ΦΘΙΝΟΥΣΕΣ & ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
|
|
- Ειδοθεα Δημητρακόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΦΘΙΝΟΥΣΕΣ & ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ
2 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Φθίνυσα Ταλάντση Φθίνυσα λέγεται κάθε ταλάντση τ πλάτς της πίας ελαττώνεται συνεχώς και μηδενίζεται βαθμιαία. Η απόσβεση αυτή φείλεται σε αντιστάσεις (μηχανικές, ηλεκτρικές κ.α.) και στην πραγματικότητα εμφανίζεται σε όλες τις ταλαντώσεις πυ γίννται στη φύση. Μια συνήθης περίπτση τέτιυ είδυς ταλάντσης είναι η απλή αρμνική ταλάντση ενός σώματς, στην πία όμς εμφανίζεται και μια δύναμη αντίστασης Τ αντίθετη της ταχύτητας και ανάλγη με αυτή. Δηλαδή: Τ = -bυ = -bdx/, όπυ b η σταθερά απόσβεσης. Τότε σύμφνα με τ νόμ τυ Newton η εξίσση κίνησης είναι: F mα kx - dx b d x m d x b dx m k m x 0 () Θέτντας γ = b/m και k / m (φυσική συχνότητα) η () γράφεται: d x γ dx x 0 η πία είναι μια διαφρική εξίσση δεύτερης τάξης με σταθερύς συντελεστές. () Αν γ (μικρή απόσβεση), η λύση της () είναι: γt x(t) e cos( t φ) όπυ Α και φ σταθερές, ι τιμές τν πίν πρσδιρίζνται από τις αρχικές συνθήκες και γ. Συνεπώς η απόσβεση πρκαλεί μείση της συχνότητας ταλάντσης καθώς και μείση τυ πλάτυς ταλάντσης, τ πί δίνεται από τν όρ e γt της (3) και δεν είναι σταθερός. Η ενέργεια πυ χάνεται από τ ταλαντύμεν σώμα απρρφάται από τ περιβάλλν μέσ. (3) Αν γ (κρίσιμη απόσβεση) τότε η γενική λύση της () είναι: γt x(t) ( t)e (4) όπυ Α,Β σταθερές καθριζόμενες από τις αρχικές συνθήκες. Αν γ (μεγάλη απόσβεση) τότε η γενική λύση της () είναι: x(t) ( e pt e pt ) e γt, όπυ p γ (5) ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ
3 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Παρατηρείται ότι στις περιπτώσεις κρίσιμης και μεγάλης απόσβεσης, η κίνηση δεν είναι περιδική. Ακλύθς στ Σχήμα 9.7 φαίνεται η γραφική απεικόνιση της απμάκρυνσης τυ ταλανττή από τη θέση ισρρπίας συναρτήσει τυ χρόνυ για τις τρεις παραπάν περιπτώσεις. x A γ +Ae -γt x A γ O t γ -A (α) -Ae -γt O Σχήμα 9.7 (β) t ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ
4 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Εξαναγκασμένη Ταλάντση Οι ταλαντώσεις πυ παράγνται όταν τ ταλαντύμεν σύστημα δέχεται μια εξτερική περιδική διεγείρυσα δύναμη λέγνται εξαναγκασμένες ταλαντώσεις. Οι εξαναγκασμένες ταλαντώσεις έχυν τη συχνότητα της εξτερικής δύναμης και όχι τη φυσική συχνότητα τυ συστήματς. Παραδείγματα εξαναγκασμένης ταλάντσης απτελύν μια γέφυρα η πία δνείται υπό την επίδραση τυ βήματς τν στρατιτών πυ περνύν πάν από αυτή ή διαπασών τ πί δνείται όταν εκτεθεί στην περιδική δύναμη ενός ηχητικύ κύματς. Επμένς η κίνηση ενός σώματς μάζας m στ πί ασκύνται ι δυνάμεις kx, -bυ (απόσβεση) και Focost (διεγείρυσα δύναμη) είναι εξαναγκασμένη ταλάντση, πυ περιγράφεται από την εξίσση κίνησης: dx d x F mα kx b F cos t m Θέτντας γ = b/m και k / m η παραπάν εξίσση παίρνει τη μρφή: d x dx F γ x cos t (6) m Η (6) είναι μια μη μγενής διαφρική εξίσση δεύτερης τάξης με σταθερύς συντελεστές, η γενική λύση της πίας είναι: γt x(t) sin( t δ) e cos( t φ) (7) όπυ F (8) m ( (γ) ) γ και δ tan τ πλάτς και η διαφρά φάσης της εξαναγκασμένης ταλάντσης αντίστιχα. Ο δεύτερς όρς της (7) μειώνεται εκθετικά με τ χρόν κι έτσι έχει σημασία στην αρχή της ταλάντσης. Άρα τ σώμα τελικά εκτελεί απλή αρμνική ταλάντση με συχνότητα ίση με αυτή της διεγείρυσας δύναμης (η πία αναπληρώνει την απώλεια ενέργειας από τις απσβέσεις), όπυ περιγράφεται από τν πρώτ όρ της (7). (9) ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ
5 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Παρατήρηση Από τη σχέση (8) απδεικνύεται ότι τ πλάτς της εξαναγκασμένης ταλάντσης γίνεται μέγιστ όταν γ. Η χαρακτηριστική αυτή τιμή της εξτερικής συχνότητας στην πία τ πλάτς ταλαντώσες γίνεται μέγιστ λέγεται συχνότητα συντνισμύ και η κατάσταση αυτή τυ συστήματς λέγεται συντνισμός. Γενικά όσ μικρότερη είναι η απόσβεση σε ένα σύστημα τόσ πι κντά στη φυσική συχνότητα είναι η συχνότητα συντνισμύ.στην ριακή περίπτση όπυ δεν υπάρχει απόσβεση (γ=0), η εξτερική συχνότητα πρσεγγίζει τη φυσική με απτέλεσμα τ πλάτς της ταλάντσης να απειρίζεται ( ). Στ Σχήμα 9.8 φαίνεται τ πλάτς μιας εξαναγκασμένης ταλάντσης συναρτήσει της εξτερικής συχνότητας για διαφρετικύς συντελεστές απσβέσες. ( ) A b=0 b 0 b >b O Σχήμα 9.8 ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ
6 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Άσκηση Σματίδι μάζας m = kgr κινείται πάν στν άξνα x και έλκεται από την αρχή Ο με μια δύναμη μέτρυ F = 4x Nt. Αν για t = 0 είναι xo =0 m και υ = 0 να υπλγιστύν: α) Η διαφρική εξίσση κίνησης και η περίδς της ταλάντσης. β) Η θέση και η ταχύτητα τυ σματιδίυ συναρτήσει τυ χρόνυ. γ) Αν στ σματίδι επιδρά επιπλέν μια δύναμη τριβής μέτρυ Τ = υ Nt, όπυ υ η ταχύτητα, να υπλγιστύν ι συναρτήσεις x(t) και υ(t). Λύση α) Ο ς νόμς τυ Newton δίνει: F mα F mx 4x x x 4x 0 () δηλαδή τ σματίδι εκτελεί απλή αρμνική ταλάντση περί τ Ο με κυκλική συχνότητα 4 rad / sec και περίδ π / π sec. β) Η γενική λύση της () είναι: x (t) Acos(t φ) () dx πότε υ( t) sin( t φ) (3) Οι αρχικές συνθήκες στις (), (3) δίνυν: 0 = Acosφ (4) 0 sin φ sinφ 0 φ nπ (n ακέραις) και η (4) δίνει για τ πλάτς ταλάντσης: Α=0m Άρα : x(t) 0cos(t nπ) m υ(t) 0sin(t nπ) m/sec ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ
7 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ γ) Η περίπτση αυτή αντιστιχεί σε φθίνυσα ταλάντση και ς νόμς τυ Newton τώρα δίνει: F mα F T mx -4x- x x x 4x 0 (5) Συγκρίνντας την (5) με την εξίσση (9-4) παρατηρείται ότι γ= rad/sec και = red/sec. Οπότε (μικρή απόσβεση) και η λύση της (5) είναι της μρφής : γ x(t) Ae γt cos( t φ) Αe cos( t φ) - (6) όπυ γ 4 3 rad / sec. Η ταχύτητα είναι : dx t υ(t) e cos( t φ) sin( t φ) (7) Οι αρχικές συνθήκες στις (6) και (7) δίνυν: 0=Αcosφ (8) 0 (cos φ sin φ) cosφ 3 sin φ 0 φ -π/ 6 και η (8) δίνει για τ αρχικό πλάτς ταλάντσης: 0 cos( π/6),5 m Άρα: x(t),5e t cos( 3t π/6) m υ(t),5e t [cos( 3t - π / 6) 3 sin( 3t - π / 6)] m/sec ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ
8 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Άσκηση Τ πλάτς ενός αρμνικύ ταλανττή με απόσβεση πέφτει στ /e της αρχικής τιμής μετά από n περιόδυς. Να δειχθεί ότι λόγς της περιόδυ Τ με απόσβεση πρς την περίδ Τ χρίς απόσβεση δίνεται από τη σχέση: 4π n Λύση Η περίδς τυ ταλανττή χρίς απόσβεση είναι: π π () ενώ με απόσβεση είναι: π π () όπυ γ γ (3) Αφύ τ πλάτς τυ ταλανττή με απόσβεση πέφτει στ /e της αρχικής τιμής μετά από n περιόδυς, πρκύπτει σύμφνα με την εξίσση θέσης αρμνικύ ταλανττή με μικρή απόσβεση για φ=0: x(t) Ae γt cos t e e e e γnt γnt cos nt e γ Επμένς η (3) λόγ τν (), () και (4) δίνει: nt () e γnt cosπn (4) 4π 4π n 4π n 4π n ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ
9 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Άσκηση 3 Ένας αρμνικός ταλανττής παρυσιάζει κρίσιμη απόσβεση. Αν τη χρνική στιγμή t = 0 είναι x(0) = xo και υ(0)=0 να υπλγισθεί η θέση και η ταχύτητα συναρτήσει τυ χρόνυ. Λύση Η χρνική μεταβλή της θέσης ενός αρμνικύ ταλανττή πυ παρυσιάζει κρίσιμη απόσβεση είναι: γt x(t) (A Bt)e () Άρα η ταχύτητα είναι : dx γt γt υ (t) γe e t( γ)e -γt υ( t) [ γ ( γt)]e () -γt Οι αρχικές συνθήκες στις () και () δίνυν: x και 0 ( γ ) γ γx Άρα: x (t) x ( γt)e -γt και υ(t) ( γx όπυ γ=b/m. γx γ x t)e -γt υ(t) γ x te γt ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ
10 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Άσκηση 4 Δίνεται απλό εκκρεμές μήκυς, τ πί βρίσκεται στν αέρα και τ πλάτς της γνίας ταλάντσης μειώνεται από 6 σε 5,4 σε χρόν 7min. Να βρεθεί η εξίσση της ταλάντσης, χρόνς ηρέμησης και η κυκλική συχνότητα. Λύση m Τ εκκρεμές αυτό απτελεί φθίνυσα ταλάντση, η εξίσση κίνησης της πίας είναι: d φ dφ γ φ 0 Η γενική λύση της παραπάν είναι: γt φ(t) φ e cost () o όπυ φ o γ η κυκλική συχνότητα της ταλάντσης και o π π 6 6rad rad τ αρχικό πλάτς της ταλάντσης Η χρνική μείση τυ πλάτυς της ταλάντσης δίνεται από τη σχέση: Έτσι για t = 7min = 60 sec είναι Άρα η () δίνει: Φ(t) Φ 5,4 γt φ o e () o π 5,4rad 360 0,03πrad π 60γ 60γ 0,03π e e 0,9 60γ n0,9 γ 6, g 0 Η φυσική συχνότητα τυ εκκρεμύς είναι : 0 rad / sec 5 sec Άρα: γ 0 (6,5 0 5 ) 9,999 3,6rad / sec Συνεπώς: φ(t) π e 30 6,50 5 t cos(3,6t) rad Ο χρόνς ηρέμησης αντιστιχεί στ χρόν στν πί τ πλάτς της ταλάντσης θα μηδενιστεί, δηλαδή όταν Φ(t) 0 κι αυτό συμβαίνει όταν e γt 0, δηλαδή για t. Συνεπώς θερητικά μετά από άπειρ χρόν τ εκκρεμές θα ηρεμήσει. ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ
11 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Άσκηση 5 Από κατακόρυφ ελατήρι σταθεράς k=00 N/m εξαρτάται σώμα μάζας m=5kgr. Στ σώμα εφαρμόζεται εξτερική περιδική δύναμη F(t) = 50cos5t Nt, καθώς ασκείται σε αυτό μια δύναμη τριβής Τ = -0υ Νt. Να υπλγιστύν: α) Η συχνότητα, τ πλάτς και η περίδς στην μόνιμη κατάσταση της εξαναγκασμένης ταλάντσης. β) Η απμάκρυνση συναρτήσει τυ χρόνυ στην μόνιμη κατάσταση. Λύση α) Στην μόνιμη κατάσταση τ σύστημα ταλαντώνεται με τη συχνότητα της εξτερικής περιδικής δύναμης. Δηλαδή = 5rad/sec. Άρα η περίδς της εξαναγκασμένης ταλάντσης είναι : π π sec 5 Τ πλάτς της εξαναγκασμένης ταλάντσης είναι: m ( F ) (γ) όπυ k 00 b rad / sec και γ 0,4 rad / sec. m 5 m 5 5 Άρα : 5 50 (5 4) (0,8 4) ,76 0,9 m β) Η απμάκρυνση συναρτήσει τυ χρόνυ τυ εξαναγκασμένυ ταλανττή στη μόνιμη κατάσταση είναι: x(t) = Asin(t-δ) όπυ δ tan γ tan 3, tan 5 4 3, 0,5 rad Άρα: x(t) = 0,9sin(5t-0,5) m ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ
ΦΘΙΝΟΥΣΕΣ ΚΑΙ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΘΙΝΟΥΣΕΣ ΚΑΙ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.piras.weebly.c ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ
Διαβάστε περισσότεραEΞΑΝΑΓΚΑΣΜΕΝΕΣ TAΛANTΩΣEIΣ
Kεφ. 3 EΞΑΝΑΓΚΑΣΕΝΕΣ TAΛANTΩΣEIΣ Θα εξετάσυμε τη περίπτση εφαρμγής σ ένα σύστημα μιάς δεδμένης εξτερικής δύναμης η πία να εξαρτάται από τ χρόν (δηλ. τ σύστημα υπβάλλεται σε εξτερική διέγερση. η περίπτση:
Διαβάστε περισσότεραΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Polaroids)
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 94677 ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Plarids) Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 94677 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 94677 4. Πόλωση
Διαβάστε περισσότεραγραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
η εξεταστική περίδς από 6/0/ έως 06// γραπτή εξέταση στ µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείυ Τµήµα: Βαθµός: Ονµατεπώνυµ: Καθηγητές: ΑΤΡΕΙ ΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Στις παρακάτω ερωτήσεις να γράψετε
Διαβάστε περισσότεραΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ
θ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΤΗΣ ΕΞΑΝΑΓΚΑΣΜΕΝΗΣ ΤΑΛΑΝΤΩΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑΘΕΡΑΣ
Διαβάστε περισσότεραΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
8 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίυ, 013 Ώρα: 10:00-13:00 ΘΕΜΑ 1 : (Μνάδες 15) Πρτεινόμενες Λύσεις Η πόρτα μάζας Μ = 3m και πλάτυς μπρεί να περιστρέφεται χρίς τριβές
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΖΕΥΓΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΖΕΥΓΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poiras.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ
Διαβάστε περισσότεραD b < 2mω0 (εκτός ύλης) m
Φθίνουσες - Εξαναγκασμένες Ταλαντώσεις Τι μπορούμε να διδάξουμε στους μαθητές τελικά, εκτός από αυτά που γράφει το σχολικό βιβλίο; Α) Φθίνουσες ταλαντώσεις Μελετάμε την περίπτση όπου η σταθερά απόσβεσης
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΥΜΑΤΑ ΣΕ 2 & 3 ΔΙΑΣΤΑΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΥΜΑΤΑ ΣΕ & 3 ΔΙΑΣΤΑΣΕΙΣ Σγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pmoiras.weebl.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Διαβάστε περισσότερα5.15 Εφαρμογές της ομογενούς Δ.Ε. 2ης τάξης με σταθερούς συντελεστές
4 ΚΕΦΑΛΑΙΟ 5 α) y -y +y e x /x 5 Aπ. u(/)x -3 e x β) y +ysecx Aπ. u[csx]ln csx +xsinx γ) y +4ysin x Aπ. u[cs (x)+]/ ) Γενικεύοντας την παραπάν πορεία για n>, δείξτε ότι τα v i (x) ικανοποιούν το σύστημα
Διαβάστε περισσότεραΕάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt
Μία ιστρία στην ΕΞΝΓΚΣΜΕΝΗ ΤΛΝΤΩΣΗ Κατά την περσινή σχλική χρνιά, στα πλαίσια της Π.Δ.Σ. πρσπάησα, αντί να λύσ ασκήσεις πυ μπρεί να υπάρχυν σε πλλά ιαφρετικά εξσχλικά βιβλία, να εάν ι μαητές μυ έχυν πραγματικά
Διαβάστε περισσότεραΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς.
