STUDIUL EXPERIMENTAL AL CIRCUITELOR CU REZISTOARE NELINIARE
|
|
- Ζένια Μπλέτσας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 STDL EXPERMENTAL AL CRCTELOR C REZSTOARE NELNARE 1. Brevar teoretc Rezstoarele snt elemente de crct dpolare a căror fncţonare se bazează pe transformarea energe electromagnetce prmtă pe la borne în căldră pe baza efectl electrocalorc (Jole). Comportarea lor în crctele electrce este descrsă de caracterstca ndvdală tensne-crent = () sa = (), (1) nde mărmle ş se încadrează între anmte lmte mpse de domenl de fncţonare propr fecăr rezstor în parte: max max Dacă fncţa (1) este lnară, atnc rezstorl descrs de ea este lnar (smbol grafc fg. 1, în caz contrar acesta este nelnar (smbol grafc fg. 1. Mărmle ş se notează c majscle R dacă snt nvarable în tmp (regm de crent contn) sa dacă reprezntă valorle efectve ale n regm permanent snsodal (regm de crent alternatv). Parametrl care caracterzează orce rezstor lnar sa nelnar este rezstenţa electrcă. Fg. 1 Pentr rezstoarele lnare se notează zal c R ş reprezntă factorl de proporţonaltate între tensne ş crent. Pentr rezstoarele nelnare, într-n pnct de fncţonare (M) de pe caracterstca nelnară se defnesc (fg. 2): rezstenţa statcă - R s M Rs = = tgα (3) β α Fg. 2 M Rezstenţa statcă este totdeana poztvă. rezstenţa dnamcă - R d R (2) d lm = tgβ (4) d d = = M Rezstenţa dnamcă poate f poztvă sa negatvă. ntatea de măsră pentr rezstenţa electrcă este 1 Ohm [Ω]. Stdl crctelor c elemente nelnare se bazează pe aplcarea teoremelor l Krchhoff. Pentr conexnea sere a doă (sa ma mlte) rezstoare nelnare c caracterstc cnoscte (fg. 3, parcrse de acelaş crent, caracterstca globală se poate obţne pe baza teoreme a -a a l Krchhoff: 1
2 = 1 + 2, (5) relaţe valablă pentr orce valoare a crentl. Relaţa (5) se poate aplca prn însmarea tensnlor pe cale grafcă, pornnd de la caracterstcle rezstoarelor componente (fg. 3. globală R N2 R N Fg. 3 Pentr conexnea paralel a doă (sa ma mlte) rezstoare nelnare (fg. 4 care a la borne aceeaş tensne caracterstca globală se poate obţne pe baza teoreme a l Krchhoff: = 1 + 2, (6) relaţe valablă pentr orce valoare a tensn. Relaţa (6) se poate aplca prn însmarea crenţlor pe cale grafcă, pornnd de la caracterstcle rezstoarelor componente (fg. 4. Car. R N2 Car. globală 1 2 R N2 2 1 Fg. 4 = Lnarzarea ne caracterstc nelnare se poate realza prn nterconectarea elementl a căr caracterstcă se doreşte lnarzată (R N ) c n alt element nelnar c o caracterstcă convenablă (R N ) astfel încât caracterstca globală sa fe lnară. Conexnea poate f de tp sere (fg. 5) sa de tp paralel. 2
3 globală R N R N N N N N R N R N Fg Chestn de stdat 2.1. Stdl expermental al n crct c doă rezstoare nelnare conectate în sere: Constrrea caracterstclor tensne-crent ndvdale ale rezstoarelor nelnare; Trasarea grafo-analtcă a caracterstc globale a crctl dpolar format prn conectarea sere a rezstoarelor nelnare Stdl expermental al n crct c doă rezstoare nelnare conectate în paralel: Constrrea caracterstclor tensne-crent ndvdale ale rezstoarelor nelnare; Trasarea grafo-analtcă a caracterstc globale a crctl dpolar format prn conectarea paralel a rezstoarelor nelnare Stdl expermental al lnarzăr caracterstc n rezstor nelnar prn însererea c n rezstor nelnar axlar. 3. Scheme de lcr ş aparate tlzate 3.1. Pentr stdl expermental al n crct c doă rezstoare nelnare conectate în sere se tlzează montajl dn fg. 6. ATR V 1 V 2 Almentare 22V, 5Hz A R N2 Fg Pentr stdl expermental al n crct c doă rezstoare nelnare conectate în paralel se tlzează montajl dn fg. 7. 3
4 ATR A 1 Almentare 22V, 5Hz V A 1 R N2 Fg Pentr stdl expermental al lnarzăr caracterstc n rezstor nelnar prn însererea c n rezstor nelnar axlar se tlzează montajl dn fg. 8. ATR V R NT Almentare 22V, 5Hz A V R N R L Fg. 8 Elementele montajelor fg. 6, fg. 7 ş fg. 8 snt: ATR atotransformator reglabl 22V / -24V; 8A; V 1, V 2, V, V voltmetr feromagnetc; domen de măsrare 12V; 24V; A, A 1, A 2 ampermetr feromagnetc; domen de măsrare,3a;,6a;, R N2 becr c ncandescenţă c pter nomnale dferte (spre exempl P N1 =4W, P N2 =75W) tlzate ca rezstoare nelnare; N1 = N2 =22V; R N rezstor nelnar axlar, comps dn doă elemente: R NT rezstor nelnar c trt; R L rezstor lnar tlzat pentr adaptarea caracterstc rezstorl R NT. 4. Modl de lcr 4.1. Pentr stdl expermental al n crct c doă rezstoare nelnare conectate în sere se parcrg rmătoarele etape: Procedel expermental: Se realzează montajl dn fg. 6; Se reglează crsorl atotransformatorl pentr tensne de eşre mnmă (pozţa extremă în sens antorar); Se selectează domenle de măsrare ale aparatelor la valorle: 24V pentr voltmetre ş respectv,3a pentr ampermetr; Se cplează tensnea de almentare de 22V, 5 Hz; Se reglează lent crsorl atotransformatorl până la atngerea valor maxme a tensn; cele doă lămp c ncandescenţă se vor aprnde c ntenstăţ dferte; Dacă nl dntre voltmetre ndcă o tensne maxmă sb 12V, atnc se readce crsorl atotansformatorl pentr tensne de eşre mnmă, se decplează tensnea de almentare ş se conectează acel voltmetr pe domenl de măsrare 12V; 4
5 Se cplează dn no tensnea de almentare de 22V, 5 Hz; Se reglează lent crsorl atotransformatorl rmărnd-se atngerea valorlor de crent ndcate în tabell 1; se completează în acelaş tabel valorle corespnzătoare ale tensnlor 1 ş 2 ; se recomandă înscrerea în tabel a valorlor în dvzn, rmând ca lteror să se înscre valorle calclate în ntăţ ale mărmlor electrce, fncţe de constantele aparatelor; Se reglează crsorl atotransformatorl pentr tensne de eşre mnmă ş se decplează tensnea de almentare Prelcrarea datelor: Se calclează tensnea () la bornele grpl de rezstoare nelnare înserate c relaţa (5); valorle calclate se înscr în tabell 1; Se reprezntă grafc caracterstcle 1 (), 2 () ş (); reprezentarea se face pe hârte mlmetrcă, c alegerea convenablă a scărlor astfel încât să se încadreze într-n format de dmensn rezonable; Se reprezntă pe acelaş grafc caracterstca globală () obţntă prn însmarea grafcă dpă tensne a caracterstclor ndvdale 1 (), ş 2 () Pentr stdl expermental al n crct c doă rezstoare nelnare conectate în paralel se parcrg rmătoarele etape: Procedel expermental: Se realzează montajl dn fg. 7; Se reglează crsorl atotransformatorl pentr