Cap.4 Amplificatoare elementare cu tranzistoare. 2. Scheme de principiu, scheme electrice, scheme echivalente
|
|
- Αγάθη Κυπραίος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 D Amplfatoare elementare N.pea 3 notţe ap.4 Amplfatoare elementare tranztoare 2. Sheme de prnp, heme eletre, heme ehalente Performanţele n amplfator elementar tranztoare P nt determnate de modl de onetare a aetora. - termnal de refernţă - termnal de ntrare de omandă - termnal de eşre de exeţe În hemele reale de amplfatoare e pot întâln orare dntre trtrle fndamentale. rtele de polarzare în.. are a roll de a ara fnţonarea tranztoarelor într-n pnt tat de fnţonare PSF în jrl ăra nt aplate emnalele arale. TP nt araterzate prn parametr de adrpol hrz în onexnea M dar e or fae referr ş la parametr rtl ehalent Gaoletto. * hema de prnp prn are e realzează fnţa dortă de exempl amplfare de tenne, prodere de olaţ, modlare, demodlare, et. * hema eletră ompletă onţne toate elementele fze neeare realzăr fnţe dorte: elemente neeare pentr polarzarea oretă a tranztoarelor, pentr oreţ tate a dname, pentr relaje, et. * hemele ehalente pn în edenţă anmte performanţe ale rtl m ar f omportarea în.., omportarea în rem dnam, araterta de freenţă, de zomot, et. xempl: hemă elementară de amplfare n tranztor, onetat emtorl omn, omandat n enerator de emnal o anmtă reztenţă de enerator ş are lrează pe o arnă dată. Se pne în edenţă modl de realzare a hemelor ehalente pentr.. ş pentr rem dnam. Feare mărme eletră are o omponentă ontnă pete are e prapne o omponentă arală a ăre aloare maxmă ete atfel înât ă n modfe omportarea în.. a rtl ondţe de emnal mnm neeară pentr o omportare lnară a dpoztelor ate.
2 D Amplfatoare elementare N.pea 4 notţe apatăţle ş realzează plarea la amplfator a eneratorl de emnal repet a reztenţe de arnă. - împedă treerea rentl ontn pre eneratorl de emnal a pre arnă în aşa fel înât aetea ă n nflenţeze PSF-l tranztorl; - ară treerea emnalelor arale; e a ondera ă reatanţele aetor apatăţ la freenţele de lr ale emnalelor nt foarte m nle în omparaţe reztenţele are apar în ere ornele lor; pe aete apatăţ e a tal o tenne ontnă, dar prn ele n a rla deât rentl aral. * lele l Krhhoff pe ohr ş în nodr ş leătrle dntre renţ ş tennle tranztorl: e e
3 D Amplfatoare elementare N.pea notţe 5,, Se prelrează relaţle: e e e e În aenţa emnall aral 0, în rt e taleşte nma n rem de rent ontn: 0 are araterzează omportarea rtl în rent ontn ş permt determnarea PSF. Se oeră ă aete relaţ orepnd n rt ehalent în..
4 D Amplfatoare elementare N.pea 6 notţe elă: aet rt ehalent de rent ontn poate f ontrt dret dn hema eletră prn onderarea apatăţlor a o întrerpere de rt prn ele n rlă rent ontn. * determnarea PSF:,, * metoda analtă - arater profnd nelnar al elor doă aratert tate ale tranztorl; * metoda rafo-analtă: ** pentr rtl de ntrare: - araterta tată de ntrare a tranztorl în onexnea are o nflenţă mă. - eaţa orepnzătoare dreapte de fnţonare tată în planl,. - la ntereţa elor doă re e oţne pntl tat de fnţonare în planl,, M, de oordonate,. ** pentr rtl de eşre: - aratertle tate ale tranztorl în onexnea aând a parametr rentl de ază. - dreapta de fnţonare tată în planl, a tranztorl. - la ntereţa dntre aeată dreaptă ş araterta orepnzătoare rentl de ază daă n ete traată ea poate f
5 D Amplfatoare elementare N.pea 7 notţe dedă prn nterpolare e oţne pntl tat de fnţonare M în planl, de oordonate,. În aet fel, oordonatele omplete ale PSF or f: M,,,. Oeraţe: e poate folo ş o metodă terată pentr determnarea oordonatelor PSF de oe, ete atfăătoare o prmă teraţe aând în edere dpera parametrlor tranztorl ş toleranţele omponentelor pae de rt ş a relor de almentare. a e prepne 0,6V pentr tranztoarele dn l, a 0,3V pentr tranztoarele dn erman; rezltă rentl de ază: aratertle de eşre ale tranztorl e aprează prn relaţa β 0 ş e determnă rentl de oletor al tranztorl: β 0 β 0 ete n parametr de atalo al tranztorl ş dpera aeta are nflenţă foarte mare apra oordonatelor PSF, pentr aet rt de polarzare foarte mpl. tennea rezltă: -.