ΑΑΝΤΉΣΕΙΣ ΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 009 Επιμέλεια: Νεκτάρις ρωτπαπάς 1. Σωστή απάντηση είναι η γ. ΘΕΜΑ 1. Σωστή απάντηση είναι η α. Σχόλι: Σε μια απλή αρμνική
Διαβάστε περισσότεραΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΑΠΛΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΑΠΛΩΝ ΣΥΣΤΗΜΑΤΩΝ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.poiras.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ TAΛΑΝΤΩΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ TAΛΑΝΤΩΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Διαβάστε περισσότεραΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΘΕΜΑ 1 Να γράψετε στ τετράδιό σας τν αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα τ γράμμα πυ αντιστιχεί στη σωστή απάντηση. 1. Αν δείκτης διάθλασης ενός πτικύ υλικύ μέσυ είναι n= 4 3 ακτινβλία
Διαβάστε περισσότεραγ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m.
Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 015-016 Ν. Βλαχάκης 1. Σώμα μάζας m και φορτίου q κινείται σε κατακόρυφο άξονα x, δεμένο σε ελατήριο σταθεράς k = mω του οποίου το άλλο άκρο είναι σταθερό. Το σύστημα
Διαβάστε περισσότεραΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
8 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίυ, 013 Ώρα: 10:00-13:00 Οδηγίες: 1) Τ δκίμι απτελείται από πέντε (5) σελίδες και πέντε (5) θέματα. ) Να απαντήσετε σε όλα τα θέματα
Διαβάστε περισσότεραΕξαναγκασμένες ταλαντώσεις (1ο μέρος)
Εξαναγκασμένες ταλαντώσεις (1ο μέρος) Στο σχμα φαίνεται μια διάταξη εξαναγκασμένης ταλάντσης Ένα σώμα μάζας είναι δεμένο στο κάτ άκρο κατακόρυφου ελατηρίου σταθεράς Κ και εξαναγκάζεται σε ταλάντση ό έναν
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Διαβάστε περισσότεραΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ MAXWELL ΘΕΩΡΙΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΕΞΙΣΩΣΕΙΣ MAXWELL ΘΕΩΡΙΑ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778
Διαβάστε περισσότεραΟι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες
ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Φθίνουσες μηχανικές ταλαντώσεις Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ταλαντώσεις. Η ελάττωση του πλάτους (απόσβεση)
Διαβάστε περισσότεραΗμερομηνία: Τετάρτη 04 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερμηνία: Τετάρτη 04 Απριλίυ 018 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς πρτάσεις Α1 Α4 να γράψετε στ τετράδιό σας τν αριθμό της
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΙΚΕΣ ΔΟΜΕΣ ΤΑΛΑΝΤΩΤΩΝ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΙΚΕΣ ΔΟΜΕΣ ΤΑΛΑΝΤΩΤΩΝ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.poira.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΒΛΗΤΗΣ ΜΑΖΑΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΒΛΗΤΗΣ ΜΑΖΑΣ Σγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.piras.weebly.c ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
Διαβάστε περισσότεραΠέµπτη, 3 Ιουνίου 2004 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 004 Πέµπτη, 3 Ιυνίυ 004 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΜΑ Ο Να γράψετε στ τετράδιό σας τν αριθµό καθεµίας από τις παρακάτω ερωτήσεις -4 και δίπλα τ γράµµα πυ
Διαβάστε περισσότεραΦΘΙΝΟΥΣΕΣ ΜΗΧΑΝΙΚΕΣ ΑΡΜΟΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
νοεξαρτητοτεπλοεδειξφθινουσεσ ΜΗΧΑΝΙΚΕΣ ΑΡΜΟΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ (17-18) Αν το πλάτος μιας ελεύθερης ταλάντωσης συνεχώς μειώνεται, η ταλάντωση ονομάζεται φθίνουσα ή αποσβεννύμενη ταλάντωση. Όλες οι ταλαντώσεις
Διαβάστε περισσότεραΑρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να
Διαβάστε περισσότεραΘΕΜΑ Α Στις ερωτήσεις να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση χωρίς να αιτιολογήσετε την επιλογή σας.
