u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
|
|
- Θεόκριτος Λειβαδάς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím. u = sn ωt = I max sn ωt = I max = I ef = u U max snωt = U ef Výkon na rezstore je čnný výkon P [W]. Je to nam žadaný výkon, chceme aby bol čo najväčší. Udáva sa v efektívnych hodnotách. P = I ef. U ef [W]
2 Príklad č.1 : Stredavý sínusový prúd s efektívnou hodnotou 10,6 A a s frekvencou 100 Hz prechádza rezstorom s odporom 4 Ω. Určte: - maxmálnu hodnotu napäta na svorkách rezstora - rovncu okamžtej hodnoty stredavého napäta - okamžtú hodnotu napäta v čase 0,00125 s - výkon na rezstore I ef = 10,6 A f = 100 Hz = 4 Ω = u = u(0,00125) = P = Ief =. I max =. 0,707 = 60V 10,6A = 4 Ω 0,707 u = sn ωt = sn 2Πf.t = 60 V. sn 2Π.100 Hz. t u = 60 sn 628t u(0,00125) = 60 sn (628. 0,00125s ) = 60 sn 0,785 rad u(0,00125) = 42,4 V P = I ef. U ef = 10,6 A. 60V. 0,707 P = 450W
3 Cevka L S L = µ 0 µ r N 2 l [H] L = I t [H] X L = ωl [Ω] Φ u L = N [V] t Ideálna cevka nemá žadny čnný odpor a predsa je prúd obmedzený na konečnú hodnotu má určtý odpor (zdanlvý). Tento zdanlvý odpor sa nazýva ndukčná reaktanca nduktanca - X L [Ω]. X L = ωl = 2Πf. L Vdíme, že nduktanca závsí pramoúmerne od frekvence. Ak by sa L = 1H, f = 50Hz, tak X L = ωl = 2Πf. L = 2.3,14.50 Hz. 1H = 314 Ω Z daného je zrejmé, že pr malej hodnote L, získame relatívne veľkú hodnotu X L. Grafckou závslosťou X L = f(f) je pramka. XL[ ] f[hz]
4 u L ul prebeh prúdu a napäta fázorový dagram prúdu a napäta ul ul Imax /2 /2 t Imax Napäte zdroja sa rovná napätu na ndukčnost, ktoré vzhľadom na premenlvosť stredavého prúdu vznká samondukcou od premenlvého magnetckého poľa. Toto napäte u L nazývame aj ndukčným úbytkom napäta. Prúd omeškáva za napätím o Π/2.. ( Cevka ako devka najprv napäte, potom prúd. ) u = sn ωt = I max sn (ωt - Π/2) I max = X L = I max sn (ωt - Π/2) = I ef = U X ef L X L sn (ωt - Π/2) Výkon na cevke je jalový výkon Q [VA r ] Je to nam nežadaný výkon - straty, chceme aby bol čo najmenší. Udáva sa v efektívnych hodnotách. Q = I ef. U ef [VA r ]
5 Príklad č.2 : Ideálna cevka s ndukčnosťou 0,02 H je prpojená na zdroj stredavého napäta s maxmálnou hodnotou 32 V a frekvencou 50 Hz. Určte: - reaktancu cevky - ampltúdu prúdu, ktorý prechádza cevkou - rovncu okamžtej hodnoty stredavého prúdu - okamžtú hodnotu prúdu v čase 0,001 s - výkon cevky L = 0,02 H = 32V f = 50 Hz X L = I max = = (0,001) = Q = X L = ω L = 2Π f. L = 2Π. 50Hz. 0,002H X L = 6,28 Ω U I max = max = X L I max = 5,1A 32V 6,28Ω = I max sn (ωt - Π/2) = I max sn (2Πf.t - Π/2) = 5,1 A sn(2.3,14.50hz.t 1,57) = 5,1 sn (314 t 1,57) (0,001) = 5,1 sn (314. 0,001 1,57) = 5,1 sn (-1,256) (0,001) = - 4,849 A Q = I ef. U ef = 0,707.5,1A. 0, V Q = 81,5 VA r Príklad č.3 : Cevkou s ndukčnosťou 15 mh a nduktancou 75 Ω prechádza stredavý sínusový prúd s ampltúdou 20 A. Určte výkon cevky a napäte na cevke v čase s. L = 15 mh I max = 20 A X L = 75 Ω Q = u( ) =
