7 Εξίσωση Slutsk Τι θα συµβεί όταν µειωθεί η τιµή ενός αγαθού; Αποτέλεσµα υποκατάστασης : το αγαθό γίνεται σχετικά πιο φτηνό και γι αυτό ο καταναλωτής υποκαθιστά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος 2016-17 ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΤΗΣ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass) 1 ιάλεξη2 Ανταγωνισμός, οικονομική
Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)
Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας
Ιδιότητες καµπυλών ζήτησης
Ιδιότητες καµπυλών ζήτησης Διάλεξη 6 ΖΗΤΗΣΗ Συγκριτική στατική ανάλυση των συναρτήσεων της κανονικής ζήτησης είναι η µελέτη του πώς οι συναρτήσεις κανονικής ζήτησης (, 2,) και (, 2,) αλλάζουν όταν οι τιµές,
Διάλεξη 4. Οικονομική της ευημερίας. 1 Ράπανος-Καπλάνογλου 2016/7
Διάλεξη 4 Οικονομική της ευημερίας 1 Οικονομικά της ευημερίας: Γενική ισορροπία Οικονομικά της ευημερίας είναι ο κλάδος της οικονομικής θεωρίας που ασχολείται με το κατά πόσο είναι επιθυμητές από την κοινωνία
Ερωτήσεις πολλαπλών επιλογών
Ερωτήσεις πολλαπλών επιλογών Β1) Υποθέστε ότι στη θέση ισορροπίας της αγοράς ενός αγαθού η ζήτησή του ως προς την τιμή του είναι ελαστική. Μία μείωση της προσφοράς του αγαθού, με όλους τους άλλους παράγοντες
0 χ1 χ2 Ι2 χ3 Ι5 Ι3 χ
ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ - ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΓΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ Ι1 χ/ Ρ=0 χ/ Ρ>0 χ/ Ρ
Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος.
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 6 ιάρκεια εξέτασης: ώρες Θεωρία. (4 µονάδες) α) Να γίνει το γράφηµα µιας συνεχούς συνάρτησης f() της οποίας η παράγωγος f () έχει το γράφηµα του παραπλεύρως
Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης
Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης Συνθήκες για αποτελεσματικότητα κατά areto Συνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα
Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός.
Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης υνθήκες για αποτελεσματικότητα κατά areto υνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα
Γενική Ανταγωνιστική Ισορροπία σε Οικονομία με Έναν Καταναλωτή και Έναν Παραγωγό
Γενική Ανταγωνιστική Ισορροπία σε Οικονομία με Έναν Καταναλωτή και Έναν Παραγωγό - Ορισμός. Μια ανταγωνιστική οικονομία που διέπεται από το θεσμό της ατομικής ιδιοκτησίας είναι μια οικονομία όπου: (i)
ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ
ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ Άσκηση 1 Αν το επιτόκιο είναι 10%, ποια είναι η παρούσα αξία των κερδών της Monroe orporation στα επόμενα 5 χρόνια; Χρόνια στο μέλλον
Κεφάλαιο 32 Ανταλλαγή
HL R. VRIN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Εκδόσεις Κριτική Κεφάλαιο 32 Ανταλλαγή Ύλη για τη Μίκρο ΙΙ: όλο το κεφάλαιο Ανάλυση μερικής ισορροπίας/ανάλυση γενικής ισορροπίας Τέλειος ανταγωνισμός/ατελής
Γενική Ισορροπία. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 19 Απριλίου 2013
Γενική Ισορροπία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 2013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία 19 Απριλίου 2013 1 / 50. Παρατήρηση. Στη γενική ισορροπία προσέξτε ότι οι καµπύλες
Διάλεξη 4. Οικονομικά της ευημερίας: Γενική ισορροπία 9/3/2017. Οικονομικά της ευημερίας: Γενική ισορροπία. Οικονομική της ευημερίας
Διάλεξη 4 Οικονομική της Οικονομικά της : Γενική ισορροπία Οικονομικά της είναι ο κλάδος της οικονομικής θεωρίας που ασχολείται με το κατά πόσο είναι επιθυμητές από την κοινωνία κάποιες εναλλακτικές οικονομικές.
ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ MARSHALL ΚΑΙ HICKS. 1. Η καµπύλη Engel
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ ARSALL ΚΑΙ ICKS. Η καµπύλη Egel Η καµπύλη Egel παράγεται από την
Πρώτο πακέτο ασκήσεων
ΕΚΠΑ Ακαδημαϊκό έτος 208-209 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι Πρώτο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 6 Νοεμβρίου (στο μάθημα της κ. Κουραντή, του κ. Παπανδρέου
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 24 ιάρκεια εξέτασης: 2 ώρες Θεωρία. 2 (4 µονάδες)
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 4 ιάρκεια εξέτασης: ώρες Θεωρία (4 µονάδες) (α) Μια συνάρτηση f() έχει την παράγωγο του f () γραφήµατος παραπλεύρως. Να βρεθεί η µέγιστη τιµή της για, υποθέτοντας
Οικονοµικός ορθολογισµός
Οικονοµικός ορθολογισµός Διάλεξη 5 Επιλογή!1 Η βασική παραδοχή για τη συµπεριφορά του λήπτη αποφάσεων είναι ότι αυτός/αυτή επιλέγει την πλέον προτιµώµενη εναλλακτική επιλογή που του/της είναι διαθέσιµη.
3. Η παρακάτω συνάρτηση παραγωγής παρουσιάζει φθίνουσες, σταθερές, ή αύξουσες οικονοµίες κλίµακας; παραγωγής παρουσιάζει σταθερές αποδόσεις κλίµακας.
1. Μια επιχείρηση έχει συνάρτηση παραγωγής την f(k,l), όπου Κ είναι οι µονάδες κεφαλαίου και L είναι οι µονάδες εργασίας που χρησιµοποιεί. Αν ξέρουµε ότι το οριακό προϊόν της εργασίας είναι θετικό, αλλά
ΠΑΡΑΡΤΗΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΡΙΣΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΦΟΡΟΥ
ΠΑΡΑΡΤΗΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΡΙΣΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΦΟΡΟΥ Ας υποθέσουμε ότι έχουμε ένα αγαθό το οποίο δημιουργεί κατά την παραγωγή ή την κατανάλωσή του έναν ρύπο, και ας υποθέσουμε ότι για κάθε μία μονάδα
4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ
4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Πολυωνυµική εξίσωση Λέγεται κάθε εξίσωση της µορφής Ρ(x) = 0, όπου Ρ(x) πολυώνυµο.. Ρίζα πολυωνυµικής εξίσωσης Λέγεται κάθε ρίζα του αντίστοιχου πολυωνύµου.
Γενική Ανταγωνιστική Ισορροπία
Γενική Ανταγωνιστική Ισορροπία - Υποθέτουμε μια οικονομία που αποτελείται από: Δύο καταναλωτές 1,. Μία επιχείρηση. Δύο αγαθά: τον ελεύθερο χρόνο Χ και το καταναλωτικό αγαθό Α. - Οι προτιμήσεις των καταναλωτών
Η Αποτυχία της Αγοράς και ο Ρυθμιστικός Ρόλος του Κράτους
: Αποτυχία της Αγοράς και Αναγκαιότητα Ρύθμισης της Αγοράς Η Αποτυχία της Αγοράς και ο Ρυθμιστικός Ρόλος του Κράτους Με τον όρο Αποτυχία της Αγοράς (market failure) αναφερόμαστε στο γεγονός ότι υπάρχουν
Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι
3. Θεωρία της Επιχείρησης 3. Η Ανταγωνιστική Επιχείρηση. Το τµήµα αυτό έχει δύο στόχους. Πρώτα να δείξει ότι αν υπάρχει ουδετερότητα απέναντι στον κίνδυνο, τότε η µέση αξία ενός αβέβαιου γεγονότος είναι
Μονοψωνιακή Ισορροπία
Μονοψωνιακή Ισορροπία - Αν η αγορά εργασίας είναι πλήρως ανταγωνιστική, τότε η ατομική επιχείρηση θεωρεί δεδομένο το μισθό και, επομένως, αντιμετωπίζει μια πλήρως ελαστική (οριζόντια) καμπύλη προσφοράς
Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας
Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Άσκηση στο μάθημα «Εισαγωγή στην Οικονομική Ανάλυση» Νίκος Θεοχαράκης
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ. max. ( ) (16 ) Q Q = +. [1]
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ Θέµα ο. (α) Η µονοπωλιακή επιχείρηση µεγιστοποιεί το κέρδος της οποίο δίνεται από τη συνάρτηση π µε τύπο π ( ) = (6 ), δηλαδή λύνει το πρόβληµα max. π ( ) = (6 ) π '( ) =
Θεωρία Καταναλωτή. Υποδειγματοποίηση της συμπεριφοράς του καταναλωτή. Βασική έννοια: Βελτιστοποίηση υπό περιορισμό.