6 D Amplfatoare elementare N.pea notţe 8 Oeraţe: ndferent de metoda folotă determnată de modell tranztorl pentr rent ontn, e no oordonatele PSF în peal rentl de oletor ş, a rmare, e pot determna parametr de rem aral a tranztorl pentr orare dntre modelele de.a. ale TP. e determnă tennle ontne are e înară apatăţle de plare ş : V 6 0, În rem dnam la emnale m ş de joaă freenţă, e ad relaţle orepnzătoare reml de.. dn eaţle repete enerale: e e 0 0 e e - e expltează renţ repet dn prmele doă relaţ ş e înloe în ltmele relaţ; e e,, e e e e - e ntrod relaţle dntre renţ ş tennle tranztorl are defne omportarea în rem dnam a rtl. Aete eaţ pot f deenate ş forma n rt ehalent pentr rem dnam al rtl:
7 D Amplfatoare elementare N.pea 9 notţe Aet rt ehalent pentr rem dnam poate f ontrt dret dn hema eletră folond rmătoarele rel: - rele de rent ontn nt onderate rtrt în rem dnam; - apatăţle de plare ş de deplare nt onderate rtrt la freenţele de lr ale emnall. Performanţele de rem dnam ale rtl analzat pot f dede pe aza rtl ehalent oţnt în are TP poate f araterzat prn ore model de rem dnam modell arly, Gaoletto, parametr hrz, a alte modele. Pentr determnarea performanţelor în rem dnam e foloe fe relaţle enerale de rezolare a n rt eletron, dponle prn metodele eletrotehne, fe olţ de tp eletron prezentate în pararafele rmătoare. ltma relaţe e poate re ş forma: e ş ea reprezntă eaţa ne drepte în planl denmtă dreapta de fnţonare dnamă, ş are ete reprezentată prn ementl de dreaptă A are are o pantă dfertă de ea a drepte de fnţonare tate. Se oeră ă dreapta de fnţonare dnamă ete, de fapt, n ement de dreaptă, are tree metr prn PSF ş are o lnme fntă, determnată de ampltdnea emnall prep nodal.,
8 D Amplfatoare elementare N.pea 10 notţe Dreapta de fnţonare dnamă poate ă aă o pantă ma mă deât a ele tate, eală aeata daă reztenţa de arnă ete har, repet ma mare în azl în are oletorl tranztorl amplfator ete plat prn tranformator la ra de tenne de almentare. - tat, dreapta de fnţonare ete determnată de reztenţa ere a prmarl foarte mă fnd aproape ertală; - dreapta de fnţonare dnamă ete determnată de reztenţa refletată de endar în prmar, de aloare ma mare. Dreapta de fnţonare dnamă permte determnarea ampltdn maxme a emnall aral e poate f oţnt la eşrea amplfatorl atfel înât elementele ate ă n ntre în zonele de fnţonare profnd nelnare.
CONEXIUNILE FUNDAMENTALE ALE TRANZISTORULUI BIPOLAR
LCAEA N.4 CONEXINILE FNDAMENTALE ALE TANISTOLI BIPOLA Scpul lucrăr măurarea perrmanțelr amplcatarelr elementare realzate cu tranztare bplare în cele tre cnexun undamentale (bază la maă, emtr la maă, clectr
Capitolul 7 7. AMPLIFICATOARE ELECTRONICE
Captoll 7 7. MPIFICTORE EECTRONICE 7.. Parametr amplfcatoarelor Un amplfcator este n crct electronc care măreşte pterea n semnal electrc, lăsând nescmbată varaţa l în tmp. Pentr a ptea îndepln această
Capitolul 4 Amplificatoare elementare
Captolul 4 mplfcatoare elementare 4.. Etaje de amplfcare cu un tranzstor 4... Etajul sursa comuna L g m ( GS GS L // r ds ) m ( r ) g // L ds // r o L ds 4... Etajul drena comuna g g s m s m s m o g //
i1b Intrerupere i 2a În final prin suprapunerea efectelor se obţin valorile totale ale curenţilor prin rezistenţe:
Teorema sperpozţe exempl de calcl Să se determne crenţ prn crctl dn fra 4a a b 0 S 0 ntrerpere a Scrtcrct b S a) b) c) F 4 Exempl de aplcare a teoreme sperpozţe: a) rctl complet; b) rctl c srsa de crent
Curs 10 TRANZISTOARE. TRANZISTOARE BIPOLARE
Curs 10 TRANZISTOARE. TRANZISTOARE IPOLARE CUPRINS Tranzstoare Clasfcare Prncpu de funcțonare ș regun de funcțonare Utlzarea tranzstorulu de tp n. Caracterstc de transfer Utlzarea tranzstorulu de tp p.