6 X X L = ω L.. ω = L 75Ω = L 15mH = rad/s 3 ω 5.10 ω = 2Πf.f = = 2Π 2Π = 796 Hz = X L. I max = 75 Ω. 20 A = 1500V POZO! Keďže prúd je na cevke zadaný ako sínusový znamená, že je vo fáze. Ale keďže na cevke je medz prúdom a napätím posuv Π/2, prčom prúd omeškáva za napätím, tak teraz musíme rovncu napäta vyjadrť ako napäte predbehajúce prúd: u = sn (ωt + Π/2) u = sn (2Πf.t + Π/2) = 1500 V. sn (2. 3, Hz. t + 1,57) u( ) = 1500 sn (2,5 + 1,57) u( ) = -1201,7 V Q = I ef. U ef = 0,707.20A. 0, V Q = 14,995 kva r Kapacta C Ideálny kondenzátor nemá žadny čnný odpor a predsa je prúd obmedzený na konečnú hodnotu má určtý odpor (zdanlvý). Tento zdanlvý odpor sa nazýva kapactná reaktanca kapactanca - X C [Ω]. Je to prevrátená hodnota kapacty čže vodvost: 1 1 X C = = ωc 2Πf. C Vdíme, že kapactanca závsí nepramoúmerne od frekvence. 1 1 Ak by sa C = 1F, f = 50Hz, tak X C = = = = 3, Ω ωc 2Πf. C Z daného je zrejmé, že pr malej hodnote C, získame relatívne malú hodnotu X C.
7 Grafckou závslosťou X C = f(c) je hyperbola. XC[ ] f[hz] u C uc prebeh prúdu a napäta fázorový dagram prúdu a napäta uc uc Imax /2 /2 /2 t kondenzátor sa nabíja Imax kondenzátor sa vybíja kondenzátor je nabtý kondenzátor je vybtý
8 Napäte zdroja sa rovná napätu na kondenzátore. Keď napäte na kondenzátore v určtom smere raste, tak prúd v tom stom smere klesá - - kondenzátor sa nabíja. Pr úplne nabtom kondenzátore (Q = C U) sa prúd na okamh zastaví - - napäte je maxmálne. Keď napäte na kondenzátore v určtom smere klesá, tak prúd v tom stom smere raste - kondenzátor sa vybíja. Prúd predbeha napäte o Π/2 u = sn ωt = I max sn (ωt + Π/2) I max = X C = I max sn (ωt + Π/2) = I ef = U X ef C = Uef. ωc X C sn (ωt + Π/2) Výkon na kondenzátore je jalový výkon Q [VA r ] Je to nam nežadaný výkon - straty, chceme aby bol čo najmenší. Udáva sa v efektívnych hodnotách. Q = I ef. U ef [VA r ] Príklad č.4 : Ideálny kondenzátor s kapactou 2000 pf a kapactancou 600Ω je prpojený k zdroju stredavého sínusového napäta s ampltúdou 60 V. Určte napäte a prúd na kondenzátore v čase 5µs. C = 2000 pf X c = 600Ω = 60 V u(5µs)= (5µs)= X C = 1 1 =..f = ωc 2Πf. C 1 2Π.X C.C = 1 2Π.600Ω.2000 pf = 132 khz u = sn ωt = sn (2Πf.t) u(5µs)= 60 V sn (2Πf. 5µs) u(5µs)= 60 sn (2.3, ) = 60 sn (- 0,844) u(5µs)= - 50,66V
9 ZHNUTIE Čnný odpor je v stredavom obvode konštantná hodnota nezávslá od frekvence, ndukčná reaktanca raste pramoúmerne s frekvencou, kapactná reaktanca pr konštantnej kapacte klesá hyperbolcky s frekvencou. Na čnnom odpore je stredavý prúd s napätím vo fáze, na deálnej cevke prúd za napätím omeškáva o Π/2, v deálnom kondenzátore prúd predbeha napäte o Π/2.