Θεωρία Καταναλωτή Υποδειγματοποίηση της συμπεριφοράς του καταναλωτή. Βασική έννοια: Βελτιστοποίηση υπό περιορισμό. Προτιμήσεις (preferences) Εισοδηματικός περιορισμός (budget constraint) Άριστη επιλογή
Διάλεξη 10. Γενική Ισορροπία VA 30
Διάλεξη 10 Γενική Ισορροπία V 30 1 Μερική & Γενική Ισορροπία Μέχρι τώρα εξετάζαμε γενικά την αγορά ενός αγαθού μεμονωμένα. Το πώς δηλαδή η προσφορά και η ζήτηση επηρεάζονται από την τιμή του συγκεκριμένου
Ο Νόµος της Ζήτησης και της Προσφοράς Ισορροπία Αγοράς. Τεχνικές αριστοποίησης και σύγχρονα εργαλεία
Ο Νόµος της Ζήτησης και της Προσφοράς Ισορροπία Αγοράς Τεχνικές αριστοποίησης και σύγχρονα εργαλεία µάνατζµεντ 1 Ο Νόµος της Ζήτησης Μια µείωση στην τιµή ενός αγαθού, ενώ όλα τα άλλα µεγέθη παραµένουν
Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού
Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού Οµοιογενή Προϊόντα Ισορροπία Courot-Nash Έστω δυοπώλιο µε συνάρτηση ζήτησης: ( ) a b a, b > 0 () Βέβαια ισχύει ότι: + () Ακόµα υποθέτουµε ότι η τεχνολογία παραγωγής
Γενική Ισορροπία-Ευηµερία. 2ο Θεµελιώδες Θεώρηµα των Οικονοµικών της ευηµερίας. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς.
Γενική Ισορροπία-Ευηµερία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 2013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία-Ευηµερία 19 Απριλίου 2013 1 / 20 Το πρώτο Θ.Θ.Ο.Ε. µας λέει ότι κάθε Βαλρασιανή
Επιχειρησιακά Μαθηματικά (1)
Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής
Μεγιστοποίηση της Χρησιμότητας
Μεγιστοποίηση της Χρησιμότητας - Πρόβλημα Καταναλωτή: Επιλογή καταναλωτικού συνδυασμού x=(x, x ) υπό ένα σύνολο φυσικών, θεσμικών και οικονομικών περιορισμών κατά τρόπο ώστε να μεγιστοποιεί τη χρησιμότητά
1. Με βάση τον κανόνα της ψηφοφορίας με απλή πλειοψηφία, η ποσότητα του δημόσιου αγαθού που θα παρασχεθεί είναι η κοινωνικά αποτελεσματική ποσότητα.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιουλίου Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Η εξέταση αποτελείται από δύο
Διάλεξη 11. Γενική Ισορροπία με Παραγωγή VA 31
Διάλεξη 11 Γενική Ισορροπία με Παραγωγή VA 31 1 Οικονομίες ανταλλαγής (ξανά) Καθόλου παραγωγή, μόνο αρχικά αποθέματα, οπότε δεν υπάρχει περιγραφή του πώς οι πόροι μετατρέπονται σε αγαθά. Γενική ισορροπία:
Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1
Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1 Βασική ιάκριση: Προϊόντα κάθετα διαφοροποιηµένα (κοινός δείκτης ποιότητας) Προϊόντα οριζόντια διαφοροποιηµένα (δεν υπάρχει κοινός δείκτης ποιότητας) Προϊόντα Χώρος
Άριστες κατά Pareto Κατανομές και το Πρώτο Θεώρημα Ευημερίας
Άριστες κατά Pareto Κατανομές και το Πρώτο Θεώρημα Ευημερίας - Υποθέτουμε μια οικονομία που αποτελείται από: Δύο καταναλωτές 1,. Μία επιχείρηση. Δύο αγαθά: τον ελεύθερο χρόνο Χ και το καταναλωτικό αγαθό
( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
Γενική Ισορροπία. Γενική ισορροπία - Ανταλλαγή. Γενική ισορροπία - Ανταλλαγή. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς.