Modele de determinare a permitivitatii electrice a materialelor nanocompozite
Modele de determnare a permtvtat electrce a materalelor nanocompozte 1. Scopl lcrar Scopl general al aceste lcrar este de a determna permtvtatea echvalenta a materalelor nanocompozte c mpltr anorgance
Etaj de amplificare elementar cu tranzistor bipolar în conexiune emitor comun
taj de amplfcare elementar cu tranztor bpolar în conexune emtor comun rcutul echalent natural π - hbrd (Gacoletto)... taj de polarzare cu TB n conexune emtor comun...2 Analza de punct tatc de functonare...2
Amplificatoare. A v. Simbolul unui amplificator cu terminale distincte pentru porturile de intrare si de iesire
mplfcatare Smblul unu amplfcatr cu termnale dstncte pentru prturle de ntrare s de esre mplfcatr cu un termnal cmun (masa) pentru prturle de ntrare s de esre (CZU UZU) Cnectarea unu amplfcatr ntre sursa
Analiza în regim dinamic a schemelor electronice cu reacţie Eugenie Posdărăscu - DCE SEM 6 electronica.geniu.ro
nlz în regm dnmc scemelr electrnce c recţe Egene Psdărăsc - DCE EM 6 electrnc.gen.r emnr 6 6 NLI ÎN EGIM DINMIC CHEMELO ELECTONICE C ECŢIE 6. Nţn teretce generle de ter trprţlr H s ntrre eşre Fg. 6. În
Structura circuitelor digitale N. Cupcea
Strtra rtlor dgtal N. pa notţ rt log dn fala L * tza a a ar pt. L BP: - lnara t altfl dât la SL fnţonar în AN dar nll log ă n dpndă d paratr BP ---> dhdra ş înhdra n BP prn ar rlă n rnt d aloar przată
Factorul de amplificare (amplificarea) se introduce cu expresiile:
. TE EETNE FNDAMENTAE. Amplfcatoare.. ntrodcere. Generaltăţ Prn amplfcare înţelegem procesl de mărre a valorlor nstantanee ale ne pter sa ale alte mărm, făra a modfca modl de varaţe a mărm în tmp ş folosnd
5.1 Realizarea filtrelor cu răspuns finit la impuls (RFI) Filtrul caracterizat prin: 5. STRUCTURI DE FILTRE NUMERICE. 5.1.
