LOPATKY VYSOKOTLAKOVÉHO STUPŇA SPAĽOVACÍCH TURBÍNOVÝCH MOTOROV Marek Gebura Ústav materiálov a mechaniky strojov, SAV Bratislava
|
|
- Θεόφιλος Λούλης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 LOPATKY VYSOKOTLAKOVÉHO STUPŇA SPAĽOVACÍCH TURBÍNOVÝCH MOTOROV Marek Gebura Ústav materiálov a mechaniky strojov, SAV Bratislava ummsgebu@savba.sk Abstrakt V predkladanom článku sú zhrnuté základné poznatky z oblasti vývoja a použitia turbínových lopatiek používaných napríklad vo vysokotlakovom stupni plynových spaľovacích turbínových motorov v leteckom priemysle. 1 Úvod Energetický a letecký priemysel patria medzi tie odvetvia v ktorých zohráva výskum a vývoj v oblasti materiálov či už sa jedná o výskum základný alebo aplikovaný veľmi dôležitú úlohu. Dôkazom je veľké množstvo odborných karentovaných publikácií z tejto oblasti, kde medzi autormi z čisto vedeckých inštitúcií vystupujú aj mená výskumníkov, ktorých zamestnávateľom je niektorá z priemyselných firiem produkujúca či už letecké turbínové motory alebo turbíny pre energetický priemysel. 2 Spaľovacie turbíny Spaľovacie turbínové motory pozostávajú z troch hlavných častí, konkrétne z kompresorovej, spaľovacej a turbínovej. Kompresor zvyšuje tlak a teplotu vstupujúceho vzduchu a privádza ho do spaľovacej časti. V spaľovacej komore sa stlačený vzduch zmiešava s jemne disperzovaným palivom a následne dochádza k vznieteniu tejto zmesi. Horúce plyny opúšťajú spaľovaciu komoru a dostávajú sa do turbínovej časti motora, pričom dochádza k ich rapídnej expanzii spojenej s poklesom ich tlaku a teploty. Výsledným efektom je roztočenie turbíny, ktorá spätne roztáča kompresor. Plyny s veľkou rýchlosťou opúšťajú motor cez výfukovú dýzu a vytvárajú potrebný vztlak. Zo všetkých komponentov spaľovacích turbínových motorov sú práve lopatky vo vysokotlakovej turbínovej sekcii vystavené najvyššiemu zaťaženiu, ktoré zahŕňa vysoké teploty a chemickú reaktivitu spalín v kombinácii s mechanickým namáhaním v dôsledku rýchlej rotácie disku. 3 Superzliatiny Spolupôsobenie vysokých teplôt (nad cca 1100 C) s mechanickým napätím (cca MPa) zapríčinuje tzv. creepové namáhanie lopatiek. Bežné konštrukčné materiály používané pre nízkoteplotné aplikácie buď vôbec, prí- Obr. 1 Letecký turbínový motor: 1 nasávanie vzduchu, 2 nízkotlakový kompresor, 3 vysokotlakový kompresor, 4 spaľovanie, 5 spaliny, 6 vysokoteplotná časť, 7 vysokotlaková turbína a nízkotlakové turbíny, 8 spaľovacia komora, 9 nízkoteplotná časť, 10 vstup vzduchu [1]
2 padne čiastočne nevyhovujú pre dlhodobé použitie za daných podmienok. Preto niet divu, že materiály, ktoré sa na tieto účely používajú majú predponu super. Reč je o tzv. superzliatinách. Tieto materiály v prvom priblížení nepatria medzi novinky posledných rokov. Veď letectvo a energetika už majú akú takú minulosť za sebou. Superzliatiny, ktoré môžu byť na báze železa, kobaltu, či niklu prešli za niekoľko desaťročí pomerne pestrým vývojom, ktorý umožnil konštruktérom zvyšovať teplotu v spaľovacej komore a tým priamo zvyšovať výkon a účinnosť zariadení v ktorých sa používajú. Ak by sme chceli veľmi hrubo a v skratke charakterizovať míľniky vývoja týchto materiálov, je užitočné rozdeliť ich na dva typy a síce na metalurgické a procesné. V prípade metalurgických sa jedná najmä o zmeny a akési postupné vyšperkovanie základného chemického zloženia týchto zliatin. Procesné míľniky vývoja (veľká pozornosť im je venovaná približne od polovice sedemdesiatych rokov minulého storočia) zahŕňajú najmä samotný proces výroby lopatiek a nie menej dôležité tepelné spracovanie. Najväčší výrobcovia preferujú superzliatiny na báze niklu, takže si prezrieme míľniky práve pre tento typ materiálu. Niklové superzliatiny obsahujú ako hlavný prvok bázu nikel, ktorého množstvo v hmotnostných percentách sa väčšinou pohybuje v intervale 50 70%. Nikel si metalurgovia vybrali z viacerých dôvodov, medzi tie najdôležitejšie patrí napr. typ kryštálovej mriežky (kubická plošne centrovaná FCC z anglického Face Centred Cubic), ktorá je svojim usporiadaním a vlastnosťami z toho vyplývajúcimi najvhodnejšia pre použitie pri vysokých teplotách. Veľmi dôležitým faktorom je aj schopnosť tuhého roztoku niklu rozpustiť v sebe relatívne veľké množstvá iných, tzv. legujúcich prvkov, čím sa dajú vo všeobecnosti dosiahnuť lepšie vlastnosti výslednej zliatiny. 