Γενική Ισορροπία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 2013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία 19 Απριλίου 2013 1 / 23. Η οικονοµία των δύο καταναλωτών µε δύο αγαθά που παρουσιάσαµε
Μαρσαλιανή και Χικσιανή καμπύλη ζήτησης. Γραφική απεικόνιση. Μικροοικονομική Θεωρία Ι / Διάλεξη 7β / Φ. Κουραντή 1
Μαρσαλιανή και Χικσιανή καμπύλη ζήτησης Γραφική απεικόνιση Μικροοικονομική Θεωρία Ι / Διάλεξη 7β / Φ. Κουραντή Ξεκινάμε με το εξής διάγραμμα Στο τμήμα αυτό απεικονίζουμε την επιλογή του καταναλωτή, μεταξύ
ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ
ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 206-207 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ο Πακέτο Ασκήσεων Απαντήσεις Σωστό-Λάθος (Δίπλα σε κάθε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 202-20 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου ο Πακέτο Ασκήσεων Απαντήσεις Ημερομηνία
Μικροοικονοµική Θεωρία. Γενική ισορροπία - Ανταλλαγή. Γενική ισορροπία - Ανταλλαγή. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 23 Σεπτεµβρίου 2014
Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 23 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 23 Σεπτεµβρίου 2014 1 / 23. Η οικονοµία των δύο καταναλωτών µε δύο αγαθά
ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ
ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.
Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων
Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές
ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ
ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Κεφάλαιο 3 Οικονοµικά των Επιχειρήσεων Ε. Σαρτζετάκης 1 Καταναλωτική συµπεριφορά! Σκοπός αυτής της διάλεξης είναι να εξετάσουµε τον τρόπο µε τον οποίο οι καταναλωτές
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή Εισαγωγή: Όπως γνωρίζουµε, το οικονοµικό πρόβληµα εστιάζεται στην αποτελεσµατική κατανοµή των ανεπαρκών οικονοµικών πόρων στις εναλλακτικές
6. Το Υπόδειγμα των Επικαλυπτόμενων Γενεών: Ανταλλαγή I
6. Το Υπόδειγμα τν Επικαλυπτόμενν Γενεών: Ανταλλαγή I 6.. Ερτήσεις Σχολιάστε την εγκυρότητα τν παρακάτ προτάσεν. Αν πιστεύετε ότι μια πρόταση είναι σστή κάτ από ορισμένες προϋποθέσεις τότε να αναφέρετε
( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού
Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας
Οικονομικά για Μη Οικονομολόγους Ενότητα 2: Θεωρία Καταναλωτή
Οικονομικά για Μη Οικονομολόγους Ενότητα 2: Θεωρία Καταναλωτή Καθηγητής: Κώστας Τσεκούρας Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Οικονομικών Επιστημών Σκοποί ενότητας Στην ενότητα αυτή παρουσιάζονται
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ Εξέταση Φεβρουαρίου 2012 / ιάρκεια: 2 ώρες ιδάσκοντες: Μ. Αθανασίου, Γ.
= δ P η ελαστικότητα ως προς την τιµή
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 9 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής Α1. Η τεχνολογία παραγωγής του αγαθού
(1β) Μη Χωροθετικά Υποδείγματα Διαφοροποιημένου Προϊόντος με Ενδογενές Πλήθος Επιχειρήσεων
(β) Μη Χωροθετικά Υποδείγματα Διαφοροποιημένου Προϊόντος με Ενδογενές Πλήθος Επιχειρήσεων Ελεύθερη Είσοδος και Ισορροπία Μηδενικών Κερδών - Η δυνατότητα νέων επιχειρήσεων να εισέρχονται ελεύθερα στην αγορά
Με δεδομένες τις επιλογές της επιχείρησης (δυνατούς συνδυασμούς συντελεστών) με ποιον τρόπο θα επιλέξει την άριστη.
Με δεδομένες τις επιλογές της επιχείρησης (δυνατούς συνδυασμούς συντελεστών) με ποιον τρόπο θα επιλέξει την άριστη. Είδη κόστους Άμεσο Κόστος απάνες για αγορά ή μίσθωση ΣΠ Έμμεσο Κόστος Τεκμαιρόμενο κόστος
Γενική Ισορροπία. Γενική ισορροπία και παραγωγή. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 19 Απριλίου 2013
Γενική Ισορροπία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία 19 Απριλίου 013 1 / 60. Η παραγωγή στη γενική ισορροπία έχει πάλι µεγάλη αντιστοιχία
Μικροοικονοµική Θεωρία. Γενική ισορροπία και παραγωγή. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 24 Σεπτεµβρίου 2014
Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 4 Σεπτεµβρίου 014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 4 Σεπτεµβρίου 014 1 / 60. Η παραγωγή στη γενική ισορροπία έχει πάλι µεγάλη
Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =
To 2 ο Θεμελιώδες Θεώρημα Ευημερίας
o 2 ο Θεμελιώδες Θεώρημα Ευημερίας - Το 1 ο Θεώρημα Ευημερίας (FW) εξασφαλίζει ότι η ανταγωνιστική ισορροπία είναι άριστη κατά Pareto αλλά δεν εξασφαλίζει μια ίση διανομή των οικονομικών οφελών μεταξύ
ΦΟΙΤΗΤΙΚΟ ΔΙΔΑΣΚΑΛΕΙΟ Facebook: Didaskaleio Foititiko
Άσκηση. «Σε ορισμένες περιπτώσεις παρατηρείται στον κλάδο της γεωργίας της Ευρωπαϊκής Ένωσης το φαινομενικά παράδοξο να ευημερούν οι αγρότες περισσότερο όταν οι σοδειές τους δεν είναι καλές, και να πλήττονται
4.1 Ζήτηση για Ασφάλιση. Πλήρη κάλυψη.
4. Ζήτηση για Ασφάλιση. Πλήρη κάλυψη. Η αγορά ασφαλιστικών συµφωνιών είναι µία ιδιαίτερη περίπτωση αγοράς δικαιωµάτων. Αντικείµενο της αγοράς αυτής είναι να δώσει την ευκαιρία µεταβίβασης εισοδήµατος από
ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Y = C + I + G + NX. απάνες Κατανάλωσης από τα νοικοκυριά
ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Συνολική Ζήτηση για εγχώριο προϊόν (ΑΕΠ/GDP) απαρτίζεται από Y = C + I + G + NX απάνες Κατανάλωσης από τα νοικοκυριά Επενδυτικές απάνες από τα νοικοκυριά
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Η ύλη της εργασίας είναι οι ενότητες 5, 6 και 7 από τον Λογισµό µιας Μεταβλητής Η άσκηση αφορά στην έννοια
Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ
8 Παραβολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Παραβολή είναι ο γεωµετρικός τόπος των σηµείων Μ του επιπέδου τα οποία ισαπέχουν από µια σταθερή ευθεία (δ) που λέγεται διευθετούσα της παραβολής και από
Ακαδημαϊκό έτος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Ακαδημαϊκό έτος 2017-2018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής ΛΥΣΕΙΣ ΔΕΥΤΕΡΟΥ ΠΑΚΕΤΟΥ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ 1 Εάν D(p) = 20 2p η
ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ
Ένθετο Κεφάλαιο ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Μικροοικονομική Ε. Σαρτζετάκης 1 Καταναλωτική συμπεριφορά Σκοπός αυτής της διάλεξης είναι να εξετάσουμε τον τρόπο με τον οποίο οι καταναλωτές
Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ
Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 999 Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ Α. Έστω Ρ(x) ένα πολυώνυµο του x και ρ ένας πραγµατικός αριθµός. Αν π(x) είναι το πηλίκο και υ(x) το υπόλοιπο της διαίρεσης του πολυωνύµου
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 2 5/9/2002 Απαντήστε σε μια από τις δυο ερωτήσεις. 3. Να υπολογιστεί η ανταγωνιστική ισορροπία και τα σημεία
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 5/9/00 Απαντήστε σε μια από τις δυο ερωτήσεις. 1.Θεωρουμε οικονομία αποτελούμενη από ένα καταναλωτή, με προτιμήσεις U log+ logx,και περιουσία μόνο μια μονάδα του αγαθού
25. Μία τυπική επιχείρηση που λειτουργεί σε καθεστώς τέλειου ανταγωνισμού, στη μακροχρόνια θέση ισορροπίας της: α. πραγματοποιεί θετικά οικονομικά κέρδη. β. πραγματοποιεί μηδενικά οικονομικά κέρδη. γ.
Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ
1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των
Θεωρία παραγωγού. Μικροοικονομική Θεωρία Ι / Διάλεξη 11 / Φ. Κουραντή 1
Θεωρία παραγωγού Σκοπός: Μεγιστοποίηση κερδών (υπάρχουν κι άλλοι σκοποί, π.χ. ένας μάνατζερ επιδιώκει την μεγιστοποίηση εσόδων κτλ. Τελικά όμως σκοπεύει στην μεγιστοποίηση των κερδών για να μπορέσει να
ΤΕΙ Κρήτης-ΣΔΟ-Τμήμα Λογιστικής Μάθημα: Δημόσια Οικονομική Γραπτή Εξέταση ΧΕ Διδάσκων: Αναστασάκης Ανδρέας
Θέμα 1 ο : Ομάδα Α 1γ, 2β, 3β, 4β, 5α Θέμα 2 ο : Έστω δύο άτομα Α και Β, που καταναλώνουν δύο δημόσια αγαθά, Χ και Μ. Το άτομο Α έχει την συνάρτηση χρησιμότητας U Α = 2X 2 + 0,5Μ 2, το δε άτομο Β έχει
31/05/2017. Κεφάλαιο 32 Ανταλλαγή. Μικροοικονομική. Ανταλλαγή. Ανταλλαγή. Πλάτος = A B. Μια σύγχρονη προσέγγιση
31/05/017 HL R. VRIN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 3 Ανταλλαγή Ανταλλαγή Δύο καταναλωτές, και. Τα αποθέματα των αγαθών τους 1 και είναι w = ( w1, w ) και w = ( w, w ). 1 π.χ.