5. STRUCTURI D FILTR UMRIC 5. Realzarea ltrelor cu răspuns nt la mpuls (RFI) Fltrul caracterzat prn: ( z ) = - a z = 5.. Forma drectă - - yn= axn ( ) = Un ltru cu o asemenea structură este uneor numt ltru
CAPITOLUL 6 TRADUCTOARE DE VITEZĂ
CAPOLUL 6 ADUCOAE DE VEZĂ Vteza este o mărme vetorală. Deoaree dreţa de deplasare a orpulu în mşare este în majortatea azurlor fxată, tradutoarele de vteză dau un semnal are reprezntă modulul vteze ş eventual,
CAP. 3 TRANZISTOARE BIPOLARE
AP. 3 TANZSTA PLA 3. NłUN FUNDAMNTAL Tranzstorl bpolar (T), este realzat dntr-n crstal semcondctor comps dn tre regn dopate c mprtăń de tp dfert, care se scced în ordnea: p-n-p sa n-p-n ş care satsfac
Tehnica producerii semnalelor cu modulaţie liniară
ehna proder semnalelor modlaţe lnară Performanţele ehpamenelor folose penr proderea semnalelor ML, denme pe sr modlaoare, sn deermnae în mare măsră de operaorl de prods; ma ml, paramer realzaţ de aes blo
LUCRAREA 1 AMPLIFICATORUL DIFERENȚIAL MODULUL MCM5/EV
LUCRAREA 1 AMPLIFICATORUL DIFERENȚIAL MODULUL MCM5/EV 1.1 INTRODUCERE Amplfcatorul dferențal (AD) este întâlnt ca bloc de ntrare într-o mare aretate de crcute analogce: amplfcatoare operațonale, comparatoare,
Lucrarea Nr. 6 Reacţia negativă paralel-paralel
Lucrre Nr. 6 ecţ netă prlel-prlel Crcutul electrc pentru studul AN pp: Schem de semnl mc AN pp: Fur. Schem electrcă pentru studul AN pp Fur 2. Schem de semnl mc crcutulu pentru studul AN pp Intern cudrpl:
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic
Platfrmă de e-learnng ș crrclă e-cntent pentr înățământl sperr tehnc Elemente de Electrncă nalgcă 5. Strctr nersare c O STUCTUI INVESOE CU O SCHEM DE PINCIPIU CU O IDEL Schema de prncp a n amplfcatr nersr
Couplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
Forêts aléatoires : aspects théoriques, sélection de variables et applications
Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.
CARACTERISTICILE STATICE ALE TRANZISTORULUI BIPOLAR
aracterstcle statce ale tranzstorulu bpolar P a g n a 19 LURARA nr. 3 ARATRISTIIL STATI AL TRANZISTORULUI IPOLAR Scopul lucrăr - Rdcarea caracterstclor statce ale tranzstorulu bpolar în conexunle emtorcomun
def def punctul ( x, y )0R 2 de coordonate x = b a
Cetrul de reutte rl-mhl Zhr CENTE E GEUTTE Î prtă este evoe să se luleze r plălor ple de ee vom det plăle ple u mulńm Ştm ă ms este o măsură ttăń de mtere dtr-u orp e ms repreztă o uńe m re soză eăre plă
Numere complexe. a numerelor complexe z b b arg z.
Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea
STUDIUL EXPERIMENTAL AL CIRCUITELOR CU REZISTOARE NELINIARE
STDL EXPERMENTAL AL CRCTELOR C REZSTOARE NELNARE 1. Brevar teoretc Rezstoarele snt elemente de crct dpolare a căror fncţonare se bazează pe transformarea energe electromagnetce prmtă pe la borne în căldră
T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :
Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet
ELECTRONICĂ ANALOGICĂ
dran Vrgl ĂN ELETONĂ NLOGĂ Dspoztve ş aplcaţ prns Edtra nverstăţ Translvana dn Braşov 00 00 EDT NVESTĂŢ TNSLVN DN BŞOV dresa: 50009 Braşov, B-dl l Man 4 Tel:068 476050 Fax: 068 47605 E-mal : edtra@ntbv.ro
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
ACI sécurité informatique KAA (Key Authentification Ambient)
ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,
3.1 CIRCUITE DE POLARIZARE
3. D POLAZA rctele de polarzare asgră fncńonarea tranzstorl în pnctl statc de fncńonare dort. Pnctl statc de fncńonare (psf) reprezntă valoarea ărlor electrce dn tranzstor, ăsrate în crent contn. Fnd n
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Transformata Laplace
Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
Capitolul 4 Amplificatoare cu tranzistoare
vu Garel văăne, Florn Ma Tufescu, lectroncă - roleme atolul 4 mlfcatoare cu tranzstoare 4. În montajul n fg. 4 se rezntă un etaj e amlfcare în montaj ază comună realzat cu un tranzstor cu slcu avân arametr:
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