4 Kované lopatky Prvé lopatky zo superzliatin boli vyrábané tradičnými spôsobmi tvárnenia materiálov, konkrétne technológiou kovania za tepla. Zo štruktúrneho hľadiska predstavovali polykryštalický materiál, čo znamená, že materiál bol zložený z veľkého počtu kryš-talograficky náhodne orientovaných zŕn. O hraniciach zŕn platí, že pri použití pri izbových a mierne zvýšených teplotách spevňujú materiál, pretože sú prirodzenými prekážkami pre pohyb dislokácií. Hranice jednotlivých zŕn, ktoré pri spomenutých teplotách spevňujú materiál však znamenajú počas mechanického namáhania pri zvýšených teplotách (kedy dochádza k tzv. creepovému namáhaniu) riziko iniciácie trhlín a to najmä v prípade hraníc orientovaných v smere kolmo na smer pôsobenia hlavného napätia. Riziko vzniku trhlín sa potom úmerne znižuje so zmenou tohto uhla až dosiahne minimum pri orientácii hranice zrna v smere rovnobežnom so smerom pôsobiaceho napätia. Ak teda vývojári chceli zvýšiť pracovné teploty v turbínach, museli pristúpiť k inovatívnym zmenám. Najprv boli za účelom zvýšenia creepovej odolnosti pridané do týchto zliatin prvky ako bór a uhlík, ktoré po hraniciach zŕn vytvorili karbidické fázy. Tieto fázy spevnili samotné hranice medzi jednotlivými zrnami a zvýšili tak odolnosť materiálu voči creepu. Karbidy uhlíka navyše zvyšovali celkovú pevnosť zliatin, pretože sa vylučovali aj priamo v jednotlivých zrnách. 5 Usmernená kryštalizácia Po tomto zlepšení došlo však ku niečomu, čo možno s čistým svedomím nazvať revolúciou v oblasti vývoja turbínových lopatiek. Bola vyvinutá technológia usmernenej kryštalizácie, ktorá posunula pracovné teploty lopatiek k výrazne vyšším hodnotám. Táto technológia využíva riadenie odvodu tepla z rozhrania medzi taveninou a pevnou látkou ku tomu, aby jej štruktúrne časti (v tomto prípade zrná) rástli iba v jednom smere. Výsledným produktom sú lopatky tvorené síce stále viacerými zrnami, avšak tieto zrná už nie sú náhodne orientované. Pri veľmi zjednodušenom pohľade predstavovali dlhé stĺpovité útvary tiahnuce sa od spodnej časti lopatky po jej hornú časť. Vďaka takto orientovaným zrnám sa výrazne znížilo riziko vytvárania trhlín počas creepu. Pre aplikácie pri najvyšších teplotách sa používajú monokryštalické lopatky. Je nutné podotknúť, že tento názov vyvoláva predstavu, že ich vnútorná štruktúra je jednofázová. Nie je to však tak. Presnejšie sa jedná o tzv. technický monokryštál, čo znamená, že obsahuje malouhlové hranice zŕn. Bezprostredne po usmernenej kryštalizácii je štruktúra lopatky tvorená - 2 -
3 dendritmi (s orientáciou primárnych vetiev rovnobežnou so smerom kryštalizácie a taktiež s pozdĺžnou osou lopatky) a medzidendritickým priestorom. V štruktúre sa taktiež môžu nachádzať eutektické oblasti. Takto pripravený technický monokryštál je teda v priečnom i v pozdĺžnom reze charakteristický dendritickou segregáciou prvkov. Za účelom získania technického monokryštálu, teda jedného zrna stuhnutého v danom kryštalografickom smere sa používa tzv. selektor, ktorý má tvar špirály. Skôr než sa kryštalizačné rozhranie dostane do oblasti samotnej lopatky, selektor postupne zabráni rastu zŕn v nežiaducich smeroch a taktiež zabráni ďalšiemu rastu všetkých zŕn okrem toho, ktoré rastie priamo pozdĺž osi selektora. Celý objem lopatky je po kryštalizácii tvorený jedným kryštalograficky správne orientovaným zrnom. Obr. 2 schematicky znázorňuje lopatku s usmernene kryštalizovanými zrnami a lopatku tvorenú technickým monokryštálom. zliatin pozostáva až zo siedmych za sebou idúcich žíhacích stupňov. Veľmi dôležité pri tomto procese je udržať materiál v tzv. technologickom žíhacom okne tak aby nedošlo k jeho lokálnemu nataveniu v štruktúre. Teplota posledného žíhacieho stupňa je totiž len o niekoľko stupňov nižšia ako teplota tavenia superzliatiny. Štruktúra lopatky po jej úplnom tepelnom spracovaní, teda po viacstupňovom rozpúšťacom žíhaní, rýchlom ochladení a následnom precipitačnom vytvrdení (ktoré je vo väčšine prípadov dvojstupňové) je dvojfázová, pričom matricu tvorí tzv. fáza gama (neusporiadaný tuhý roztok niklu) s koherentne, príp. semikoherentne vylúčenými kuboidálnymi precipitátmi γ (na báze intermetalickej zlúčeniny Ni 3 Al). Výsledná mikroštruktúra (viď Obr. 3) sa vyznačuje vysokou usporiadanosťou, pričom normálové vektory jednotlivých stien kuboidálnych precipitátov sú rovnobežné s kryštalografickými smermi <001>. Druhý stupeň precipitačného vytvrdenia využíva zostatkové presýtenie tuhého roztoku matrice pre dodatočnú precipitáciu sekundárnych častíc γ s veľkosťou niekoľkých nanometrov. Obr. 2 Schematické znázornenie rozdielu medzi lopatkou s usmernene kryštalizovanými zrnami a lopatkou tvorenou jediným zrnom technický monokryštál (za zrno v tejto schéme sa považuje prienik lopatky s farebnou plochou). Pozn.: obrázok lopatky prevzatý z [2]. 6 Tepelné spracovanie Po usmernenej kryštalizácii sa spravidla aplikuje rozpúšťacie žíhanie, ktorého primárnou funkciou je zmeniť východiskovú chemicky silno heterogénnu dendritickú štruktúru na presýtený tuhý roztok niklu s nižším stupňom chemickej heterogenity. Rozpúšťacie žíhanie niklových superzliatin je relatívne komplikovaný proces, nakoľko v prípade niektorých Obr. 3 Štruktúra monokryštalickej turbínovej lopatky z niklovej superzliatiny po rozpúšťacom žíhaní a precipitačnom vytvrdení [3]. 7 Mechanické vlastnosti Pevnosť väčšiny kovov so zvyšovaním teploty klesá čo sa dá vysvetliť tepelnou aktiváciou, ktorá uľahčuje pohyb dislokácií v materiáli. Niklové superzliatiny sú však známe anomáliou v priebehu tohto procesu. Pri izbovej teplote prebieha deformácia materiálu sklzovým pohybom dislokácií za presných kryštalografických podmienok, teda v presne ur
4 čených smeroch po presne určených sklzových rovinách. Ak by tento proces prebiehal so zvyšovaním teploty iba za daných podmienok, pevnosť by klesala ako je to u väčšiny kovových materiálov. Pevnosť niklových superzliatin však so zvyšovaním teploty až po určitú kritickú hodnotu teploty stúpa. Táto anomália je spôsobená tým, že dislokácie majú tendenciu preskočiť zo spomínaných sklzových rovín do kryštalograficky odlišných rovín. Navyše časť dislokácie pri tejto zmene zostáva v jednej zo sklzových rovín mriežky tuhého roztoku a jej druhá časť v rovine mriežky precipitátu. Tým vzniká tzv. uzamknutá dislokácia (z ang. locked dislocation ), ktorá potrebuje oveľa vyššiu energiu pre svoj pohyb, čím sa pevnosť superzliatin zvyšuje. Po dosiahnutí kritickej hodnoty teploty majú už dislokácie dostatočné množstvo energie pre ich uvoľnenie a pevnosť superzliatin začne klesať. (Pozn.: pohyb dislokácií je priamo spojený s deformáciou materiálu pevnosť materiálu možno veľmi laicky považovať za odpor voči jeho deformovaniu). 8 Degradácia mikroštruktúry Pri pôsobení vysokých teplôt dochádza k degradácii pôvodnej mikroštruktúry, pričom prvým aktívnym degradačným procesom je tzv. Ostwaldovo hrubnutie precipitátov γ [4-10]. V priebehu tohto procesu väčšie precipitáty zväčšujú svoj objem na úkor menších (schematicky znázornené na Obr. 4), niekedy sa tento proces označuje aj ako konkurenčný rast precipitátov. Podľa nedávnych pozorovaní [11, 12], v neskoršom čase dochádza k tzv. samovoľnému raftingu, pričom existuje rozdiel vo vývoji degradačných procesov pri pôsobení vysokých teplôt v dendritoch a v medzidendritickom priestore (Obr. 5). Vznik a vývoj tohto typu degradácie je teplotne a časovo závislý a prebieha v takmer celom rozsahu pôvodnej mikroštruktúry, pričom veľký vplyv na orientáciu a rozloženie samovoľných raftov má chemická rozdielnosť dendritov a medzidendritického priestoru podmienená dĺžkou rozpúšťacieho tepelného spracovania. V súčasnosti samovoľný rafting nie je dostatočne preskúmaný a vyžaduje si ďalšie experimenty, merania a analýzy, ktoré tento degradačný proces fyzikálne objasnia a jednoznačnejšie kvantifikujú. Súčasné poznatky o samovoľnom raftingu a jeho vplyve na mechanické vlastnosti sú taktiež limitované a ďalší základný výskum v tejto oblasti je mimoriadne dôležitý z pohľadu pochopenia a detailného popisu degradačných procesov v monokryštalických superzliatinách a tvorby nových, mikroštruktúrne založených modelov životnosti lopatiek spaľovacích turbín. Obr. 4 Schematické znázornenie procesu hrubnutia kuboidálnych precipitátov
5 Obr. 5 Snímky sú zo SEM. Ilustrujú morfológiu fáz gama a gama' v superzliatine CMSX-4 po vystavení dlhodobému stárnutiu (1000 C, 2000h). Snímané plochy vzorky sú v rovine (001). (a), (b) Rozdiel medzi dendritickým (D) a medzidendritickým (I) priestorom, (c) Mikroštruktúra v dendrite + TCP fázy, (d) Kuboidálne gama' precipitáty v I, (e) Raftovaná štruktúra v I, (f) Raftovaná štruktúra v D, (h) Detailný snímok gama raftov v D, (i) gama raftov v I. (publikované v [11]). Ako bolo ukázané vo viacerých prácach [13-23], v priebehu vysokoteplotného zaťažovania superzliatin v kryštalografickom smere [001], ktoré vykazujú zápornú hodnotu rozdielu mriežkových parametrov matrice a precipitátu (misfit), dochádza k degradácii kuboidálnych precipitátov a k vzniku tzv. raftovanej mikroštruktúry (raft precipitujúcej fázy si možno veľmi zjednodušene predstaviť ako útvar tvaru mierne zvlnenej platne s početnými malými výčnelkami. Jednotlivé rafty precipitujúcej fázy môžu byť na viacerých miestach vzájomne pospájané a sú oddelené matricou, ktorá inverzne kopíruje ich morfológiu). Pri jedoosovom namáhaní platí, že raftovanie je smerové hrubnutie precipitátov, ktoré v prípade ťahového namáhania v kryštalografickom smere [001] má za následok vytváranie raftov v smere kolmom na smer zaťažovania (Obr. 6). V prípade tlakového jednosového namáhania sú rafty orientované v smere rovnobežnom so smerom namáhania. Ako ukázali Gebura a Lapin [8], takéto modelové správanie nie je plne aplikovateľné pri viacosovom namáhaní (v prípade niektorých typov turbínových lopatiek sa jedná o nezanedbateľné objemy), kedy výsledná morfológia mikroštruktúry závisí od rozloženia hlavných napätí, ich veľkostí a uhla ich pôsobenia vzhľadom na kryštalografické usporiadanie a orientáciu pôvodnej mikroštuktúry. Obr. 6 Raftovaná štruktúra po creepovom zaťažení. Smer zaťaženia zobrazujú šípky
6 Okrem morfologických zmien dvoch základných stavebných fáz niklových superzliatin dochádza po dlhších expozičných dobách aj k precipitácii novej, veľmi pevnej a tvrdej fázy tzv. TCP fázy (z ang. Topologically close packed phase), ktorá je bohatá na prvky ako Hf, W a Re a prednostne sa objavuje v dendritických oblastiach. 9 Systém vnútorného chladenia a povrchová úprava lopatiek Lopatky vysokotlakového stupňa plynových spaľovacích turbín patria medzi špičku konštrukčných vynálezov minulého storočia. Typy lopatiek, ktoré sa používajú pre tie najvyššie teploty sú vybavené sofistikovaným systémom vnútorného chladenia spojeného s povrchovou úpravou vonkajšieho povrchu. Relatívne chladný vzduch z kompresorovej časti motora je cez otvory v disku na ktorom sú lopatky umiestnené vháňaný do v mnohých prípadoch veľmi zložitého systému vnútorných chladiacich kanálikov monokryštalických lopatiek cez ich spodnú časť, ktorou sú na disku ukotvené (Obr. 7). Systém je čiastočne otvorený, vháňaný vzduch je tlakom vytláčaný do úzkych štrbín umiestnených na povrchu lopatky tak, aby vytváral akýsi ochranný vzduchový vankúš s teplotou nižšou než je teplota spalín vznikajúcich v spaľovacej komore. Vzniká tak tepelná izolačná bariéra, ktorá umožňuje zvýšiť teplotu spalín a pritom zaručuje, že teplota materiálu lopatky nepresiahne kritické hodnoty. Výroba vnútorného chladenia sa uskutočňuje technológiou presného odlievania s následným vŕtaním niektorých otvorov, najmä štrbín vytvárajúcich ochranný prúd vzduchu. Keďže obrábanie niklových superzliatin je obtiažnejšie v porovnaní napr. s oceľou, proces vŕtania otvorov sa vo väčšine prípadov uskutočňuje vyžitím energie laserového zväzku alebo technológie elektroiskrového hĺbenia. Aby pri laserovom vŕtaní po vytvorení otvoru na vonkajšej strane nedošlo k poškodeniu povrchu vnútornej náprotivnej steny kanálika, používa sa jadro z keramického materiálu, ktoré pohltí energiu lasera. Obr. 7 Schematické znázornenie jednoduchého systému vnútorného chladenia turbínových lopatiek vysokotlakového stupňa. Pozn.: obrázok lopatky prevzatý z [2]. Povrchová úprava vnútorne chladených turbínových lopatiek z monokryštalických niklových superzliatin posunula spaľovacie teploty k doteraz najvyšším hodnotám v histórii priemyselne aplikovateľných spaľovacích turbín. Vrstva na báze keramického materiálu sa vo všeobecnosti člení na vrstvu odolávajúcu oxidácii pri zvýšených teplotách a na tepelnoizolačnú vrstvu (TBC z ang. thermal barrier coating). Obr. 8 Schematický rez chladenou lopatkou v blízkosti jej povrchu s TBC a ilustratívna zmena teploty pozdĺž jednotlivých častí rezu
7 Vrstva odolná voči oxidácii tvorí zároveň aj spojovaciu vrstvu medzi základným materiálom a TBC. Obr. 8 schematicky znázorňuje rez chladenou lopatkou v blízkosti jej povrchu a tiež ilustratívnu zmenu teploty s klesajúcou tendenciou v smere spaliny základný materiál. TGO (thermally grown oxide) je súčasťou TBC a vzniká na začiatku nanášania keramického materiálu pri plazmovom nástreku. Je nutné si uvedomiť, že v praxi sú lopatky zaťažované vo veľmi veľkom rozsahu pracovných teplôt, jedná sa o stovky stupňov) a preto je veľmi dôležité venovať pozornosť rozdielnosti koeficientov teplotnej rozťažnosti medzi superzliatinou a povrchovou vrstvou. Práve spojovacia vrstva má za úlohu znížiť riziko vzniku trhlín v dôsledku rozdielnej teplotnej rozťažnosti oboch materiálov. Použitá literatúra [1] e.svg [2] ine_numbered.svg [3] [4] LAPIN, J., GEBURA, M., PELACHOVA, T., NAZMY, M. Kovove Mater. 46, 2008, p. 313 [5] SHUANGQUN, Z. XISHAN, X. GAYLORD, D. S. SHAILESH, J. P.: Mater. Lett., 58, 2004, p [6] WANG, T. SHENG, G. LIU, Z.K. CHEN, L.Q.: Acta Mater., in press, 2008, doi: /j.actamat [7] VAN DER MOLEN, E. H. OBLAK, J. M. KRIEGE, O. H. Metall. Trans., 2, 1971, p [8] MACKAY, R. A. NATHAL, M. V: Acta Metall. Mater., 38, 1990, p [9] BALDAN, A.: J. Mater. Sci., 37, 2002, p [10] BALDAN, A: J. Mater. Sci., 37, 2002, p [11] GEBURA, M. LAPIN, J.: In: 17th International Conference on Metallurgy and Materials Metal Ed. Tanger, s.r.o., Ostrava, 2008, CD ROM. [12] LAPIN, J. GEBURA, M. PELACHOVÁ, T. BAJANA, O.: In: 18th International Conference on Metallurgy and Materials Metal 2009, Proceedings Symposium E, Ed.: Tanger, spol. s.r.o. Ostrava, [13] NABARRO, F.R.N.: Metall Mater. Trans A., Vol. 27, 1996, p [14] KAMARAJ, M.: Sadhana, Vol. 28, 2003, p [15] EPISHIN, A. LINK, T: In: Superalloys 2004, Ed. by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston, The Minerals, Metals and Materials Society, 2004, p [16] MA, A. DYE, D. REED, R.C.: Acta Mater., Vol. 56, 2008, p [17] OHASHI, T. HIDAKA, K. SAITO, M.: Mat. Sci. Eng., A238, 1997, p. 42 [18] ICHITSUBO, T. TANAKA, K.: Acta Mater., Vol. 53, 2005, p [19] POLLOCK, T.M. ARGON, A.S.: Acta Metall. Mater., Vol. 40, No. 1, 1992, p. 1. [20] REED, R.C. MATAN, N. COX, D.C. RIST, M.A. RAE, C.M.F.: Acta Mater., Vol. 47, No. 12, 1999, p [21] RATEL, N. BRUNO, G. BASTIE, P. MORI, T.: Acta Mater., Vol. 54, 2006, p [22] MURAKUMO, T. KOBAYASHI, T. KOIZUMI, Y. HARADA, H.: Acta Mater., Vol. 52, 2004, p [23] FEDELICH, B. KUNECKE, G. EPISHIN, A. LINK, T. PORTELLA, P.: Mater. Sci. Eng. A, 2009, doi: /j.msea
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
3.2. Zliatiny niklu a kobaltu
3.2. Zliatiny niklu a kobaltu Najdôležitejšie zliatiny Ni a Co zaraďujeme medzi superzliatiny. Výraz superzliatina bol prvý krát použitý krátko po druhej svetovej vojne na označenie skupiny zliatin vyvinutých
Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S
1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Modul pružnosti betónu
f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie
ŠTRUKTÚRA OCELÍ A LEDEBURITICKÝCH LIATIN
ŠTRUKTÚRA OCELÍ A LEDEBURITICKÝCH LIATIN Cieľ cvičenia Oboznámiť sa so štruktúrou ocelí a ledeburitických (bielych) liatin, podmienkami ich vzniku, ich transformáciou a morfológiou ich jednotlivých štruktúrnych
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
AerobTec Altis Micro
AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp
22 NIKEL A JEHO ZLIATINY
22 NIKEL A JEHO ZLIATINY Nikel je kov s kubickou plošne centrovanou mriežkou, bez alotropickej premeny až po teplotu tavenia (1453 C). Koeficient teplotnej rozťažnosti niklu je 4,14x10 6 m/mk, tepelnej
Materiály pro vakuové aparatury
Materiály pro vakuové aparatury nízká tenze par malá desorpce plynu tepelná odolnost (odplyňování) mechanické vlastnosti způsoby opracování a spojování elektrické a chemické vlastnosti Vakuová fyzika 2
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
SLOVENSKO maloobchodný cenník (bez DPH)
Hofatex UD strecha / stena - exteriér Podkrytinová izolácia vhodná aj na zaklopenie drevených rámových konštrukcií; pero a drážka EN 13171, EN 622 22 580 2500 1,45 5,7 100 145,00 3,19 829 hustota cca.
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Austrotherm GrPS 70 F Austrotherm GrPS 70 F Reflex Austrotherm Resolution Fasáda Austrotherm XPS TOP P Austrotherm XPS Premium 30 SF Austrotherm
ŠTRUKTÚRA A VLASTNOSTI HLINÍKA, MEDI A ICH ZLIATIN
ŠTRUKTÚRA A VLASTNOSTI HLINÍKA, MEDI A ICH ZLIATIN Cieľ cvičenia Oboznámiť sa so štruktúrou a vlastnosťami hliníka, medi a ich zliatin so zameraním na možnosti ovplyvňovania štruktúr a zlepšovania mechanických
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk SLUŽBY s. r. o.
SLUŽBY s. r. o. Staromlynská 9, 81 06 Bratislava tel: 0 456 431 49 7, fax: 0 45 596 06 http: //www.ecssluzby.sk e-mail: ecs@ecssluzby.sk Asynchrónne elektromotory TECHNICKÁ CHARAKTERISTIKA. Nominálne výkony
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických
REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)
ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť
Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
alu OKNÁ, ZA KTORÝMI BÝVA POHODA DREVENÉ OKNÁ A DVERE Profil Mirador Alu 783 Drevohliníkové okno s priznaným okenným krídlom.
DREVENÉ OKNÁ A DVERE m i r a d o r 783 OKNÁ, ZA KTORÝMI BÝVA POHODA EXTERIÉROVÁ Profil Mirador Alu 783 Drevohliníkové okno s priznaným okenným krídlom. Je najviac používané drevohliníkové okno, ktoré je
Konštrukčné materiály - 4. prednáška Vývoj. trendy vysokopev. ocelí a zliatin - zliatiny titánu, niklu a kobaltu TITÁN A JEHO ZLIATINY
Konštrukčné materiály - 4. prednáška Vývoj. trendy vysokopev. ocelí a zliatin - zliatiny titánu, niklu a kobaltu TITÁN A JEHO ZLIATINY Titán je polymorfný kov s dvoma modifikáciami - hexagonálnou a a priestorovo
difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom...
(TYP M) izolačná doska určená na vonkajšiu fasádu (spoj P+D) ρ = 230 kg/m3 λ d = 0,046 W/kg.K 590 1300 40 56 42,95 10,09 590 1300 60 38 29,15 15,14 590 1300 80 28 21,48 20,18 590 1300 100 22 16,87 25,23
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003
Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Plynová turbína je spaľovací tepelný motor, ktorého pracovnou látkou je plyn, ktorý vzniká horením paliva vnútri motora. Je to energetické zariadenie
Plynová turbína Plynová turbína je spaľovací tepelný motor, ktorého pracovnou látkou je plyn, ktorý vzniká horením paliva vnútri motora. Je to energetické zariadenie v ktorom prebieha na základe adiabatickej
3 ŠTRUKTÚRA A VLASTNOSTI ČISTÝCH KOVOV
3 ŠTRUKTÚRA A VLASTNOSTI ČISTÝCH KOVOV 3.1 Vnútorná stavba materiálov Väčšina prvkov v periodickej sústave sú kovy. Od ostatných prvkov sa kovy odlišujú predovšetkým veľkou tepelnou a elektrickou vodivosťou,
100626HTS01. 8 kw. 7 kw. 8 kw
alpha intec 100626HTS01 L 8SplitHT 8 7 44 54 8 alpha intec 100626HTS01 L 8SplitHT Souprava (tepelná čerpadla a kombivané ohřívače s tepelným čerpadlem) Sezonní energetická účinst vytápění tepelného čerpadla
2 ŠTRUKTÚRA A VLASTNOSTI NOVÝCH MATERIÁLOV
2 ŠTRUKTÚRA A VLASTNOSTI NOVÝCH MATERIÁLOV VÝVOJOVÉ ZLIATINY ĽAHKÝCH KOVOV Zliatiny ľahkých neželezných kovov (Al, Mg a Ti) sa významne uplatňujú ako konštrukčný materiál pri výrobe leteckej a inej dopravnej
Základné poznatky molekulovej fyziky a termodynamiky
Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky
KATALÓG KRUHOVÉ POTRUBIE
H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom
Meranie na jednofázovom transformátore
Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky
Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický
RIEŠENIE WHEATSONOVHO MOSTÍKA
SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor
ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.
ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,
Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )
Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým
Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili
Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru
η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa
1.4.1. Návrh priečneho rezu a pozĺžnej výstuže prierezu ateriálové charakteristiky: - betón: napr. C 0/5 f ck [Pa]; f ctm [Pa]; fck f α [Pa]; γ cc C pričom: α cc 1,00; γ C 1,50; η 1,0 pre f ck 50 Pa η
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
3.5. Ocele zo špeciálnymi vlastnosťami - antikorózne ocele
3.5. Ocele zo špeciálnymi vlastnosťami - antikorózne ocele Antikorózna oceľ je podľa STN 42 0042 vysokolegovaná oceľ so zvýšenou odolnosťou voči veľmi agresívnym prostrediam. Základným prísadovým prvkom
TECHNICKÁ UNIVERZITA V KOŠICIACH
TECHNICKÁ UNIVERZITA V KOŠICIACH LETECKÁ FAKULTA Zariadenia na odstránenie nestabilnej práce osových kompresorov LTKM Roman GÁŠPÁR ROČNÍKOVÝ PROJEKT 2009 TECHNICKÁ UNIVERZITA V KOŠICIACH LETECKÁ FAKULTA
CHÉMIA Ing. Iveta Bruončová
Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
STRIEDAVÝ PRÚD - PRÍKLADY
STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =
Konštrukčné materiály - 3.prednáška
Konštrukčné materiály - 3.prednáška Definícia antikoróznych a žiaruvzdorných ocelí. ocele žiarupevné. Klasické typy a ich štruktúra. ocele martenzitické, feritické (%Cr - 17.%C) > 12,5 a austenitické.
Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.
Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500
Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory
www.eurofluid.sk 20-1 Membránové akumulátory... -3 Vakové akumulátory... -4 Piestové akumulátory... -5 Bezpečnostné a uzatváracie bloky, príslušenstvo... -7 Hydromotory 20 www.eurofluid.sk -2 www.eurofluid.sk
22. Zachytávače snehu na falcovanú krytinu
22. Zachytávače snehu na falcovanú krytinu Ako zabrániť náhlemu spadnutiu nahromadeného snehu zo strešnej plochy? Jednoduché a účinné riešenie bez veľkých finančných investícií je použitie zachytávačov
SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE MATERIÁLOVOTECHNOLOGICKÁ FAKULTA SO SÍDLOM V TRNAVE DIFÚZNE BORIDOVANIE OCELE K110
SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE MATERIÁLOVOTECHNOLOGICKÁ FAKULTA SO SÍDLOM V TRNAVE DIFÚZNE BORIDOVANIE OCELE K110 BAKALÁRSKA PRÁCA MTF 13549 37271 2010 GERGELY TAKAČ SLOVENSKÁ TECHNICKÁ UNIVERZITA
4 ZLIATINY A FÁZOVÉ DIAGRAMY
4 ZLIATINY A FÁZOVÉ DIAGRAMY V tejto kapitole budú opísané rôzne stavy, v ktorých sa kovová sústava pri zmene vonkajších podmienok môže vyskytovať. Pozornosť bude sústredená na dvojzložkové (binárne) sústavy
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
TEPLA S AKUMULACÍ DO VODY
V čísle prinášame : Odborný článok ZEMNÉ VÝMENNÍKY TEPLA Odborný článok ZÁSOBNÍK TEPLA S AKUMULACÍ DO VODY Odborný článok Ekonomika racionalizačných energetických opatrení v bytovom dome s následným využitím
Planárne a rovinné grafy
Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
Vektorové a skalárne polia
Vetorové a salárne pola Ω E e prestorová oblasť - otvorená alebo uavretá súvslá podmnožna bodov prestoru E určených arteánsm súradncam usporadaným trocam reálnch čísel X [ ] R. Nech e salárna unca torá
PDF created with pdffactory Pro trial version
7.. 03 Na rozraní sla a vody je ovrc vody zarivený Na rozraní sla a ortuti je ovrc ortuti zarivený JAY NA OZHANÍ PENÉHO TELES A KAPALINY alebo O ailárnej elevácii a deresii Povrc vaaliny je dutý, vaalina
8 VLASTNOSTI VZDUCHU CIEĽ LABORATÓRNEHO CVIČENIA ÚLOHY LABORATÓRNEHO CVIČENIA TEORETICKÝ ÚVOD LABORATÓRNE CVIČENIA Z VLASTNOSTÍ LÁTOK
8 VLASTNOSTI VZDUCHU CIEĽ LABORATÓRNEHO CVIČENIA Cieľom laboratórneho cvičenia je oboznámiť sa so základnými problémami spojenými s meraním vlhkosti vzduchu, s fyzikálnymi veličinami súvisiacimi s vlhkosťou
Poznámky k prednáškam z Termodynamiky z Fyziky 1.