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
STRIEDAVÝ PRÚD - PRÍKLADY
STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =
1. OBVODY JEDNOSMERNÉHO PRÚDU. (Aktualizované )
. OVODY JEDNOSMENÉHO PÚDU. (ktualizované 7..005) Príklad č..: Vypočítajte hodnotu odporu p tak, aby merací systém S ukazoval plnú výchylku pri V. p=? V Ω, V S Príklad č..: ký bude stratový výkon vedenia?
= 0.927rad, t = 1.16ms
P 9. [a] ω = 2πf = 800rad/s, f = ω 2π = 27.32Hz [b] T = /f = 7.85ms [c] I m = 25mA [d] i(0) = 25cos(36.87 ) = 00mA [e] φ = 36.87 ; φ = 36.87 (2π) = 0.6435 rad 360 [f] i = 0 when 800t + 36.87 = 90. Now
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
16 Electromagnetic induction
Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Ohmov zákon pre uzavretý elektrický obvod
Ohmov zákon pre uzavretý elektrický obvod Fyzikálny princíp: Každý reálny zdroj napätia (batéria, akumulátor) môžeme považova za sériovú kombináciu ideálneho zdroja s elektromotorickým napätím U e a vnútorným
Elektrický prúd v kovoch
Elektrický prúd v kovoch 1. Aký náboj prejde prierezom vodiča za 2 h, ak ním tečie stály prúd 20 ma? [144 C] 2. Prierezom vodorovného vodiča prejde za 1 s usmerneným pohybom 1 000 elektrónov smerom doľava.
ZOSILŇOVAČ S BIPOLÁRNYM TRANZISTOROM
ZOSILŇOVAČ S BIPOLÁNYM TANZISTOOM Zoslnene sgnálu potrebné v rádovej, televíznej technke, telekomunkácách, nformačnej technke, v automatzačnej technke, atď. Všeobecne de o zvýšene úrovne vstupného elektrckého
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Riešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave
iešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave Lineárne elektrické obvody s jednosmernými zdrojmi a rezistormi v ustálenom stave riešime (určujeme prúdy
3 Elektrický prúd. 3.1 Úvod
3 Elektrcký prúd 3. Úvod smernený pohyb elektrckých nábojov nazývame elektrcký prúd. Pohybovať sa môžu ako elektróny, tak záporné a kladné óny, ale aj protóny a né elementárne častce, prčom pohyb týchto
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι V 86
ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 86 ΑΣΚΗΣΗ. Ένα κύκλωµα RC αποτελείται από µια αντίσταση R 5Ω και έναν πυκνωτή χωρητικότητας C σε σειρά. Αν το ρεύµα προηγείται της τάσης κατά 6 ο και η κυκλική συχνότητα της πηγής είναι
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
a = PP x = A.sin α vyjadruje okamžitú hodnotu sínusového priebehu
Striedavý prúd Viliam Kopecký Použitá literatúra: - štúdijné texty a učebnice uverejnené na webe, - štúdijné texty, videa a vedomostné databázy spoločnosti MARKAB s.r.o., Žilina Vznik a veličiny striedavého
REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických
REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu
Ενδεικτικές Απαντήσεις
ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙ Κ ΩΝ Λ ΥΚΕΙΩ Ν ΚΑΙ HME ΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩ Ν ΕΠΑΓΓΕΛΜ ΑΤΙΚΩ Ν ΛΥΚΕΙ Ω Ν ( ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α Β
Elektrotechnika 2 riešené príklady LS2015
Elektrotechnika riešené príklady LS05 Príklad. Napájací ovod zariadenia tvorí napäťový zdroj 0 00V so zanedateľným vnútorným odporom i 0 a filtračný C ovod. Vstupný rezistor 00Ω a kapacitor C500μF. Vypočítajte:.
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Meranie na jednofázovom transformátore
Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................
V I V I R. Επομένωςτοποσοστιαίοσφάλμαθαείναι. Παράδειγμα2 10 Γιατοσύστημαμεσυνάρτησημεταφοράς H. s ναβρεθείηπεριοχή. συχνοτήτωνλειτουργίας.
Παράδειγμα ΑςυποθέσουμεότιημέτρησητάσηςγίνεταιμεέμμεσοτρόπομετρώνταςτορεύμαΙ καιτηναντίσταση.ανκαιστιςδύοπεριπτώσειςτοσχετικόσφάλμαισούταιμε 0,% υπολογίστετοσχετικόσφάλμαστημέτρησητηςτάσης. I d di d I
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom
Elektrický prúd I MH PQRåVWYR HOHNWULFNpKR QiERMD NWRUp SUHMGH SULHUH]RP YRGLþD ]D. dq I = dt
ELEKTCKÝ PÚD Elektrcký prú MH PåVWY HOHNWLFNpK EMD NWp HMGH LHH]P YGLþD ]D MHGWNXþDVX t Vektor hustoty elektrckého prúu J & HGVWDYXMHPåVWYHOHNWLFNpK~GXWHþ~FHK v smere jenotkového vektora J & NWp HMGH HOHPHWX
& : $!" # RC : ) %& & '"( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( :
: : C : : C : : : .. ).. (................... ٢ ( - ). :.... S MP. T S..... -. (... ) :. :. : :. - - - - ٣ sweep :X. :Y. :. CCD.. ( - ) ( - ) ( - ) ( ) ( ) ( ) X : gnd -.... ٤ DC AC - AC DC DC - Y ( )
ΑΣΚΗΣΗ 1 ΛΥΣΗ ΑΣΚΗΣΗ 2. Για το παρακάτω σύστημα πατώντας (κλείνοντας) το διακόπτη SW 1 τι θα προκύψει;
ΑΣΚΗΣΗ Για το παρακάτω σύστημα πατώντας (κλείνοντας) το διακόπτη SW τι θα προκύψει; Όταν ο διακόπτης SW κλείσει προσωρινά τότε ενεργοποιείται ο ηλεκτρονόμος Μ με αποτέλεσμα να κλείσουν οι ανοιχτές επαφές
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
2 Kombinacie serioveho a paralelneho zapojenia
2 Kombinacie serioveho a paralelneho zapojenia Priklad 1. Ak dva odpory zapojim seriovo, dostanem odpor 9 Ω, ak paralelne dostnem odpor 2 Ω. Ake su tieto odpory? Priklad 2. Z drotu postavime postavime
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
(μονάδες 5) A1.2 Κύκλωμα RLC σε σειρά τροφοδοτείται από εναλλασσόμενη τάση V=V 0 ημ ωt + και διαρρέεται. +. Τότε:
ΑΡΧΗ 1ΗΣ ΣΕΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΥΚΕΙΟΥ ΕΥΤΕΡΑ 3 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΕΚΤΡΟΟΓΙΑ ΤΕΧΝΟΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΟΥ ΤΕΧΝΟΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΣΥΝΟΟ ΣΕΙ ΩΝ:
UČEBNÉ TEXTY. Pracovný zošit č.8. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.8 Vzdelávacia
REAL-TIME CLOCKS MIXED-SIGNAL DESIGN GUIDE. Data Sheets Applications Notes Free Samples. DS32kHz
REAL-TIME CLOCKS MIXED-SIGNAL DESIGN GUIDE Data Sheets Applications Notes Free Samples DS32kHz TCXO 32.768kHz Dallas Semiconductor RTC RTC IC X1 DS32kHz 32kHz 4 1 DS32kHz 1998 RTC (V) SRAM 32kHz DS1500
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu.
Laboratórna práca č.1 Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu. Zapojenie potenciometra Zapojenie reostatu 1 Zapojenie ampémetra a voltmetra
RIEŠENIE WHEATSONOVHO MOSTÍKA
SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
Quartz Crystal Test Report
Quartz Crystal Test Report Abracon Part no. : Data Type: Page 2-3 Page 4-5 Page 6-7 Page 8-9 Page 10-11 ABM8-Series Crystal parameters & Spice Model ABM8-16.000MHz-10-1-U ABM8-13.000MHz-10-1-U ABM8-40.000MHz-10-1-U
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
O.172 ITU-T (SDH) ITU-T O.172 (2005/04)
O.172 ITU-T (2005/04) :O / (SDH) ITU-T O.172 O O.9 O.19 O.39 - - - - O.1 O.10 O.20 O.129 O.40 O.199 - O.130 O.209 O.200 - /. (SDH) ITU-T O.172 (SDH).(SDH).(PDH) (SDH). 2005 13 ITU-T O.172 (2008-2005) 4.ITU-T
Άσκηση. υπολογιστούν τα Ω, F, T, φ, So, και P. Λύση: Το σήμα πρέπει να τροποποιηθεί ώστε να έλθει στη μορφή S(t)=So sin(ωt+φ)
Ένα σήμα περιγράφεται από τις σχέσεις: S(t)= sin(ωt+φ) (πλάτος) με Ω κυκλική συχνότητα Ω = πf = /R (ισχύς) με R αντίσταση φόρτου. Επίσης ισχύει Ι(t) = Io sin (Ωt +φ) και = Io R. και Άσκηση Δίνεται σήμα
MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:
1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených
ELEKTROTECHNIKA zoznam kontrolných otázok na učenie toto nie sú skutočné otázky na skúške
1. Definujte elektrický náboj. 2. Definujte elektrický prúd. 3. Aký je to stacionárny prúd? 4. Aký je to jednosmerný prúd? 5. Ako možno vypočítať okamžitú hodnotu elektrického prúdu? 6. Definujte elektrické
Elektrický prúd v kovoch
Vznik jednosmerného prúdu: Elektrický prúd v kovoch. Usporiadaný pohyb voľných častíc s elektrickým nábojom sa nazýva elektrický prúd. Podmienkou vzniku elektrického prúdu v látke je prítomnosť voľných
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama
MAK by T.Koyama MAK MAK f () = exp{ fex () = exp (') v(, ') ' () (') ' v (, ') ' f (), (), v (, ') f () () f () () v (, ') f () () v (, ') f () () () = + {exp( A) () f () = exp( K ) () K,,, A *** ***************************************************************************
Strana 1/5 Príloha k rozhodnutiu č. 544/2011/039/5 a k osvedčeniu o akreditácii č. K-052 zo dňa Rozsah akreditácie
Strana 1/5 Rozsah akreditácie Názov akreditovaného subjektu: CHIRANALAB, s.r.o., Kalibračné laboratórium Nám. Dr. A. Schweitzera 194, 916 01 Stará Turá IČO: 36 331864 Kalibračné laboratórium s fixným rozsahom
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
και ότι όλες οι τάσεις ή ρεύματα που αναπτύσσονται σε ένα κύκλωμα έχουν την ίδια συχνότητα ω. Οπότε για τον πυκνωτή
1 130306 Πρώτο μάθημα. Επανάληψη μιγαδικών. Παράδειγμα με z 1 = 5 j3. Μέτρο z 1 = 5 2 3 2 = 5.83, φάση /z 1 = tan 1 (3/5) = 30.96. Τι γίνεται με τα τεταρτημόρια όταν z 2 = 5 j3, z 3 = 5 j3, z 4 = 5 j3.
1. Určenie VA charakteristiky kovového vodiča
Laboratórne cvičenia podporované počítačom V charakteristika vodiča a polovodičovej diódy 1 Meno:...Škola:...Trieda:...Dátum:... 1. Určenie V charakteristiky kovového vodiča Fyzikálny princíp: Elektrický
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
Katedra teoretickej a experimentálnej elektrotechniky Fakulta elektrotechniky a informatiky STU
Ktedr teoretckej expermentálnej elektrotechnky Fkult elektrotechnky nformtky STU Elektrcké ovody I Zerk nerešených príkldov 4 4 1 u 5 (t) 1 C 2 6 (t) 2 3 1 2 u 12 u 11 u 22 u 21 2002, 2003 Pvol Krvošík,
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 04 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΟΜΑ Α ΠΡΩΤΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 04 Παρασκευή, 6 Ιουνίου 04 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ Α. Για τις ημιτελείς προτάσεις Α. και Α.
Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt)
Θέμα 1 ο Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014 Για το κύκλωμα ΕΡ του διπλανού σχήματος δίνονται τα εξής: v ( ωt 2 230 sin (
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Επίλυση κυκλωμάτων εναλλασομένου ρεύματος Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
59. ročník Fyzikálnej olympiády v školskom roku 2017/2018 Kategória B domáce kolo Text úloh
59. ročník Fyzikálnej olympiády v školskom roku 2017/2018 Kategória B domáce kolo Text úloh 1. Streľba z húfnice Charakter stredovekých vojen významne ovplyvnilo použitie palných zbraní. Išlo o ručné zbrane
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ Θέμα Α Α1 δ Α δ Α3 γ Α4 β Α5 Σ, Λ, Λ, Σ, Λ Θέμα Β Β1 Εφαρμόζουμε
ΑΠΟΚΡΙΣΗ ΚΥΚΛΩΜΑΤΩΝ ΣΕ HMITONIKH ΔΙΕΓΕΡΣH (HMITONIKH ANAΛYΣΗ)
ΑΠΟΚΡΙΣΗ ΚΥΚΛΩΜΑΤΩΝ ΣΕ HMITONIKH ΔΙΕΓΕΡΣH (HMITONIKH ANAΛYΣΗ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ 1/5 Τι περιλαμβάνει Εκθετική διέγερση Φάσορας Επίλυση κυκλώματος μετασχηματισμός των στοιχείων Εμπέδηση Ισχύς
Physics by Chris Simopoulos. rad. rad. 10 β) Είναι Α=0,4 m και 0,4 10. Η χρονική εξίσωση της απομάκρυνσης είναι ) 3 U U 3
. ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ ΛΥΣΕΙΣ 9. α) Από το κανόνα του παραλληλογράμμου έχουμε, (, ),,,,, π Οπότε θ, / sec και, sec β) Είναι Α=, και, / sec Η χρονική εξίσωση της απομάκρυνσης είναι A
Príklady na precvičovanie Fourierove rady
Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru
Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων
Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων ΕΙΣΑΓΩΓΗ - Το μάθημα αυτό πραγματεύεται θεμελιώδεις έννοιες των γραμμών μεταφοράς στην επιστημονική περιοχή των ηλεκτρονικών συστημάτων
ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE
veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n
Φίλτρα διέλευσης: (α) χαμηλών συχνοτήτων (β) υψηλών συχνοτήτων
2 1 η ΕΝΟΤΗΤΑ Φίλτρα διέλευσης: (α) χαμηλών συχνοτήτων (β) υψηλών συχνοτήτων 3 ο Εργαστήριο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 3 Άσκηση 3 η. 3.1 Φίλτρο διελεύσεως χαμηλών συχνοτήτων ή Χαμηλοπερατό φίλτρο με μία σταθερά χρόνου.
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
3. Meranie indukčnosti
3. Meranie indukčnosti Vlastná indukčnosť pasívna elektrická veličina charakterizujúca vlastnú indukciu, symbol, jednotka v SI Henry, symbol jednotky H, základná vlastnosť cievok. V cievke, v ktorej sa
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Kola u ustaljenom prostoperiodičnom režimu
Kola u ustalenom prostoperiodičnom režimu svi naponi i sve strue u kolu su prostoperiodične (sinusoidalne ili kosinusoidalne funkcie vremena sa istom kružnom učestanošću i u opštem slučau različitim fazama
Magneti opis i namena Opis: Napon: Snaga: Cena:
Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet
Nestacionárne magnetické pole
Magnetické pole 1. 1.Vodič s dĺžkou 8 cm je umiestnený kolmo na indukčné čiary magnetického poľa s magnetickou indukciou 2,12 T. Určte veľkosť sily pôsobiacej na vodič, ak ním prechádza prúd 5 A. [F =
Σχήμα 1 Μορφές κυμάτων (α) Μονοδιάστατο, (β) Διδιάστατο, (γ) και (δ) Τρισδιάστατα. [1]
Άσκηση 3 - Κύματα Η δημιουργία κυμάτων είναι το αποτέλεσμα πολλών φυσικών διεργασιών. Κύματα εμφανίζονται στην επιφάνεια της θάλασσας, τα ηχητικά κύματα οφείλονται στις διαταραχές της πίεσης του αέρα,
F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK
OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 8: Διαμόρφωση Γωνίας (2/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Εύρος Ζώνης Συχνοτήτων Σημάτων με Διαμόρφωση Γωνίας Δημιουργία Σημάτων Διαμορφωμένων
1 2 3 4 C n a k max 1 = 92% max 1 = 70% max 1 = 60% max 1 = 50% min(p) = 180 max(p) = 180 min(p) = 90 max(p) = 145 min(p) = 0 max(p) = 90 min(w) = w q min(w) = 2 w q min(w) = 3 w q 1 2 3 X L R Z δ
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Cvičenia z elektrotechniky II
STREDNÁ PRIEMYSELNÁ ŠKOLA ELEKTROTECHNICKÁ Plzenská 1, 080 47 Prešov tel.: 051/7725 567 fax: 051/7732 344 spse@spse-po.sk www.spse-po.sk Cvičenia z elektrotechniky II Ing. Jozef Harangozo Ing. Mária Sláviková
1. VZNIK ELEKTRICKÉHO PRÚDU
ELEKTRICKÝ PRÚD 1. VZNIK ELEKTRICKÉHO PRÚDU ELEKTRICKÝ PRÚD - Je usporiadaný pohyb voľných častíc s elektrickým nábojom. Podmienkou vzniku elektrického prúdu v látke je: prítomnosť voľných častíc s elektrickým
Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων
0 Ιουνίου 04 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Θετικής & Τεχνολογικής Κατεύθυνσης Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων ΘΕΜΑ Α Α.. (γ) Α.. (β). Α.3. (γ). Α.4. (β). Α.5. α. Σωστό β. Σωστό
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 7: Διαμόρφωση Γωνίας (1/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση γωνίας Ορισμοί Η έννοια της Στιγμιαίας Συχνότητας Διαμόρφωση Φάσης (Phase
Μάθημα Ακουστικής. Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ
Μάθημα Ακουστικής Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ Περιοδική Κίνηση Μία κίνηση χαρακτηρίζεται σαν περιοδική αν αναπαράγεται απαράλλακτα σε ίσα διαδοχικά χρονικά διαστήματα. Στο χρονικό αυτό
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΛΗ Η ΥΛΗ (Μέχρι στροφορμή) ΚΥΡΙΑΚΗ 25 ΦΕΒΡΟΥΑΡΙΟΥ 2018
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΛΗ Η ΥΛΗ (Μέχρι στροφορμή) ΚΥΡΙΑΚΗ 5 ΦΕΒΡΟΥΑΡΙΟΥ 018 ΘΕΜΑ Α Α1 β Α5. α Σωστό Α β β Σωστό Α3 δ γ Λάθος Α4 γ δ Σωστό ε Λάθος ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Β Β1.Α.
W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max
( V.m -1 ) ( V) ( V) (0,045 J)
1. Aká je intenzita elektrického poľa v bode, ktorý leží uprostred medzi ďvoma nábojmi Q 1 = 50 µc a Q 2 = 70 µc, ktoré sú od seba vzdialené r = 20 cm? Náboje sú v petroleji /ε = 2 ε 0 /. (9.10 6 V.m -1
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης. Ημ/νία: 10 Ιουνίου 2014
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Ημ/νία: 0 Ιουνίου 04 Απαντήσεις Θεμάτων ΘΕΜΑ Α A. γ Α. β Α3. γ Α4. β Α5. α) Σωστό β) Σωστό