Analiza bivariata a datelor
Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%
3. TRANZISTORUL BIPOLAR
3.. NOŢIUNI INTRODUCTIV 3. TRANZISTORUL BIPOLAR 3... Defnţe Tranzstorul bpolar este un dspozt electronc act cu tre termnale: emtorul (), baza (B) ş colectorul (C). Aceste tre termnale sunt plasate pe tre
Prelucrarea semnalelor
Prelcrarea emnalelor Facltatea de Electronica i Telecomnicatii, UPT http://hannon.etc.pt.ro/teaching/p/ Tranformarea aplace http://hannon.etc.pt.ro/teaching/p/cap7.pdf Pierre Simon aplace Regim permanent
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
DETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE PRIN METODA PENDULULUI FIZIC
UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ BN - 1 B DETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE PRIN METODA PENDULULUI FIZIC 004-005 DETERMINAREA ACCELERAŢIEI
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
( ) 2. TRANSMITEREA SEMNALELOR PE LINII Transferul maxim de putere. Z g Z sarc U g
TRANSMITEREA SEMNALELOR PE LINII Tanfel maxm de ptee De mlte dm ca tanfel de ptee de la ă de enee (eneat de emnal) căte n cnmat (nă) ă e ealzeze c andament maxm. Se pne că na ete adaptată la eneat. În
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure
CIRCUITE ELECTRONICE FUNDAMENTALE Inginerie Electronică şi Telecomunicaţii, sem. 4. Laurenţiu Frangu
CIRCUITE ELECTRONICE FUNDAMENTALE Ingnere Electrncă ş Telecmuncaţ, em. 4 Laurenţu Frangu Organzatrce 42 C, 14 S Ore de muncă ndvduală 50 Credte 4 Precedenţe: Tera crcutelr electrce Examnare: teză (e acceptă
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Fig Conexiunea serie Fig Circuit R 1 C 1 R 2 C 2
Fg. 3.3.6 Axa pulaţe agraelor Boe Oervaţe: Deş axa acelor ete graată upă valorle lu lgω, e oşnueşte ca ea ă fe notată cu valorle lu ω. Pe oronata c.a.p. e reprezntă valorle apltun etalonate în ecel B.
Durata medie de studiu individual pentru această prezentare este de circa 120 de minute.
Semnar 6 5. Caracterstc geometrce la suprafeţe plane I 5. Introducere Presupunând cunoscute mecansmele de evaluare a stăr de efortur la nvelul une structur studate (calcul reacţun, trasare dagrame de efortur),
2. ANALIZA ÎN FRECVENŢĂ A SISTEMELOR ELECTRICE ŞI ELECTRONICE
. ANALIZA ÎN FRECVENŢĂ A SISTEMELOR ELECTRICE ŞI ELECTRONICE În paragrafele anterare s-au prezentat metde de analză a cmprtăr SAI în (dmenul tmp. Punctul cmun al metdelr prezentate este determnarea funcţe
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Legea vitezei se scrie în acest caz: v t v gt
MIŞCĂRI ÎN CÂMP GRAVITAŢIONAL A. Aruncarea pe vertcală, de jos în sus Aruncarea pe vertcală în sus reprezntă un caz partcular de mşcare rectlne unform varată. Mşcarea se realzează pe o snură axă Oy. Pentru
Olimpiada de Fizică Etapa naţională- ARAD 2011 TEORIE Barem. Subiect Parţial Punctaj 1. Barem subiect 1 10 A. Condiţiile de echilibru pentru pârghii:
Olipiaa e Fiziă Etapa naţională- ARAD Pagina in 6 Subiet Parţial Puntaj. subiet A. Coniţiile e ehilibru pentru pârghii: =( + 4), 4e=f, O ( + + 4)a=b a b e f + 4 = f 4= e 4,5 4 4 4 =, =8g f + e =4g a =
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
VII. Teorema lui Dirichlet
VII Teorem l Drclet Teorem 7 (l Drclet: Orce rogree rtmetcă nfntă c termen nmere ntrle ş c rţ rmă c rml termen conţne o nfntte de nmere rme [8] [7] Dcă notăm c r Ν * rţ rogree tnc teorem l Drclet e ennţă
Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.
PRELUCRAREA DATELOR EXPERIMENTALE
PRELUCRAREA DATELOR EXPERIMETALE I. OŢIUI DE CALCULUL ERORILOR Orce măsurare epermentală este afectată de eror. După cauza care le produce, acestea se pot împărţ în tre categor: eror sstematce, eror întâmplătoare
ELECTROTEHNICĂ. partea a II-a. - Lucrări de laborator -
Prof. dr. ng. Vasle Mrcea Popa ELECTOTEHNICĂ partea a II-a - Lucrăr de laborator - Sbu 007 CAP. 6 LCĂI DE LABOATO Lucrarea nr. 7 - Conexunea consumatorlor trfazaţ în stea I. Partea teoretcă n sstem de