tensne de eşre mnmă (pozţa extremă în sens antorar); Se selectează domenle de măsrare ale aparatelor la valorle: 24V pentr voltmetr ş respectv,3a pentr ampermetre; Se cplează tensnea de almentare de 22V, 5 Hz; Se reglează lent crsorl atotransformatorl rmărnd-se atngerea valorlor de tensne ndcate în tabell1; se completează în acelaş tabel valorle corespnzătoare ale crenţlor 1 ş 2 ; se recomandă înscrerea în tabel a valorlor în dvzn, rmând ca lteror să se înscre valorle calclate în ntăţ ale mărmlor electrce; Se reglează crsorl atotransformatorl pentr tensne de eşre mnmă ş se decplează tensnea de almentare Prelcrarea datelor: Se calclează crentl () corespnzător grpl de rezstoare nelnare c relaţa (6); valorle calclate se înscr în tabell 2; Se reprezntă grafc caracterstcle 1 (), 2 () ş (); reprezentarea se face pe hârte mlmetrcă, c alegerea convenablă a scărlor astfel încât să se încadreze într-n format de dmensn rezonable; Se reprezntă pe acelaş grafc caracterstca globală () obţntă prn însmarea grafcă dpă crent a caracterstclor ndvdale 1 () ş 2 () Pentr stdl expermental al lnarzăr caracterstc n rezstor nelnar prn însererea c n rezstor nelnar axlar se parcrg rmătoarele etape: Procedel expermental: Se realzează montajl dn fg. 8; Se reglează crsorl atotransformatorl pentr tensne de eşre mnmă (pozţa extremă în sens antorar); 5
6 Se selectează domenle de măsrare ale aparatelor la valorle: 24V pentr voltmetrl V, 12V pentr voltmetrl V, ş respectv,3a pentr ampermetr; Se cplează tensnea de almentare de 22V, 5 Hz; Se reglează lent crsorl atotransformatorl rmărnd-se atngerea valorlor de crent ndcate în tabell3; se completează în acelaş tabel valorle corespnzătoare ale tensnlor ş ; se recomandă înscrerea în tabel a valorlor în dvzn, rmând ca lteror să se calcleze valorle în ntăţ ale mărmlor electrce; Se reglează crsorl atotransformatorl pentr tensne de eşre mnmă ş se decplează tensnea de almentare Prelcrarea datelor: Se reprezntă grafc caracterstcle () pentr rezstorl axlar R N ş caracterstca globală lnarzată (); reprezentarea se face pe hârte mlmetrcă, c alegerea convenablă a scărlor astfel încât să se încadreze într-n format A6; Pe acelaş grafc se reprezntă ş caracterstca 1 () pe baza datelor dn tabell 1 (pentr rezstorl ) Se reprezntă pe acelaş grafc caracterstca globală lnarzată () obţntă prn însmarea grafcă dpă tensne a caracterstclor ndvdale 1 (), ş (). 5. Tabele de date Tabell 1 Nr. 1 2 crt. (K V1 = V/dv) (K V2 = V/dv) [dv] [V] [dv] [V] [V] Observaţ Tabell 2 Nr. crt [V] 1 2 Observaţ 6
7 Tabell 3 Nr. crt (K V = V/dv) (K V = V/dv) [dv] [V] [dv] [V] Observaţ Bblografe [1] S. Pşcaş,. Fetţă, M. Badea, D. Topan ş.a., Bazele electrotehnc. Lcrăr de laborator, Reprografa nverstăţ dn Craova, [2] A. Tmotn, V. Hortopan, A. frm, M. Preda, Lecţ de Bazele electrotehnc, Edtra Ddactcă ş Pedagogcă, Bcreşt, 197. [3] S. Pasăre, Std de electrotehncă, Edtra nfomed, Craova, [4] D. Topan, L. Mandache, Metode de analză în crcte electrce complexe, Edtra nverstara, Craova, 22. Facltatea de Electrotehncă dn Craova 7
Capitolul 7 7. AMPLIFICATOARE ELECTRONICE
Captoll 7 7. MPIFICTORE EECTRONICE 7.. Parametr amplfcatoarelor Un amplfcator este n crct electronc care măreşte pterea n semnal electrc, lăsând nescmbată varaţa l în tmp. Pentr a ptea îndepln această
3.1 CIRCUITE DE POLARIZARE
3. D POLAZA rctele de polarzare asgră fncńonarea tranzstorl în pnctl statc de fncńonare dort. Pnctl statc de fncńonare (psf) reprezntă valoarea ărlor electrce dn tranzstor, ăsrate în crent contn. Fnd n
CAP. 3 TRANZISTOARE BIPOLARE
AP. 3 TANZSTA PLA 3. NłUN FUNDAMNTAL Tranzstorl bpolar (T), este realzat dntr-n crstal semcondctor comps dn tre regn dopate c mprtăń de tp dfert, care se scced în ordnea: p-n-p sa n-p-n ş care satsfac
ELECTRONICĂ ANALOGICĂ
dran Vrgl ĂN ELETONĂ NLOGĂ Dspoztve ş aplcaţ prns Edtra nverstăţ Translvana dn Braşov 00 00 EDT NVESTĂŢ TNSLVN DN BŞOV dresa: 50009 Braşov, B-dl l Man 4 Tel:068 476050 Fax: 068 47605 E-mal : edtra@ntbv.ro
Factorul de amplificare (amplificarea) se introduce cu expresiile:
. TE EETNE FNDAMENTAE. Amplfcatoare.. ntrodcere. Generaltăţ Prn amplfcare înţelegem procesl de mărre a valorlor nstantanee ale ne pter sa ale alte mărm, făra a modfca modl de varaţe a mărm în tmp ş folosnd
Modele de determinare a permitivitatii electrice a materialelor nanocompozite
Modele de determnare a permtvtat electrce a materalelor nanocompozte 1. Scopl lcrar Scopl general al aceste lcrar este de a determna permtvtatea echvalenta a materalelor nanocompozte c mpltr anorgance
i1b Intrerupere i 2a În final prin suprapunerea efectelor se obţin valorile totale ale curenţilor prin rezistenţe:
Teorema sperpozţe exempl de calcl Să se determne crenţ prn crctl dn fra 4a a b 0 S 0 ntrerpere a Scrtcrct b S a) b) c) F 4 Exempl de aplcare a teoreme sperpozţe: a) rctl complet; b) rctl c srsa de crent
Analiza în regim dinamic a schemelor electronice cu reacţie Eugenie Posdărăscu - DCE SEM 6 electronica.geniu.ro
nlz în regm dnmc scemelr electrnce c recţe Egene Psdărăsc - DCE EM 6 electrnc.gen.r emnr 6 6 NLI ÎN EGIM DINMIC CHEMELO ELECTONICE C ECŢIE 6. Nţn teretce generle de ter trprţlr H s ntrre eşre Fg. 6. În
Bazele Electrotehnicii
Bazele Electrotehnc 4. Elemente eale e crct electrc Danel Ioan Unerstatea Poltehnca n Bcrest PUB - CIEAC/LMN anel@lmn.pb.ro Danel IOAN 4.. Introcere,marm prmtee s erate Prn efnte n crct electrc este o
Curs 10 TRANZISTOARE. TRANZISTOARE BIPOLARE
Curs 10 TRANZISTOARE. TRANZISTOARE IPOLARE CUPRINS Tranzstoare Clasfcare Prncpu de funcțonare ș regun de funcțonare Utlzarea tranzstorulu de tp n. Caracterstc de transfer Utlzarea tranzstorulu de tp p.
Amplificatoare. A v. Simbolul unui amplificator cu terminale distincte pentru porturile de intrare si de iesire
mplfcatare Smblul unu amplfcatr cu termnale dstncte pentru prturle de ntrare s de esre mplfcatr cu un termnal cmun (masa) pentru prturle de ntrare s de esre (CZU UZU) Cnectarea unu amplfcatr ntre sursa
BAZELE TEORETICE ALE INGINERIEI ELECTRICE
DANIEL C. IOAN Unverstatea Poltehnca Bcreşt BAZELE TEORETICE ALE INGINERIEI ELECTRICE Edtra 2000 DANIEL C. IOAN BAZELE TEORETICE ALE INGINERIEI ELECTRICE Referenţ ştnţfc: Conf.dr.ng. Irna Mntean Ş.l. dr.
CARACTERISTICILE STATICE ALE TRANZISTORULUI BIPOLAR
aracterstcle statce ale tranzstorulu bpolar P a g n a 19 LURARA nr. 3 ARATRISTIIL STATI AL TRANZISTORULUI IPOLAR Scopul lucrăr - Rdcarea caracterstclor statce ale tranzstorulu bpolar în conexunle emtorcomun
Capitolul 4 Amplificatoare elementare
Captolul 4 mplfcatoare elementare 4.. Etaje de amplfcare cu un tranzstor 4... Etajul sursa comuna L g m ( GS GS L // r ds ) m ( r ) g // L ds // r o L ds 4... Etajul drena comuna g g s m s m s m o g //
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic
Platfrmă de e-learnng ș crrclă e-cntent pentr înățământl sperr tehnc Elemente de Electrncă nalgcă 5. Strctr nersare c O STUCTUI INVESOE CU O SCHEM DE PINCIPIU CU O IDEL Schema de prncp a n amplfcatr nersr
ELECTROTEHNICĂ. partea a II-a. - Lucrări de laborator -
Prof. dr. ng. Vasle Mrcea Popa ELECTOTEHNICĂ partea a II-a - Lucrăr de laborator - Sbu 007 CAP. 6 LCĂI DE LABOATO Lucrarea nr. 7 - Conexunea consumatorlor trfazaţ în stea I. Partea teoretcă n sstem de
LUCRAREA 1 AMPLIFICATORUL DIFERENȚIAL MODULUL MCM5/EV
LUCRAREA 1 AMPLIFICATORUL DIFERENȚIAL MODULUL MCM5/EV 1.1 INTRODUCERE Amplfcatorul dferențal (AD) este întâlnt ca bloc de ntrare într-o mare aretate de crcute analogce: amplfcatoare operațonale, comparatoare,
TEORIA CIRCUITELOR ELECTRICE
a 33 b C B c Prof. dr. ng. Petru Todos nverstatea Tehncă a Moldove, Chșnău, Facultatea de Energetcă ș ngnere Electrcă ucrarea este un vertabl suport ddactc pentru noţun fundamentale de teora crcutelor
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Legea vitezei se scrie în acest caz: v t v gt
MIŞCĂRI ÎN CÂMP GRAVITAŢIONAL A. Aruncarea pe vertcală, de jos în sus Aruncarea pe vertcală în sus reprezntă un caz partcular de mşcare rectlne unform varată. Mşcarea se realzează pe o snură axă Oy. Pentru
SISTEME DE ACTIONARE II. Prof. dr. ing. Valer DOLGA,
SISTEME DE ACTIONARE II Prof. dr. ng. Valer DOLGA, Cuprns_3. Caracterstc statce. Stabltatea functonar ssteulu 3. Moent de nerte redus, asa redusa. 4. Forta redusa s oent redus Prof. dr. ng. Valer DOLGA
SEGMENTAREA IMAGINILOR TEHNICI DE CLUSTERING
SEGMETAREA IMAGIILOR TEHII DE LUSTERIG ategor de tehnc de segentare pe regn Thresholdng (segentare pe hstograa) Segentarea n spatl caracterstclor (generalzare thresholdng) pentr regn c nfortate a valorlor
STUDIUL INTERFERENŢEI LUMINII CU DISPOZITIVUL LUI YOUNG
UNIVESITATEA "POLITEHNICA" DIN BUCUEŞTI DEPATAMENTUL DE FIZICĂ LABOATOUL DE OPTICĂ BN - 10 A STUDIUL INTEFEENŢEI LUMINII CU DISPOZITIVUL LUI YOUNG 004-005 STUDIUL INTEFEENŢEI LUMINII CU DISPOZITIVUL LUI
Curs 5 mine 1.18 AplicaŃii ale legii inducńiei electromagnetice
Curs 5 ne.8 AplcaŃ ale leg nducńe electroagnetce Fg..37 Tensunea electrootoare ndusă prn transforare Presupune un transforator onofazat reprezentat în fg..37 funcńonând în gol (fără sarcnă conectată la
1. INTRODUCERE. SEMNALE ŞI SISTEME DISCRETE ÎN TIMP
. ITRODUCERE. SEMALE ŞI SISTEME DISCRETE Î TIMP. Semnale dscrete în tmp Prelucrarea numercă a semnalelor analogce a devent o practcă frecvent întâlntă. Aceasta presupune două operaţ: - eşantonarea la anumte
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
CARACTERISTICI GEOMETRICE ALE SUPRAFEŢELOR PLANE
CRCTERSTC GEOMETRCE LE SUPRFEŢELOR PLNE 1 Defnţ Pentru a defn o secţune, complet, cunoaşterea are ş a centrulu de greutate nu sunt sufcente. Determnarea eforturlor, tensunlor ş deformaţlor mpune cunoaşterea
5.1 Realizarea filtrelor cu răspuns finit la impuls (RFI) Filtrul caracterizat prin: 5. STRUCTURI DE FILTRE NUMERICE. 5.1.
5. STRUCTURI D FILTR UMRIC 5. Realzarea ltrelor cu răspuns nt la mpuls (RFI) Fltrul caracterzat prn: ( z ) = - a z = 5.. Forma drectă - - yn= axn ( ) = Un ltru cu o asemenea structură este uneor numt ltru
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
CONEXIUNILE FUNDAMENTALE ALE TRANZISTORULUI BIPOLAR
LCAEA N.4 CONEXINILE FNDAMENTALE ALE TANISTOLI BIPOLA Scpul lucrăr măurarea perrmanțelr amplcatarelr elementare realzate cu tranztare bplare în cele tre cnexun undamentale (bază la maă, emtr la maă, clectr
T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :
Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet
Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate
Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs
Notiuni de electrotehnicã si de matematicã
- - Notun de electrotehncã s de ateatcã În acest artcol sunt tratate o parte dn fenoenele s paraetr care prezntã un grad de dfcultate a rdcat. Deaseenea, în acest artcol s-au utlzat ltere c (de exeplu
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Numere complexe. a numerelor complexe z b b arg z.
Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea
DETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE PRIN METODA PENDULULUI FIZIC
UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ BN - 1 B DETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE PRIN METODA PENDULULUI FIZIC 004-005 DETERMINAREA ACCELERAŢIEI
Lucrarea Nr. 6 Reacţia negativă paralel-paralel
Lucrre Nr. 6 ecţ netă prlel-prlel Crcutul electrc pentru studul AN pp: Schem de semnl mc AN pp: Fur. Schem electrcă pentru studul AN pp Fur 2. Schem de semnl mc crcutulu pentru studul AN pp Intern cudrpl:
Pentru această problemă se consideră funcţia Lagrange asociată:
etoda ultplcatorlor lu arae ceastă etodă de optzare elară elă restrcţle de tp ealtate cluzâdu-le îtr-o ouă fucţe oectv ş ărd sulta uărul de varale al prolee de optzare. e urătoarea proleă: < (7. Petru
3. TRANZISTORUL BIPOLAR
3.. NOŢIUNI INTRODUCTIV 3. TRANZISTORUL BIPOLAR 3... Defnţe Tranzstorul bpolar este un dspozt electronc act cu tre termnale: emtorul (), baza (B) ş colectorul (C). Aceste tre termnale sunt plasate pe tre
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
DIODA SEMICONDUCTOARE
LUCRAREA NR. 2 IOA SEMICONUCTOARE Scopul lucrăr Rdcarea caracterstclor ş determnarea prncpallor parametr a dodelor semconductoare; studul comportăr dode semconductoare în crcute elementare. 1. Caracterstca
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
9. CIRCUITE ELECTRICE IN REGIM NESINUSOIDAL
9. CRCE ELECRCE N REGM NESNSODAL 9.. DESCOMPNEREA ARMONCA Ateror am studat regmul perodc susodal al retelelor electrce, adca regmul permaet stablt retele lare sub actuea uor t.e.m. susodale s de aceeas
ELECTRICITATE şi MAGNETISM, Partea a II-a: Examen SCRIS Sesiunea Ianuarie, 2017 PROBLEME PROPUSE
Probleme de lectrctate Petrca rstea 017 nverstatea dn ucureşt Facultatea de Fzcă TIITT ş MGNTISM, Partea a II-a: xamen SIS Sesunea Ianuare, 017 POM POPS 1. n fzcan estmează că prntr-o secţune a unu conductor
Laboraratorul 3. Aplicatii ale testelor Massey si
Laboraratorul 3. Aplcat ale testelor Massey s Bblografe: 1. G. Cucu, V. Crau, A. Stefanescu. Statstca matematca s cercetar operatonale, ed. Ddactca s pedagogca, Bucurest, 1974.. I. Văduva. Modele de smulare,
Circuitul integrat A 3900-aplicaţii
Îndrumar de laborator Crcute ntegrate Analogce olumul Lucrarea 12 AMPLFCATOAE DE CENT (NOTON) Crcutul ntegrat A 3900-alcaţ 1 Descrerea crcutulu În unele alcaţ este necesară utlzarea unu amlcator cu ntrarea
PRELUCRAREA DATELOR EXPERIMENTALE