Poznámky k prednáškam z Termodynamiky z Fyziky 1. Peter Bokes, leto 2010 1 Termodynamika Doposial sme si budovali predstavu popisu látky pomocou mechanických stupňov vol nosti, ako boli súradnice hmotného
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM JASNÁ
ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM 1. Úvod 2. Základný princíp NTV / VTCH 3. Základné typy NTV a VTCH z noriem 4. NTV / VTCH v normách STN EN 15 377 5. NTV / VTCH v normách
Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017
Kompilátory Cvičenie 6: LLVM Peter Kostolányi 21. novembra 2017 LLVM V podstate sada nástrojov pre tvorbu kompilátorov LLVM V podstate sada nástrojov pre tvorbu kompilátorov Pôvodne Low Level Virtual Machine
Riadenie elektrizačných sústav
Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký
PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO
ŽILINSKÁ UNIVERZITA V ŽILINE Fakulta špeciálneho inžinierstva Doc. Ing. Jozef KOVAČIK, CSc. Ing. Martin BENIAČ, PhD. PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO Druhé doplnené a upravené vydanie Určené
Kontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
Skúšobné laboratórium materiálov a výrobkov Technická 5, Bratislava
1/5 Rozsah akreditácie Názov akreditovaného subjektu: LIGNOTESTING, a.s. Skúšobné laboratórium materiálov a výrobkov Technická 5, 821 04 Bratislava Laboratórium s fixným rozsahom akreditácie. 1. 2. 3.
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom
ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
Pokyny pre odvod spalín Ø100/150. CerapurMaxx. Plynové kondenzačné kotly TD ZBR 70-3 ZBR (2018/04) sk
Pokyny pre odvod spalín Ø/1 CerapurMa Plynové kondenzačné kotly 6720813784-1.1TD ZBR -3 ZBR -3 6720813880 (2018/04) sk Obsah Obsah 1 Bezpečnostné upozornenia a vysvetlenie symbolov........ 2 1.1 Vysvetlenie
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
Odťahy spalín - všeobecne
Poznámky - všeobecne Príslušenstvo na spaliny je súčasťou osvedčenia CE. Z tohto dôvodu môže byť použité len originálne príslušenstvo na spaliny. Povrchová teplota na potrubí spalín sa nachádza pod 85
VLASTNOSTI A SKÚŠANIE ŽIARUVZDORNEJ KERAMIKY
Technická univerzita v Košiciach, Hutnícka fakulta Prof. Ing. Karel TOMÁŠEK, CSc. VLASTNOSTI A SKÚŠANIE ŽIARUVZDORNEJ KERAMIKY Učebné texty pre študentov študijného odboru CHEMICKÉ TECHNOLÓGIE v študijnom
Teplota, C. zliatiny na tvárnenie. zlievarenské zliatiny. vytvrditeľné zliatiny. Obr. 20. Schéma rozdelenia zliatin hliníka
3.1.1. Zliatiny hliníka a ich použitie Zliatiny hliníka prevyšujú aspoň jednou významnou a využívanou vlastnosťou čistý hliník a je možné ich roztriediť z dvoch hľadísk: 1. Z hľadiska možnosti zvýšenia
200% Atrieda 4/2011. www.elite.danfoss.sk. nárast počtu bodov za tento výrobok MAKING MODERN LIVING POSSIBLE
Atrieda 4/2011 ROČNÍK 9 MAKING MODERN LIVING POSSIBLE Súťažte o skvelé ceny! Zdvojnásobte tento mesiac svoju šancu setmi Danfoss RAE! Zapojte sa do veľkej súťaže inštalatérov Danfoss a vyhrajte atraktívne
Kombinovaná výroba elektriny a tepla Koľko a kedy je vysoko účinná?
Konferencia NRGTICKÝ AUDIT V PRAXI 29. 30. november 2011, Hotel Slovan, Tatranská Lomnica Kombinovaná výroba elektriny a tepla Koľko a kedy je vysoko účinná? Dr. Ing. Kvetoslava Šoltésová, CSc. Ing. Slavomír
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)
ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th