ΒΡΑΧΥΧΡΟΝΙΑ ΠΕΡΙΟΔΟΣ
ΒΡΑΧΥΧΡΟΝΙΑ ΠΕΡΙΟΔΟΣ 1. Έστω ένας κλάδος όπου nn επιχειρήσεις έχουν την ίδια τεχνολογία. Η συνάρτηση κόστους της κάθε μιας επιχείρησης είναι CC() = 100 + 2. Η συνάρτηση ζήτησης του κλάδου είναι QQ DD =
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 20-202 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Ημερομηνία παράδοσης: Απριλίου 202 Οι
( ) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σηµείωση. 2. Παραδοχή α = Ιδιότητες x. αβ = α = α ( ) x. α β. α : α = α = α
. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Σηµείωση Οι δυνάµεις α του κεφαλαίου έχουν βάση α > 0 και εκθέτη οποιονδήποτε πραγµατικό αριθµό.. Παραδοχή 0 α. Ιδιότητες α + α ( ) α α : α ( ) α α α αβ α β α β α β. Εκθετική
HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση
HL R. VRIN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 32 Ανταλλαγή Ανταλλαγή Δύο καταναλωτές, και. Τα αποθέματα των αγαθών τους 1 και 2 είναι π.χ. 1 2 w = ( w1, w2 ) και w w w w = ( 6,
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 11: Μεγιστοποίηση κέρδους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οικονομικό κέρδος Μια
Εργοδοτικές Εισφορές και Φορολογία στους Εργάτες
Εργοδοτικές Εισφορές και Φορολογία στους Εργάτες Έστω μια οικονομία που αποτελείται από: Δύο καταναλωτές: 1 και. Μία επιχείρηση. Δύο αγαθά: τον ελεύθερο χρόνο Χ (ή: την εργασία ) και το καταναλωτικό αγαθό
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α
ΑΡΧΕΣ ΟΙΟΝΟΜΙΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η
Notes. Notes. Notes. Notes
Αγορές - Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 6 Δεκεμβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Αγορές - 6 Δεκεμβρίου 2012 1 / 26 Ως τώρα, υποθέσαμε ότι οι αγορές είναι ανταγωνιστικές. Μία συνέπεια των
Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 3 η. Αποτελεσματικότητα και Ευημερία
Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 3 η Αποτελεσματικότητα και Ευημερία Ζητήματα που θα εξεταστούν: Πότε και πως επιτυγχάνεται η οικονομική αποτελεσματικότητα Θεωρήματα των οικονομικών της
Af(x) = και Mf(x) = f (x) x
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,
2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ.
Άσκηση. α Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία (,y, Α=(, και Β=(0, β Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο B(0, και έχει κλίση -0.. Να βρεθούν τα σημεία που
ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH»
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΟΥ ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH»
ΜΑΘΗΜΑ 4 Ο. 4.1 Ισορροπία Μονοψωνιακής Επιχείρησης που Χρησιµοποιεί Περισσότερες από µία Μεταβλητές Εισροές
ΜΑΘΗΜΑ 4 Ο 4.1 Ισορροπία Μονοψωνιακής Επιχείρησης που Χρησιµοποιεί Περισσότερες από µία Μεταβλητές Εισροές Εάν οι αγορές των εισροών είναι µονοψωνιακές, οποιαδήποτε µεταβολή στις ποσότητες των παραγωγικών
B τρόπος: μακροχρόνια περίοδος
B τρόπος: μακροχρόνια περίοδος I) min C w w, s.t. f, i i w,w, C II) ma p C Αρχικά λύνουμε το πρόβλημα ελαχιστοποίησης του κόστους (στη μακροχρόνια και βραχυχρόνια περίοδο, Θεωρία Κόστους) και μετά, έχοντας
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΑΛΟΓΗΡΑΤΟΥ Ζ. - ΜΟΝΟΒΑΣΙΛΗΣ Θ. ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ Μεγιστοποίηση εμβαδού με τον περιορισμό της περιμέτρου
ΑΣΚΗΣΕΙΣ. 1η οµάδα. 2. Έστω ο επόµενος πίνακας παραγωγικών δυνατοτήτων: Χ Υ Κόστος. Κόστος ευκαιρίας Ψ Α /3
ΑΣΚΗΣΕΙΣ 1η οµάδα 1. Έστω επιχείρηση που διαθέτει 5 εργάτες. Κάθε εργάτης µπορεί να παράγει 12 µονάδες από το αγαθό Υ. Επιπλέον γνωρίζουµε ότι η ΚΠ είναι γραµµική µε το συνδυασµό X = 45, Y = 24 να είναι
ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 3: Εργαλεία Κανονιστικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Notes. Notes. Notes. Notes. C = p x x 1 + p y y 1. pxx + pyy = 160
Ελαχιστοποίηση κόστους Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 9 Οκτωβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Ελαχιστοποίηση κόστους 9 Οκτωβρίου 2012 1 / 36 Κόστος Το πρόβλημα εύρεσης ενός άριστου καλαθιού