PRELUCRAREA DATELOR EXPERIMETALE I. OŢIUI DE CALCULUL ERORILOR Orce măsurare epermentală este afectată de eror. După cauza care le produce, acestea se pot împărţ în tre categor: eror sstematce, eror întâmplătoare
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
4. Criterii de stabilitate
Dragomr T.L. Teora sstemelor Curs anul II CTI 04/05 4 4. Crter de stabltate După cum s-a preczat metodele numerce de analză a stabltăţ se bazează pe crterul rădăcnlor. In ngnera reglăr se folosesc o sere
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
2. ANALIZA ÎN FRECVENŢĂ A SISTEMELOR ELECTRICE ŞI ELECTRONICE
. ANALIZA ÎN FRECVENŢĂ A SISTEMELOR ELECTRICE ŞI ELECTRONICE În paragrafele anterare s-au prezentat metde de analză a cmprtăr SAI în (dmenul tmp. Punctul cmun al metdelr prezentate este determnarea funcţe
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
INTRODUCERE ÎN METODA ELEMENTELOR FINITE
ŞEN I. MKSY DIN. BISRIN INRODUCERE ÎN MEOD EEMENEOR INIE EDIUR CERMI IŞI 8 Descrerea CIP a Bbotec Naţonae a Române MKSY, I. ŞEN Introdcere n metoda eementeor fnte / Ştefan I. Masay, Dana. Bstran - Iaş
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
CAP. 2. NOŢIUNI DESPRE AERUL UMED ŞI USCAT Proprietăţile fizice ale aerului Compoziţia aerului
CAP.. NOŢIUNI DESPRE AERUL UED ŞI USCAT... 5.. Propretăţle fzce ale aerulu... 5... Compozţa aerulu... 5... Temperatura, presunea ş greutatea specfcă... 5.. Aerul umed... 6... Temperatura... 7... Umdtatea...
Laboraratorul 6. AJUSTAREA MATEMATICĂ A DATELOR EXPERIMENTALE
Lborrtorl 6. AJUSTAREA MATEMATICĂ A DATELOR EXPERIMETALE Bblogrfe:. G. Groz Anlz nmerc Ed. Mtr Rom Bcreşt 5.. I. Tom I. Itn Anlză nmercă. Crs plcţ lgortm în psedocod ş progrme de clcl Ed. Mtr Rom Bcreşt
Lucrarea nr. 6 Asocierea datelor - Excel, SPSS
Statstcă multvarată Lucrarea nr. 6 Asocerea datelor - Excel, SPSS A. Noţun teoretce Generaltăţ Spunem că două (sau ma multe) varable sunt asocate dacă, în dstrbuţa comună a varablelor, anumte grupur de
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor
4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda
8 AMPLIFICAREA ŞI REACŢIA
S.D.nghel - Bazele electonc analogce ş dgtale 8 MPLIFICRE ŞI RECŢI 8. Reacţa la amplcatoae În electoncă, pn eacţe se înţelege adceea ne acţn dn semnall de eşe ( X es ) la ntaea amplcatol. ceastă acţne,
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
CAPITOLUL 3 FILTRE DE MEDIERE MODIFICATE
32 Prelucrarea numercă nelnară a semnalelor Captolul 3 - Fltre de medere modfcate 33 CAPITOLUL 3 FILTRE DE MEDIERE MODIFICATE Ieşrea fltrulu de medere cu prag (r,s) este: s TrMean ( X, X2, K, X ; r, s)
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
4. CALCULUL CAPACITĂŢII FRIGORIFICE
4. CALCULUL CAPACITĂŢII FRIGORIFICE În calcl trebesc late în consderare toate canttăţle de căldră evacate dn nstalaţle frgorfce în 24 ore. Aceste canttăţ de căldră snt de opt tpr ş snt stablte pentr condţle
2. Algoritmi genetici şi strategii evolutive
2. Algortm genetc ş strateg evolutve 2. Algortm genetc Structura unu algortm genetc standard:. Se nţalzează aleator populaţa de cromozom. 2. Se evaluează fecare cromozom dn populaţe. 3. Se creează o nouă
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Fig. 1.1 Sistem de acţionare în linie
. dnamca.. Introducere O clasfcare a sstemelor de acţonare electrcă a în consderare numărul de motoare raportate la sarcna de acţonat: - sstem de acţonare în lne reprezntă cea ma veche varantă. Sstemul
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Durata medie de studiu individual pentru această prezentare este de circa 120 de minute.
Semnar 6 5. Caracterstc geometrce la suprafeţe plane I 5. Introducere Presupunând cunoscute mecansmele de evaluare a stăr de efortur la nvelul une structur studate (calcul reacţun, trasare dagrame de efortur),
1.6 TRANZISTORUL BIPOLAR DE PUTERE.
1.6 TRANZISTORUL IPOLAR DE PUTERE. Tranzstorul bpolar de putere dervă dn tranzstorul obşnut de semnal, prn mărrea capactăţ în curent ş tensune. El este abrevat prn nţalele JT, provennd de la denumrea anglo-saxonă
Statistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu
Statstca descrptvă (contnuare) Şef de Lucrăr Dr. Mădălna Văleanu mvaleanu@umfcluj.ro VARIABILE CANTITATIVE MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medana, Modul, Meda geometrca, Meda armonca, Valoarea
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Cap.4. Măsurarea tensiunilor si curenţilor 4. MĂSURAREA TENSIUNILOR ŞI CURENŢILOR Instrumente analogice pentru măsurarea tensiunilor continue
Cap.4. Măsrarea tensinilor si crenţilor 4. MĂSAEA TENSINILO ŞI CENŢILO 4.. Instrmente analogice pentr măsrarea tensinilor contine Pot fi împărţite în rmătoarele categorii: Instrmente electromecanice Compensatoare
CALCULUL PIESELOR ŞI STRUCTURILOR DIN MATERIALE COMPOZITE
11. CALCULUL PIESELOR ŞI STRUCTURILOR DIN MATERIALE COMPOZITE 11.1. Generaltăţ Materalele compozte sunt amestecur de două sau ma multe componente, în anumte proporţ ş condţ, ale căror propretăţ se completează
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
SEMNALE ALEATOARE Definirea semnalului aleator, a variabilei aleatoare, a funcţiei şi a densităţii de repartiţie
CAPIOLUL SEMNALE ALEAOARE Un proces sau semnal aleator, numt ş stochastc, este un proces care se desfăşoară în tmp ş este guvernat, cel puţn în parte, de leg probablstce. Importanţa teoretcă ş practcă
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
CURS METODA OPERAŢIONALĂ DE INTEGRARE A ECUAŢIILOR CU DERIVATE PARŢIALE DE ORDIN II
CURS METODA OPERAŢIONALĂ DE INTEGRARE A ECUAŢIILOR CU DERIVATE PARŢIALE DE ORDIN II. Utiizarea transformării Lapace Să considerăm probema hiperboică de forma a x + b x + c + d = f(t, x), (t, x) [, + )
Din figura anterioară, 2 T ω = ω = = 0,636 I m. T 2 π
rs 6 mne. rce elecrce în cren alernav snsodal. Mărm alernave snsodale Se nmeşe mărme snsodală sa armoncă o mărme alernavă, (de exeml, crenl elecrc), rerezena în fgra 3., care oae f scrsă sb forma: () =
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
TEORIA GRAFURILOR ÎN PROBLEME SI APLICATII
UNIVERSITATEA DE STAT DIN MOLDOVA Facultatea de Matematca s Informatca Sergu CATARANCIUC TEORIA RAFURILOR ÎN PROBLEME SI APLICATII Chsnau 004 UNIVERSITATEA DE STAT DIN MOLDOVA Facultatea de Matematca s
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
1. GRUPOIZI. MORFISME. ACŢIUNI. (noţiuni algebrice)
. RUPOIZI. MORFISME. ACŢIUNI. (noţini algebrice) Un grpoid poate fi gândit ca n grp c mai mlte elemente nitate. Dacă n grpoid are n singr element nitate, atnci de fapt, este grp. Astfel noţinea de grpoid
Tehnica producerii semnalelor cu modulaţie liniară
ehna proder semnalelor modlaţe lnară Performanţele ehpamenelor folose penr proderea semnalelor ML, denme pe sr modlaoare, sn deermnae în mare măsră de operaorl de prods; ma ml, paramer realzaţ de aes blo
CIRCUITE LINIARE. Fig Schema sursei de curent cu sarcină flotantă, de tip inversor
7 CICITE LINIAE Circitele liniare se caracterizează prin existenńa bclei de reacńie negativă şi prin proporńionalitate între mărimea de la ieşirea circitli realizat c amplificator operańional şi mărimea
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care