'' Περί Γνώσεως'' Φροντιστήριο Μ.Ε. Φυσική Προσανατολισμού Γ' Λ. ΜΑΘΗΜΑ /Ομάδα Προσανατολισμού Θ.Σπουδών / ΤΑΞΗ : ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΦΥΣΙΚΗ / Προσανατολισμού / Γ ΛΥΚΕΙΟΥ 2 o ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ
Διαβάστε περισσότεραΑτομική και ηλεκτρονιακή δομή των στερεών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ατμική και ηλεκτρνιακή δμή τν στερεών Μντέλ συζευγμένν εκκρεμών Διδάσκν : Επίκυρη Καθηγήτρια Χριστίνα Λέκκα Άδειες Χρήσης Τ παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΕΝΟΣ ΒΑΘΜΟΥ ΕΛΕΥΘΕΡΙΑΣ
ΣΥΣΤΗΜΑ ΕΝΟΣ ΒΑΘΜΟΥ ΕΛΕΥΘΕΡΙΑΣ 11 ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑ ΕΝΟΣ ΒΑΘΜΟΥ ΕΛΕΥΘΕΡΙΑΣ.1. Ελεύθερη ταλάντση συστήματος ενός βαθμού ελευθερίας Φυσική συχνότητα και απόκριση Ο αρμονικός ταλανττής (βλ. σχήμα.1.α) είναι
Διαβάστε περισσότεραΗ διάταξη εξαναγκασμένων ταλαντώσεων του σχολικού βιβλίου
Η ιάταξη εξαναγκασμένν ταλαντώσεν του σχολικού βιβλίου Εισαγγή Κατά την μαθηματική μελέτη της εξαναγκασμένης ταλάντσης με αρμονικό ιεγέρτη θερούμε ένα σώμα στο οποίο, εκτός από την ύναμη επαναφοράς Dx
Διαβάστε περισσότεραΠέµπτη, 6 Ιουνίου 2002 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, 6 Ιυνίυ 00 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ Στις ερωτήσεις - να γράψετε στ τετράδιό σας τν αριθµό της ερώτησης και δίπλα τ γράµµα πυ αντιστιχεί στη σωστή
Διαβάστε περισσότεραΣτα ερωτήματα 1,2.3,4 του ζητήματος αυτού μια πρόταση είναι σωστή να την κυκλώσετε)
Ζήτημα ο Στα ερωτήματα,., του ζητήματος αυτού μια πρόταση είναι σωστή να την κυκλώσετε. Ένα σώμα κάνει απλή αρμονική ταλάντωση στην οποία η απομάκρυνση είναι της μορφής χ=aημωt κάποια στιγμή t η φάση του
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον
Διαβάστε περισσότεραE = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,
Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,
Διαβάστε περισσότεραΕξαναγκασµένες φθίνουσες ταλαντώσεις
ΦΥΣ 131 - Διαλ.32 1 Εξαναγκασµένες φθίνουσες ταλαντώσεις q Στην περίπτωση αυτή µελετάµε την δεδοµένη οδηγό δύναµη: F d (t) = F cos! d t η οποία δρα επιπλέον των άλλων δυνάµεων:!kx! b x Ø H συχνότητα µπορεί
Διαβάστε περισσότεραΕρωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος
Ερωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος 1. Ένα σώµα εκτελεί εξαναγκασµένη ταλάντωση. Ποιες από τις επόµενες προτάσεις είναι σωστές; Να αιτιολογήσετε την απάντησή σας. ί) Η συχνότητα της ταλάντωσης είναι
Διαβάστε περισσότεραγ. Για την απώλεια της ενέργειας αφαιρούμε την ενέργεια που είχε το σώμα τη χρονική στιγμή t 1, αυτή της
Βασικές ασκήσεις στις φθίνουσες ταλαντώσεις.. Μικρό σώμα εκτελεί φθίνουσα ταλάντωση με πλάτος που μειώνεται με το χρόνο σύμφωνα με τη σχέση =,8e,t (S.I.). Να υπολογίσετε: α. το πλάτος της ταλάντωσης τη
Διαβάστε περισσότεραΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ
ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Σωµάτι α (πυρήνας 4 He ) µε µάζα m a και φρτί q a =e και πυρήνας ασβεστίυ 40 Ca 0 µε µάζα mπυρ = 10m a και φρτί Q = 0 e πυρ, βρίσκνται αρχικά σε πλύ µεγάλη απόσταση µεταξύ
Διαβάστε περισσότεραΕ Ρ Ω Τ Η Σ Ε Ι Σ Σ Τ Ι Σ Φ Θ Ι Ν Ο Υ Σ Ε Σ Τ Α Λ Α Ν Τ Ω Σ Ε Ι Σ
Ε Ρ Ω Τ Η Σ Ε Ι Σ Σ Τ Ι Σ Φ Θ Ι Ν Ο Υ Σ Ε Σ Τ Α Λ Α Ν Τ Ω Σ Ε Ι Σ 1. Η σταθερά απόσβεσης σε μια μηχανική ταλάντωση που γίνεται μέσα σε κάποιο μέσο είναι: α) ανεξάρτητη των ιδιοτήτων του μέσου β) ανεξάρτητη
Διαβάστε περισσότεραΣκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.
Α ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκπός Σκπός τυ κεφαλαίυ είναι η κατανόηση των βασικών στιχείων μιας στατιστικής έρευνας. Πρσδκώμενα απτελέσματα Όταν θα έχετε λκληρώσει τη μελέτη αυτύ τυ κεφαλαίυ θα πρέπει να μπρείτε:
Διαβάστε περισσότεραΑρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως
Διαβάστε περισσότεραΣΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ: ΦΥΣΙΚΗ-ΙΙΙ (ΚΥΜΑΤΙΚΗ)
ΣΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ - ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ: ΦΥΣΙΚΗ-ΙΙΙ (ΚΥΜΑΤΙΚΗ Θέµα. Ένας αρµονικός ταλανττής µε ασθενή απόσβεση, (µάζα=, σταθερά ελατηρίου= s, συντελεστής τριβής= r διεγείρεται
Διαβάστε περισσότεραΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΤΗΝ ΥΛΗ ΘΕΩΡΙΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΤΗΝ ΥΛΗ ΘΕΩΡΙΑ Συγγραφή Επιμέλια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 29 - ΑΘΗΝΑ 6932 946778 www.pmoias.weebly.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΑΛΓΟΡΙΘΜΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 08 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 08 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς προτάσεις
Διαβάστε περισσότεραΦθίνουσες ταλαντώσεις
ΦΥΣ 111 - Διαλ.39 1 Φθίνουσες ταλαντώσεις q Οι περισσότερες ταλαντώσεις στη φύση εξασθενούν (φθίνουν) γιατί χάνεται ενέργεια. q Φανταστείτε ένα σύστημα κάτω από μια δύναμη αντίστασης της μορφής F = bυ
Διαβάστε περισσότερα2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΟΡΜΗ - ΚΡΟΥΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΟΡΜΗ - ΚΡΟΥΣΕΙΣ Σγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poiras.weebly.o ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ
Διαβάστε περισσότεραΣΥΣΤΗΜΑ ΕΝΟΣ ΒΑΘΜΟΥ ΕΛΕΥΘΕΡΙΑΣ 33
x(t) x(t) ΣΥΣΤΗΜΑ ΕΝΟΣ ΒΑΘΜΟΥ ΕΛΕΥΘΕΡΙΑΣ 33 π/ t Σχήμα.. Απόκριση συστήματος ενός βαθμού ελευθερίας σε εξαναγκασμένη ταλάντση χρίς απόσβεση σε συνθήκες συντονισμού. π t 4π Σχήμα.. Απόκριση συστήματος ενός
Διαβάστε περισσότεραΓ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Τρίτη 3-1-2012 2 ΘΕΜΑ 1ο Να γράψετε
Διαβάστε περισσότεραΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΣΤΙΣ ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:.ΤΜΗΜΑ:.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΣΤΙΣ ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:.ΤΜΗΜΑ:. 1. Αν στον αρμονικό ταλαντωτή εκτός από την ελαστική δύναμη επαναφοράς ενεργεί και δύναμη αντίστασης F = - b.υ, με b = σταθερό, το πλάτος
Διαβάστε περισσότερα2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη
Διαβάστε περισσότεραΈνα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα και αφεθεί στη συνέχεια ελεύθερο να
ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Α. Εξαναγκασμένες μηχανικές ταλαντώσεις Ελεύθερη - αμείωτη ταλάντωση και ποια η συχνότητα και η περίοδος της. Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα
Διαβάστε περισσότεραΚεφάλαιο 13. Περιοδική Κίνηση
Κεφάλαιο 13 Περιοδική Κίνηση Περιοδική Κίνηση Η ταλαντωτική κίνηση είναι σημαντική Είναι μια πάρα πολύ κοινή κίνηση. Βάση για κατανόηση της κυματικής κίνησης Κάθε σύστημα που βρίσκεται σε ευσταθή ισορροπία
Διαβάστε περισσότεραΑρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:
Διαβάστε περισσότεραΚεφάλαιο 1: Κινηματική των Ταλαντώσεων
Κεφάλαιο : Κινηματική των Ταλαντώσεων Κεφάλαιο : Κινηματική των Ταλαντώσεων. Φαινομενολογικός ορισμός ταλαντώσεων Μεταβολές σε φυσικά φαινόμενα που χαρακτηρίζονται από μια κανονική επανάληψη κατά ορισμένα
Διαβάστε περισσότεραPhysics by Chris Simopoulos. Άρα. Άρα. sec. Άρα ΦΘΙΝΟΥΣΕΣ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΛΥΣΕΙΣ Από την εξίσωση του πλάτους για τη φθίνουσα ταλάντωση έχουμε
. ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΦΘΙΝΟΥΣΕΣ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΛΥΣΕΙΣ. Από την εξίσωση του πλάτους για τη φθίνουσα ταλάντωση έχουμε n Άρα t t, t,8,,8 n n n n n n,7 n t,8 ( n t,8 n n (,8,8,8 n,8,. Από την εξίσωση του
Διαβάστε περισσότεραΝα γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση
Ταλαντώσεις Θέμα Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Α1. Αν μεταβληθεί η ολική ενέργεια της ταλάντωσης
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ /9/015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα κινείται σε ευθύγραμμη οριζόντια τροχιά με την ταχύτητά του σε συνάρτηση
Διαβάστε περισσότεραΠολλαπλασιάζοντας και τα δύο µέλη επί x& και ολοκληρώνοντας ως προς t φθάνουµε στη σχέση. dv dx
ΚΕΦΑΛΑΙΟ : ΚΙΝΗΣΗ ΣΤΗ 1- ΙΑΣΤΑΣΗ.1 Συντηρητικές δυνάµεις Έστω σώµα (µε την έννια τυ σωµατιδίυ) κινύµεν επί ευθείας γραµµής την πία ταυτίζυµε µε τν άξνα x, υπό την επίδραση της δύναµης F(x). Τότε η εξίσωση
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ
ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. 1. Η σχέση
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Τρία διαπασών Δ 1, Δ 2 παράγουν ήχους με συχνότητες 214 Hz, 220 Hz και f 3 αντίστοιχα. Όταν πάλλονται ταυτόχρονα τα διαπασών Δ
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ
ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 05 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α Α4 να γράψετε
Διαβάστε περισσότεραΘεωρούμε ένα σύστημα με N βαθμούς ελευθερίας, το οποίο θα περιγράφεται από N συντεταγμένες ψ 1 (t), ψ 2 (t),..., ψ N (t).
Kεφ. ΣYΣTHMATA ME ΠOΛΛOYΣ BAΘMOYΣ EΛEYΘEPIAΣ (part, pages - Θεωρύμε ένα σύστημα με N βαθμύς ελευθερίας, τ πί θα περιγράφεται από N συντεταγμένες (t, (t,..., N (t. Oι εξισώσεις κίνησης τυ συστήματς θα έχυν
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει
Διαβάστε περισσότεραα. Από τη μάζα του σώματος που ταλαντώνεται. β. Μόνο από τα πλάτη των επιμέρους απλών αρμονικών ταλαντώσεων.
ιαγώνισμα στη φυσική θετικού προσανατολισμού Ύλη: μηχανικές ταλαντώσεις ιάρκεια 3 ώρες ΘΕΜΑ Α Στις προτάσεις Α1 έως Α8 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α (μονάδες 25) Α1. Σε μια Α.Α.Τ. η εξίσωση της απομάκρυνσης είναι x=a.συνωt. Τη χρονική στιγμή
Διαβάστε περισσότεραΔΙΑΡΚΕΙΑ: 180min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ: 80min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΜΟΝΑΔΕΣ ΘΕΜΑ ο ΘΕΜΑ ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΘΕΜΑ Α:. Κατά την διάρκεια της φθίνουσας ταλάντωσης ενός αντικειμένου, το
Διαβάστε περισσότεραpapost/
ΦΘΙΝΟΥΣΕΣ - ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ - ΣΥΖΕΥΞΗ Δρ. Παντελής Σ. Αποστολόπουλος http://users.uoa.gr/ papost/ papost@phys.uoa.gr, papost@teiion.gr ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2018-2019 Απλός Αρμονικός
Διαβάστε περισσότερα00-003 Οικνόµυ Θεµιστκλής Ασκήσεις Συµπεριφράς εδάφυς σε δυναµική φόρτιση ΑΣΤΕ [] Άσκηση η : Για την εδαφική τµή τυ Σχήµατς, να πρσδιριστύν µε άση τις πρτεινόµενες στη διεθνή ιλιγραφία σχέσεις: Α η µεταλή
Διαβάστε περισσότεραΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΙΚΑΙΟΣ ΤΣΕΡΚΕΖΟΣ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ . ΒΑΣΙΚΗ ΑΣΚΗΣΗ. Έχετε στην διάθεση σας ( Πίνακας ) στιχεία από
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 3: ΦΘΙΝΟΥΣΕΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ
ΚΕΦΑΛΑΙΟ 1 Ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 3: ΦΘΙΝΟΥΣΕΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ Φθίνουσες Μηχανικές ταλαντώσεις Όταν το πλάτος της ταλάντωσης, που εκτελεί ένα σώμα, συνεχώς μειώνεται,
Διαβάστε περισσότεραΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ
ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση
Διαβάστε περισσότερα1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα.
Γενικές ασκήσεις Θέματα εξετάσεων από το 1ο κεφάλαιο ΚΕΦΑΛΑΙΟ 1 1 Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα α Να βρείτε
Διαβάστε περισσότεραΗ ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ
Παγκόσμι χωριό γνώσης ΕΝΟΤΗΤΑ 3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ 3 ΜΑΘΗΜΑ Σκπός Σκπός της ενότητας είναι ρισμός της παραγώγυ και τυ ρυθμύ μεταβλής καθώς και
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ
Διαβάστε περισσότεραΦυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του
Διαβάστε περισσότεραΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 02/02/2017 ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ , (1) R1 R 2.0 V IN R 1 R 2 B R L 1 L
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΔΙΔΑΣΚΩΝ: Λ ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: //7 ΘΕΜΑ ( μνάδες) Οι τιμές των αντιστάσεων και τυ κυκλώματς τυ
Διαβάστε περισσότεραΕξαναγκασμένες μηχανικές ταλαντώσεις
Άσκηση 4 Εξαναγκασμένες μηχανικές ταλαντώσεις 4.1 Σκοπός Σκοπός της άσκησης αυτής είναι η μελέτη τν εξαναγκασμένν μηχανικών ταλαντώσεν ενός κλασικού συστήματος που αποτελείται από ελατήριο και μάζα η οποία
Διαβάστε περισσότεραExουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ
Kεφ. (part, pages - Σχέση διασπράς Exυμε βρεί την εξίσωση κύματς: λν = υ, όπυ υ = Τ /μ στη περίπτωση της χρδς. Οπότε υ ν = = λ ω = Τ /μ Τ /μ λ k H σχέση αυτ πυ συνδέει την γωνιακ συχνότητα ω με τν κυματαριθμό
Διαβάστε περισσότεραΣΤΙΣ ΜΗΧΑΝΙΚΕΣ (ΑΜΕΙΩΤΕΣ) ΤΑΛΑΝΤΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 1, ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
Σπύρος Ρήγας - Φυσική Λυκείου - Ιούλιος 04 ΛΥΣΕΙΣ ου ΚΡΙΤΗΡΙΟΥ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ (ΑΜΕΙΩΤΕΣ) ΤΑΛΑΝΤΩΣΕΙΣ ΚΕΦΑΛΑΙΟ, ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο (δ) (γ) 3 (α) 4 (γ) 5 α (Σ), β (Λ), γ (Σ),
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ
ΚΕΦΑΛΑΙΟ 3: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ..4: Ρυθμός Μεταβλής τυ σχλικύ βιβλίυ]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα 1. Δίνεται η συνάρτηση f() = 3 3. α) Να βρεθεί ρυθμός μεταβλής της
Διαβάστε περισσότεραΦθίνουσες Εξαναγκασμένες Ταλαντώσεις. Ομάδα Γ.
Φθίνουσες Εξαναγκασμένες. Ομάδα Γ. 1.3.21. Υπολογίσατε το πλάτος στην εξαναγκασμένη ταλάντωση. k = 40 N m m= 5kg Το σώμα του σχήματος βρίσκεται πάνω σε λεία σανίδα συνδεδεμένο με ιδανικό ελατήριο. Κινούμενο
Διαβάστε περισσότεραΑσκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις
Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις Όπου χρειάζεται, θεωρείστε ότι g = 10m/s 2 1. Σε μία απλή αρμονική ταλάντωση η μέγιστη απομάκρυνση από την θέση ισορροπίας είναι Α = 30cm. Ο χρόνος που χρειάζεται
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ Α κ. 2. Σε µία εξαναγκασµένη µηχανική ταλάντωση µάζας ελατηρίου που η δύναµη του διεγέρτη είναι της µορφής F= F0
ΔΙΑΓΩΝΙΣΜΑ Α κ Θέµα Στις ερωτήσεις έως και 3 επιλέξτε τη σωστή απάντηση:. Σε µία φθίνυσα µηχανική ταλάντωση, όπυ F αντ = b υ: α) τ πλάτς µεταβάλλεται γραµµικά µε τ χρόν β) όσ η σταθερά απόσβεσης b αυξάνεται,
Διαβάστε περισσότεραροή ιόντων και µορίων
ρή ιόντων και µρίων Θεωρύµε ένα διάλυµα µίας υσίας Α. Αν εξαιτίας της ύπαρξης διαφρών συγκέντρωσης ή ηλεκτρικύ πεδίυ όλες ι ντότητες (µόρια ή ιόντα) της υσίας Α κινύνται µέσα σ αυτό µε την ίδια ριακή ταχύτητα
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ
ΔΙΑΓΩΝΙΣΜΑ ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά.. Το μέτρο της
Διαβάστε περισσότεραΑΝΤΙΚΕΙΜΕΝΟ ΟΝΟΜ/ΜΟ: ΤΜΗΜΑ: ΘΕΜΑ 1 Ο. 1 ο κεφάλαιο: «ΤΑΛΑΝΤΩΣΕΙΣ» 1.1 Να επιλέξετε τη σωστή απάντηση: F(N) x(m) 1.2 Να επιλέξετε τη σωστή απάντηση:
ΑΝΤΙΚΕΙΜΕΝΟ 1 ο κεφάλαιο: «ΤΑΛΑΝΤΩΣΕΙΣ» ΟΝΟΜ/ΜΟ: ΤΜΗΜΑ: ΘΕΜΑ 1 Ο 1.1 Να επιλέξετε τη σωστή απάντηση: Σύστηµα ελατηρίου-µάζας εκτελεί Γ.Α.Τ. Στο διπλανό διάγραµµα φαίνεται η γραφική παράσταση της δύναµης
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί
Διαβάστε περισσότεραk c (1) F ελ f ( t) F απ http://www.didefth.gr/mathimata/ 1
Την παρακάτω ανάλυση στο θέµα των Εξαναγκασµένων Ταλαντώσεων έκαναν οι : ρ. Μιχάλης Αθανασίου ρ. Απόστολος Κουιρουκίδης Φυσικοί, Επιστηµονικοί Συνεργάτες ΤΕΙ Σερρών, στα Τµήµατα Πληροφορικής -Επικοινωνιών
Διαβάστε περισσότεραΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΘΗΜ / ΤΞΗ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: η (ΘΕΡΙΝ) ΗΜΕΡΟΜΗΝΙ: /0/ ΘΕΜ ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ 2. έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε σταθερό σημείο.
ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ. Ένα ιδανικό ελατήριο σταθεράς = 00 N/ που έχει τον άξονα του κατακόρυφο έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε
Διαβάστε περισσότεραB ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ Προτεινόμενα Θέματα Γ ΓΕΛ ΝΟΕΜΒΡΙΟΣ Φυσική ΘΕΜΑ Α
Προτεινόμενα Θέματα Γ ΓΕΛ ΝΟΕΜΒΡΙΟΣ 015 Φυσική ΘΕΜΑ Α προσανατολισμού Στις προτάσεις από 1-4 να βρείτε την σωστή απάντηση. Α1. Σε μία εξαναγκασμένη μηχανική ταλάντωση: Α. Η συχνότητα της ταλάντωσης είναι
Διαβάστε περισσότερα