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
1.6 TRANZISTORUL BIPOLAR DE PUTERE.
1.6 TRANZISTORUL IPOLAR DE PUTERE. Tranzstorul bpolar de putere dervă dn tranzstorul obşnut de semnal, prn mărrea capactăţ în curent ş tensune. El este abrevat prn nţalele JT, provennd de la denumrea anglo-saxonă
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
ΤΟ ΟΜΟΓΕΝΕΣ MΑΡΚΟΒΙΑΝΟ ΣΥΣΤΗΜΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΜΕ ΠΕΠΕΡΑΣΜΕΝΗ ΧΩΡΗΤΙΚΟΤΗΤΑ ΣΕ ΜΙΑ ΚΑΤΑΣΤΑΣΗ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 2 ου Πανελληνίου Συνεδρίου Στατιστικής (27) σελ 3- ΤΟ ΟΜΟΓΕΝΕΣ MΑΡΚΟΒΙΑΝΟ ΣΥΣΤΗΜΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΜΕ ΠΕΠΕΡΑΣΜΕΝΗ ΧΩΡΗΤΙΚΟΤΗΤΑ ΣΕ ΜΙΑ ΚΑΤΑΣΤΑΣΗ Γ Βασιλειάδης Γ Τσακλίδης
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
Parametrii canalelor radio ce influenţează transmisia semnalelor numerice
Parametr analelor rado e nfluenţează transmsa semnalelor numere Transmsle pe anale rado se pot împărţ în transms are au el puţn un post mobl ş în transms e au lo între postur fxe.. Atenuarea de propagare
DETERMINAREA COEFICIENTULUI DE COMPRESIBILITATE ȘI A MODULULUI DE ELASTICITATE PENTRU LICHIDE
Lucrarea DETERMINAREA COEFICIENTULUI DE COMPRESIBILITATE ȘI A MODULULUI DE ELASTICITATE PENTRU LICHIDE. Consderaț teoretce Una dntre caracterstcle defntor ale fludelor este capactatea acestora de a sufer
EVALUAREA NECESARULUI DE CǍLDURǍ PENTRU ÎNCǍLZIRE ŞI PREPARARE APǍ CALDǍ DE CONSUM
EALUAREA NECESARULUI DE CǍLDURǍ PENTRU ÎNCǍLZIRE ŞI PREPARARE APǍ CALDǍ DE CONSUM Neesarul de ăldură pentru asgurarea parametrlor de onfort term în adrul unu obetv (lădre) uprnde, în general, neesarul
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
CAP. 2. NOŢIUNI DESPRE AERUL UMED ŞI USCAT Proprietăţile fizice ale aerului Compoziţia aerului
CAP.. NOŢIUNI DESPRE AERUL UED ŞI USCAT... 5.. Propretăţle fzce ale aerulu... 5... Compozţa aerulu... 5... Temperatura, presunea ş greutatea specfcă... 5.. Aerul umed... 6... Temperatura... 7... Umdtatea...
II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.
II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate
Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs
Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Microscopie photothermique et endommagement laser
Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
Lucrarea Nr. 5 Comportarea cascodei EC-BC în domeniul frecvenţelor înalte
Lucaea N. 5 opoaea cascode E-B în doenul fecenţelo înale Scopul lucă - edenţeea cauzelo ce deenă copoaea la HF a cascode E-B; - efcaea coespondenţe dne ezulaele obţnue expeenal penu la supeoaă a benz acesu
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.
Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor
4.1. CELE MAI UTILIZATE TIPURI DE MODELE DE CIRCUIT
Moelarea temelor electromecance 4. MODELAREA MAŞINILOR ELECTRICE ROTATIVE Moelarea maşnlor electrce ete foarte mportantă, eoarece permte etermnarea prn calcul a caractertclor maşn fără a o contru au încerca.
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
CAPITOTUL IV. CARACTERISTICI GEOMETRICE ALE FIBRELOR TEXTILE
Dmensunle ş forma fbrelor textle 45 CAPITOTU IV. CARACTERISTICI GEOMETRICE AE FIBREOR TEXTIE IV.1. DIMENSIUNEA TRANSVERSAĂ IV.1.1. Consderaţ generale Dmensunea transversală a fbrelor textle consttue unul
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
1. INTRODUCERE. SEMNALE ŞI SISTEME DISCRETE ÎN TIMP
. ITRODUCERE. SEMALE ŞI SISTEME DISCRETE Î TIMP. Semnale dscrete în tmp Prelucrarea numercă a semnalelor analogce a devent o practcă frecvent întâlntă. Aceasta presupune două operaţ: - eşantonarea la anumte
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs