ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΜΕ ΘΕΜΑ: Μαζοπίνακες για την οξιά (Fagus sylvatica) του δάσους Κάτω Βερμίου στο Νομό Ημαθίας.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΜΕ ΘΕΜΑ: Μαζοπίνακες για την οξιά (Fagus sylvatica) του δάσους Κάτω Βερμίου στο Νομό Ημαθίας."

Transcript

1 ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΔΑΣΟΛΟΓΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ: ΑΕΙΦΟΡΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΤΕΥΘΥΝΣΗ Γ : ΟΙΚΟΛΟΓΙΑ ΚΑΙ ΠΡΟΣΤΑΣΙΑ ΔΑΣΙΚΩΝ ΟΙΚΟΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΜΕ ΘΕΜΑ: Μαζοπίνακες για την οξιά (Fagus sylvatica) του δάσους Κάτω Βερμίου στο Νομό Ημαθίας. ΧΑΤΖΗΜΗΝΙΑΔΗΣ ΑΛΕΞΑΝΔΡΟΣ-ΜΙΧΑΗΛ Δασολόγος Εξεταστική επιτροπή: Κυριακή Κιτικίδου (επιβλέπουσα) Καλλιόπη Ραδόγλου Ηλίας Μήλιος ΟΡΕΣΤΙΑΔΑ 2015

2 ΠΕΡΙΕΧΟΜΕΝΑ ΣΕΛΙΔΑ ΠΕΡΙΕΧΟΜΕΝΑ... i ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ... ii ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ... ii ΠΕΡΙΛΗΨΗ... 1 SUMMARY... 1 ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ... 2 ΚΕΦΑΛΑΙΟ 2. ΠΕΡΙΟΧΗ ΕΡΕΥΝΑΣ... 3 ΚΕΦΑΛΑΙΟ 3. ΑΝΑΣΚΟΠΗΣΗ ΒΙΒΛΙΟΓΡΑΦΙΑΣ... 4 ΚΕΦΑΛΑΙΟ 4. ΥΛΙΚΑ ΚΑΙ ΜΕΘΟΔΟΙ... 6 ΚΕΦΑΛΑΙΟ 5. ΑΠΟΤΕΛΕΣΜΑΤΑ - ΣΥΖΗΤΗΣΗ ΔΙΕΡΕΥΝΗΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΕΠΙΛΟΓΗ ΤΟΥ ΚΑΛΥΤΕΡΟΥ ΜΟΝΤΕΛΟΥ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΚΑΙ ΕΠΙΚΥΡΩΣΗ ΤΟΥ ΚΕΦΑΛΑΙΟ 6. ΣΥΜΠΕΡΑΣΜΑΤΑ ΒΙΒΛΙΟΓΡΑΦΙΑ i

3 ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ ΣΕΛΙΔΑ ΠΙΝΑΚΑΣ 1. ΜΟΝΤΕΛΑ ΕΚΤΙΜΗΣΗΣ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΟΓΚΟΥ... 8 ΠΙΝΑΚΑΣ 2. ΚΡΙΤΗΡΙΑ ΣΥΓΚΡΙΣΗΣ ΤΩΝ ΜΟΝΤΕΛΩΝ ΠΑΛΙΝΔΡΟΜΗΣΗΣ... 9 ΠΙΝΑΚΑΣ 3. ΠΕΡΙΓΡΑΦΙΚΑ ΣΥΣΤΑΤΙΚΑ ΤΩΝ ΔΕΝΤΡΩΝ ΤΟΥ ΔΕΙΓΜΑΤΟΣ ΠΙΝΑΚΑΣ 4. ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (ΔΕΔΟΜΕΝΑ ΠΡΟΣΑΡΜΟΓΗΣ) ΠΙΝΑΚΑΣ 5. ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΤΟΥ ΥΠΟΨΗΦΙΟΥ ΜΟΝΤΕΛΟΥ ΠΡΟΣ ΕΠΙΛΟΓΗ (ΔΕΔΟΜΕΝΑ ΕΠΙΚΥΡΩΣΗΣ) ΠΙΝΑΚΑΣ 6. ΚΡΙΤΗΡΙΑ ΣΥΓΚΡΙΣΗΣ ΚΑΙ ΕΠΙΚΥΡΩΣΗΣ ΓΙΑ ΤΟ ΥΨΟΨΗΦΙΟ ΜΟΝΤΕΛΟ ΠΡΟΣ ΕΠΙΛΟΓΗ (ΜΟΝΤΕΛΟ 2) ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ ΣΕΛΙΔΑ ΣΧΗΜΑ 1. ΠΕΡΙΟΧΗ ΕΡΕΥΝΑΣ... 6 ΣΧΗΜΑ 2. ΚΑΤΑΝΟΜΗ ΑΡΙΘΜΟΥ ΚΟΡΜΩΝ ΣΤΗΘΙΑΙΑΣ ΔΙΑΜΕΤΡΟΥ ΣΧΗΜΑ 3. ΘΗΚΟΓΡΑΜΜΑΤΑ ΟΓΚΩΝ ΔΙΑΜΕΤΡΩΝ ΥΨΩΝ ΣΧΗΜΑ 4. ΓΡΑΜΜΙΚΗ ΣΧΕΣΗ ΠΑΡΑΤΗΡΗΘΕΝΤΩΝ ΕΚΤΙΜΩΜΕΝΩΝ ΟΓΚΩΝ ΓΙΑ ΤΟ ΕΠΙΛΕΓΜΕΝΟ ΜΟΝΤΕΛΟ ΤΗΣ ΚΑΛΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΠΟΥ ii

4 Μαζοπίνακες για την οξιά (Fagus sylvatica) του δάσους Κάτω Βερμίου στο Νομό Ημαθίας. Περίληψη Για την οξιά του δάσους Κάτω Βερμίου του Νομού Ημαθίας προσαρμόστηκαν μοντέλα παλινδρόμησης, τα οποία εκτιμούν τον όγκο με προβλέπουσες μεταβλητές τη στηθιαία διάμετρο και το συνολικό ύψος. Έγινε τυχαία δειγματοληψία στην περιοχή έρευνας, με τελικό δείγμα 120 δέντρων. Το μοντέλο που επιλέχτηκε είναι: vˆ 0,047 2 = D H με R 2 = 0,75 και τυπικό σφάλμα εκτίμησης = 0,08. Volume tables for the European beech (Fagus sylvatica) of Kato Vermio of Imathia region. Summary For the European beech forest of Kato Vermio of Imathia region, regression models, which estimate the volume using breast height diameter and total height as predictor variables, were fitted. The study area was randomly sampled, with a final sample of 120 trees. The selected model is: 2 vˆ = 0,047D H with R 2 = 0,75 and standard error of the estimate = 0,08. 1

5 1. Εισαγωγή Η οξιά (Fagus sylvatica L.) είναι ένα σκιανθεκτικό είδος που έχει την ικανότητα να παρουσιάζει υψηλούς ρυθμούς ανάπτυξης σε ευνοϊκές συνθήκες, καθώς και να εμφανίζει πολύ χαμηλούς ρυθμούς ανάπτυξης για πολλές δεκαετίες σε διαρκή βαριά σκιά και καταπίεση (Assmann, 1970, Αθανασιάδης, 1986). Η ξυλεία της οξιάς έχει πολλές χρήσεις, από έπιπλα μέχρι χαρτοπολτό (Uphof, 1968). Με δεδομένο ότι ο στόχος της διαχείρισης των πόρων ξυλείας είναι να παρασχεθεί ο βέλτιστος συνδυασμός ποσότητας και ποιότητας προϊόντων ξυλείας που θα μεγιστοποιήσουν τα οικονομικά κέρδη, τα ακριβή και εύκαμπτα μοντέλα είναι απαραίτητα για να παρέχουν τις πληροφορίες που απαιτούνται. Η μεταβλητή που χρησιμοποιείται περισσότερο στη λήψη αποφάσεων όσον αφορά στη διαχείριση της ξυλείας είναι κάποιο μέτρο του όγκου. Ο συνολικός όγκος των δέντρων εκτιμάται από μοντέλα όγκου που χρησιμοποιούν τη στηθιαία διάμετρο και το συνολικό ύψος ως προβλέπουσες μεταβλητές (Van Laar and Akça, 1997). Σε αυτήν την μελέτη, ογκομετρήθηκαν δειγματοληπτικά δέντρα οξιάς (Fagus sylvatica L.) από το δάσος Κάτω Βερμίου Ημαθίας. Τα δεδομένα που συλλέχθηκαν χρησιμοποιήθηκαν ως δεδομένα εισόδου για τον στόχο αυτής της μελέτης: την ανάπτυξη μοντέλων εκτίμησης του συνολικού όγκου από τη στηθιαία διάμετρο και το συνολικό ύψος του δέντρου. Η κατάρτιση τέτοιων μοντέλων είναι ιδιαίτερα σημαντική, γιατί δεν υπάρχουν άλλα μοντέλα εκτίμησης του όγκου της οξιάς για τη συγκεκριμένη περιοχή. 2

6 2. Περιοχή έρευνας Τα στοιχεία του κεφαλαίου αυτού πάρθηκαν από τη Διαχειριστική Μελέτη Δασικού Συμπλέγματος ΝΑ Βερμίου ( ). Η βλάστηση του δασικού συμπλέγματος, σύμφωνα με την ταξινόμηση της δασικής βλάστησης της Ελλάδας του καθηγητή Σπ.Ντάφη, κατατάσσεται στις ακόλουθες ζώνες: 1. Ζώνη δασών Οξυάς. Οξιάς-ελάτης και ορεινών παραμεσόγειων κωνοφόρων Fegetalia, υποζώνη Fagion moesiacae και αυξητικό χώρο το Fagetum moeciacae. Κυρίαρχο είδος είναι η οξιά, δασική (Fagus sylvatica) και μοισιακή (Fagus moesiaca), που καταλαμβάνει την μεγαλύτερη έκταση από τα μέσα ως τα ανώτερα υψόμετρα και σχηματίζει αμιγείς συστάδες ή σε μίξη με μαύρη πεύκη (Pinus nigra) και κατά θέσεις με οστρυά (Ostrya carpinifolia). Εντός της οξιάς σε μίξη κατ άτομο, ομάδες κ.λπ. συναντάται η μαύρη πεύκη (Pinus nigra), η υβριδογενής ελάτη (Abies borisii regis), και ορισμένα είδη δρυός όπως: απόδισκη (Quercus petraea), ευθύφλοια (Quercus cerris), η οστρυά (Ostrya carpinifolia), η καστανιά (Castanea sativa), το αρκουδοπούρναρο (Ilex aquifollium), ο γαύρος (Carpinus orientalis) κλπ. 2. Παραμεσόγεια ζώνη βλάστησης- Quercetalia pubescentis με υποζώνες. Στις υποζώνες αυτές κυρίαρχα είδη είναι η πλατύφυλλη δρυς (Quercus frainetto), στα ψηλότερα η απόδισκη (Quercus petraea) και η ευθύφλοια (Quercus cerris) με μικρά ποσοστά εμφάνισης η οστρυά (Ostrya carpinifolia), ο γαύρος (Carpinus campestre) και ο τρίλοβος (Acer monspenssulanum), η φουντουκιά (Corylus avelana), η φλαμουριά( Tilia argentae), η κρανιά (Cornus mas) κ.λπ. 3

7 Ειδικές μετεωρολογικές παρατηρήσεις δεν υπάρχουν για τη περιοχή του δάσους εκτός ενός χιονοβροχογράφου στο Κ. Βέρμιο και ενός βροχομέτρου στην Κουμαριά της πρώην Υ.Ε.Β., των οποίων υπάρχουν στοιχεία ως το τέλος της 10ετίας του Από τα μετεωρολογικά στοιχεία του σταθμού Πτολεμαΐδας με υψόμετρο 601 m, της περιόδου , προκύπτει ότι το ετήσιο ύψος κατακρημνισμάτων ήταν 654,3 mm, η μέση ετήσια θερμοκρασία 13,05 C και η μέση βροχόπτωση 24ώρου 92 mm. Γενικά το κλίμα του μελετώμενου δασικού συμπλέγματος αποτελεί μια μετάβαση από το Μεσογειακό προς το Μεσευρωπαϊκό Ηπειρωτικό κλίμα. Ακραία κλιματικά φαινόμενα δεν είναι συνηθισμένα και όταν υπήρξαν περίοδοι παρατεταμένης ξηρασίας, σε συνδυασμό με τις υψηλές θερμοκρασίες αέρα εδάφους, παρατηρήθηκαν σποραδικά δυσμενείς επιδράσεις στη βλάστηση, όπου το βάθος του εδάφους είναι μικρό. 3. Ανασκόπηση βιβλιογραφίας Μια προϋπόθεση για την εκτίμηση της ποσότητας ξυλείας που ενδεχομένως είναι διαθέσιμη από μια συστάδα, είναι η δυνατότητα να προβλεφθεί ο όγκος οποιουδήποτε αριθμού δέντρων σε μια συγκεκριμένη διάμετρο ή/και ύψος. Με δεδομένο ότι δεν είναι εφικτό να μετρηθεί άμεσα ο όγκος κάθε δέντρου, έμμεσες μέθοδοι χρησιμοποιούνται. Ο έμφλοιος όγκος ενός δέντρου σχετίζεται κυρίως με το ύψος του, τη διάμετρό του και τη μορφή του. Αυτές οι μεταβλητές μπορούν να χρησιμοποιηθούν για την κατάρτιση μοντέλων εκτίμησης του όγκου, με τη βοήθεια της στατιστικής ανάλυσης της παλινδρόμησης (Draper and Smith, 1997). 4

8 Υπάρχουν δυο ευδιάκριτοι τρόποι να προσεγγιστεί η έμμεση εκτίμηση του όγκου. Πρώτα, με άμεση μέτρηση του όγκου δειγματοληπτικών δέντρων, μια σχέση μπορεί να καταρτιστεί με εύκολα μετρήσιμες παραμέτρους όπως η στηθιαία διάμετρος και το συνολικό ύψος. Η δεύτερη προσέγγιση είναι να χρησιμοποιηθεί μια εξίσωση κωνικότητας. Αυτό είναι ένα μοντέλο που περιγράφει ολόκληρο το προφίλ του κορμού, επίσης βασισμένο σε απλές μεταβλητές εισόδου, όπως η στηθιαία διάμετρος και το συνολικό ύψος (Gordon, Lundgren and Hay, 1995). Τα περισσότερα μοντέλα εκτίμησης του όγκου κατά την πρώτη προσέγγιση, έχουν αναπτυχθεί συνδυάζοντας προβλέπουσες μεταβλητές με διάφορους τρόπους και έπειτα παλινδρομώντας τις στην εξαρτημένη μεταβλητή (όγκος), βρίσκοντας την καλύτερη προσαρμογή με τη μέθοδο των ελάχιστων τετραγώνων (Sharma and Oderwald, 2001). Ένας από τους κύριους παράγοντες που επηρεάζει ένα μοντέλο παλινδρόμησης είναι ποιες και πόσες ανεξάρτητες μεταβλητές θα περιληφθούν σε αυτό. Δυο μεταβλητές που σχετίζονται με τον όγκο του δέντρου είναι η στηθιαία διάμετρος και το συνολικό ύψος (Williams and Schreuder, 2000). Η μέτρηση της στηθιαίας διαμέτρου είναι μια εύκολη και ακριβής μέτρηση, ενώ το ύψος του δέντρου μπορεί να είναι δύσκολο να μετρηθεί με ακρίβεια σε ιστάμενα δέντρα. Η μέτρηση του ύψους, επομένως, οδηγεί σε ένα συμπληρωματικό κόστος και θα μπορούσε να αυξήσει το σφάλμα στην εκτίμηση του όγκου. Αν και το ύψος είναι δυσκολότερο να μετρηθεί, σε σύγκριση με τη στηθιαία διάμετρο, ο συνυπολογισμός του σε ένα μοντέλο όγκου μειώνει τη διακύμανση των εκτιμηθέντων όγκων. Μόνο όταν το λάθος μέτρησης στο ύψος είναι μεγαλύτερο από 40%, οι εκτιμήσεις όγκου γίνονται μεροληπτικές (Williams and Schreuder, 2000). 5

9 Η στηθιαία διάμετρος συσχετίζεται ελαφρά λιγότερο με τον όγκο, από ό,τι ο συνδυασμός διαμέτρου-ύψους. Για να μειωθεί, λοιπόν, το κόστος δειγματοληψίας, χρησιμοποιείται συχνά σαν η μόνη προβλέπουσα μεταβλητή. Σε αυτή την περίπτωση το μοντέλο εκτίμησης του όγκου ονομάζεται μαζοπίνακας απλής εισόδου (Avery and Burkhart, 2002). Ωστόσο, με τη χρησιμοποίηση της στηθιαίας διαμέτρου ως μοναδική ανεξάρτητη μεταβλητή, υποθέτουμε ότι οι παράμετροι του μοντέλου παλινδρόμησης δε συσχετίζονται με την ηλικία, την ποιότητα τόπου, τους χειρισμούς στη συστάδα (πχ. λιπάνσεις, αραιώσεις) και γενετικούς παράγοντες (Van Laar and Akça, 1997). Όταν το μοντέλο πρόκειται να χρησιμοποιηθεί σε περιοχές με διαφορετικές συνθήκες αύξησης (ποιότητες τόπου), ηλικίες, ή διαφορετικές μεθόδους διαχείρισης, οι υποθέσεις που αναφέρθηκαν δε θα ισχύουν και θα πρέπει να προστεθούν κι άλλες ανεξάρτητες μεταβλητές, ώστε να μειωθεί η διακύμανση των εκτιμηθέντων όγκων (Williams and Schreuder, 2000). Τέτοια μοντέλα λέγονται μαζοπίνακες πολλαπλής εισόδου και συνήθως περιλαμβάνουν τη στηθιαία διάμετρο, το ύψος και μέτρα μορφής/κωνικότητας (Avery and Burkhart, 2002). 4. Υλικά και Μέθοδοι Η περιοχή έρευνας φαίνεται στο σχήμα 1: 6

10 Σχήμα 1. Περιοχή έρευνας (Πηγή: Google Earth 2014). Η εκτίμηση του ελάχιστου απαιτούμενου μεγέθους δείγματος, με δεδομένη ακρίβεια και ελάχιστο κόστος, έγινε με τον τύπο (Μάτης, 2004β): tcv n = 2 d 2 2 όπου: t = η τιμή της t (Student) κατανομής με πιθανότητα (1-α) και (n-1) βαθμούς ελευθερίας cv = εκτίμηση του συντελεστή κύμανσης του πληθυσμού από τα δεδομένα του προδείγματος d = η επιθυμητή ακρίβεια ως ποσοστό % του μέσου όρου = 10% Για να υπολογίσουμε τα t και cv χρησιμοποιήσαμε προδείγμα 10 δέντρων, το οποίο έδωσε ελάχιστο απαιτούμενο δείγμα 116 δέντρων. Τα 120 δέντρα του δείγματος (μέγεθος που υπερκαλύπτει το ελάχιστο απαιτούμενο) επιλέχτηκαν με απλή τυχαία δειγματοληψία (Μάτης, 2004β). Σε κάθε δέντρο του δείγματος μετρήθηκε η στηθιαία διάμετρος D με το παχύμετρο και εκτιμήθηκε: το συνολικό ύψος H με το υψόμετρο Blume-Leiss 7

11 ο νόθος μορφάριθμος f με το ρελασκόπιο. Ο όγκος v του κάθε δέντρου υπολογίστηκε με τον τύπο π 2 v = D fh (Van 4 Laar and Akça 1997, Μάτης, 2004α). Τα μοντέλα που προσαρμόστηκαν στα δεδομένα δίνονται στον πίνακα 1: 8

12 Πίνακας 1. Μοντέλα εκτίμησης του συνολικού όγκου. Α/Α Ονομασία μοντέλου Τύπος Βιβλιογραφία b 1 Λογαριθμικό 1 b2 vˆ = b + D H Schumacher and 0 Hall, Σταθερού μορφάριθμου 3 Συνδυασμένης μεταβλητής 4 Γενικευμένο ˆv = Gevorkiantz and 2 b0 D H 2 ˆv b0 bd 1 H Olsen, 1955 = + Spurr, Burkhart, ˆv = b + bd + b H + b D H Romancier, 1961 συνδυασμένης μεταβλητής 5 Γενικευμένο vˆ b bd H b2 b3 = 0 + Newham, λογαριθμικό ˆv : εκτίμηση του όγκου v b i : εκτιμήσεις των συντελεστών παλινδρόμησης Το 80% των δεδομένων (96 δέντρα) χρησιμοποιήθηκαν για την προσαρμογή των μοντέλων και το υπόλοιπο 20 % (24 δέντρα) για την επικύρωσή τους (Ezekiel and Fox, 1959, Marquardt and Snee, 1975). Η στατιστική ανάλυση έγινε με το στατιστικό πακέτο SPSS v.19.0 (Κιτικίδου, 2005, IBM, 2010). Τα κριτήρια που χρησιμοποιήθηκαν για τη σύγκριση των πέντε μοντέλων παλινδρόμησης ήταν τα εξής: 9

13 Πίνακας 2. Κριτήρια σύγκρισης των μοντέλων παλινδρόμησης. Α/Α Κριτήριο Άριστη τιμή Τύπος Βιβλιογραφία 1 Απόλυτο μέσο σφάλμα (Bias, 0 n i= 1 v vˆ i n i Mayer and Butler, 1993 Janssen and Heuberger, B) 1995 Wackerly et al., Τυπικό σφάλμα εκτίμησης των θεωρητικών min n i= 1 ( v vˆ ) 2 i n p i Ezekiel and Fox, 1959 Mathews, 1987 Wackerly et al., 2008 τιμών (standard Draper and Smith, 1997 error of the estimate, se) 3 Δείκτης προσαρμογής (Fit Index, FI) 1 1 n i= 1 n i= 1 ( v vˆ ) i ( v v) i i 2 2 Draper and Smith, 1997 Everitt and Skrondal, 2010 n: μέγεθος δείγματος p: αριθμός συντελεστών παλινδρόμησης v : μέσος όρος πραγματικών (μετρημένων) όγκων 10

14 5. Αποτελέσματα - Συζήτηση 5.1 Διερευνητική ανάλυση δεδομένων Τα περιγραφικά στατιστικά των δέντρων του δείγματος δίνονται στον πίνακα 3. Πίνακας 3. Περιγραφικά στατιστικά των δέντρων του δείγματος. Μεταβλητή Μέσος όρος Τυπική απόκλιση min max v (m 3 ) 0,30 0,15 0,05 0,79 D (m) 0,49 0,10 0,27 0,75 H (m) 24,83 2,83 14,36 37,24 f 0,06 0,02 0,02 0,10 Στο σχήμα 2 απεικονίζεται η κατανομή αριθμού κορμών στηθιαίας διαμέτρου για την περιοχή έρευνας, δείχνοντας ότι πρόκειται για μονοκόρυφη κατανομή. Συμπεραίνουμε, λοιπόν, πως πρόκειται για ομήλικο δάσος, όπου η αναγέννηση έγινε σε κύκλους και όχι συνεχόμενα (Μάτης 2004α). 11

15 20 Normal 15 Frequency 10 5 Mean =0,4892 Std. Dev. =0, N = ,20 0,30 0,40 0,50 d 0,60 0,70 0,80 Σχήμα 2. Κατανομή αριθμού κορμών στηθιαίας διαμέτρου. Στα θηκογράμματα του σχήματος 3, φαίνεται πως υπάρχουν ελάχιστες απομονωμένες και ακραίες τιμές, για τον όγκο, τη στηθιαία διάμετρο και το ύψος. Η κατανομή του όγκου και της στηθιαίας διαμέτρου είναι ελάχιστα θετικά ασύμμετρη, ενώ του ύψους και του μορφάριθμου είναι συμμετρική. 12

16 0, ,80 0,70 0,60 0,60 0,40 0,50 0,40 0,20 0,30 0,00 0,20 v d 40 0, , , , , ,00 h f Σχήμα 3. Θηκογράμματα όγκων διαμέτρων υψών. 5.2 Επιλογή του καλύτερου μοντέλου παλινδρόμησης και επικύρωσή του Παρατηρούμε στον πίνακα 4 πως, για τα μοντέλα 1, 3, 4 και 5, δεν είναι όλοι οι συντελεστές παλινδρόμησης σημαντικά διαφορετικοί από το μηδέν (με 13

17 σκίαση σημειώθηκαν τα διαστήματα εμπιστοσύνης των συντελεστών που περιέχουν την τιμή μηδέν). Πίνακας 4. Διαστήματα εμπιστοσύνης των συντελεστών παλινδρόμησης (δεδομένα προσαρμογής). Μοντέλο Παράμετρος Εκτίμηση Τυπικό 95% Διάστημα εμπιστοσύνης σφάλμα Κατώτερο όριο Ανώτερο όριο b 0 0,550 0,460-0,364 1,463 1 b 1 2,087 0,136 1,816 2,358 b 2 0,261 0,249-0,233 0,755 2 b 0 0,047 0,001 0,045 0,049 3 b 0 0,014 0,018-0,022 0,050 b 1 0,045 0,003 0,040 0,050 b 0 0,014 0,143-0,269 0,298 4 b 1 0,865 0,619-0,363 2,094 b 2-0,001 0,006-0,013 0,010 b 3 0,016 0,024-0,032 0,064 b 0-0,034 0,074-0,181 0,112 5 b 1 0,609 0,474-0,331 1,550 b 2 1,885 0,420 1,052 2,719 b 3 0,221 0,235-0,244 0,687 14

18 Για το μοντέλο 2, οι συντελεστές παλινδρόμησης και τα διαστήματα εμπιστοσύνης είχαν τις τιμές του πίνακα 5. Οι τιμές του συντελεστή b 0 που έδωσαν τα δεδομένα προσαρμογής και επικύρωσης (0,047 και στις δυο περιπτώσεις) δείχνουν ότι το υποψήφιο μοντέλο προς επιλογή είναι έγκυρο, δηλ. η τιμή του συντελεστή θα είναι περίπου η ίδια, ακόμη και με διαφορετικά δειγματοληπτικά δέντρα της περιοχής μελέτης. Πίνακας 5. Διαστήματα εμπιστοσύνης των συντελεστών παλινδρόμησης του υποψήφιου μοντέλου προς επιλογή (δεδομένα επικύρωσης). Μοντέλο Παράμετρος Εκτίμηση Τυπικό 95% Διάστημα εμπιστοσύνης σφάλμα Κατώτερο όριο Ανώτερο όριο 2 b 0 0,047 0,002 0,043 0,051 Οι τιμές του απόλυτου μέσου σφάλματος και του τυπικού σφάλματος εκτίμησης των θεωρητικών τιμών, για τα δεδομένα προσαρμογής και επικύρωσης, δε διαφέρουν σημαντικά, γεγονός που δείχνει επίσης ότι το μοντέλο 2 είναι ένα έγκυρο μοντέλο (Πίνακας 6). Διαφορά υπάρχει στην τιμή των δεικτών προσαρμογής, γεγονός που μπορεί να δικαιολογηθεί από το μικρό μέγεθος του δείγματος επικύρωσης (24 δέντρα), σε σχέση με το μέγεθος δείγματος των δέντρων προσαρμογής (96 δέντρα). 15

19 Πίνακας 6. Κριτήρια σύγκρισης και επικύρωσης για το υποψήφιο μοντέλο προς επιλογή (μοντέλο 2). Στατιστικό Σετ δεδομένων Απόλυτο μέσο σφάλμα (άριστη τιμή) Τυπικό σφάλμα εκτίμησης των θεωρητικών τιμών Δείκτης προσαρμογής (0) (min) (1) Προσαρμογή 0,0551 0, ,7488 Επικύρωση 0,0594 0, ,5214 Στο σχήμα 4 δίνεται η γραμμική σχέση (χωρίς σταθερό όρο) μεταξύ παρατηρηθέντων και εκτιμώμενων όγκων, για το επιλεγμένο μοντέλο. Η ικανοποιητική προσαρμογή της ευθείας γραμμής δείχνει ότι το επιλεγμένο μοντέλο μπορεί να χρησιμοποιηθεί με ασφάλεια για την εκτίμηση του όγκου. 0,8 0,7 R 2 = 0,7131 0,6 Εκτιμώμενες τιμές όγκου 0,5 0,4 0,3 0,2 0, ,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 Πραγματικές τιμές όγκου Σχήμα 4. Γραμμική σχέση παρατηρηθέντων εκτιμώμενων όγκων για το επιλεγμένο μοντέλο. 16

20 6. Συμπεράσματα Από δείγμα 120 δέντρων οξιάς, από το δάσος Κάτω Βερμίου Ημαθίας, έγινε κατάρτιση μαζοπίνακα διπλής εισόδου. Τα δέντρα του δείγματος επιλέχτηκαν με απλή τυχαία δειγματοληψία. Τα κριτήρια που χρησιμοποιήθηκαν για την επιλογή μοντέλων ήταν το απόλυτο μέσο σφάλμα, το τυπικό σφάλμα εκτίμησης των θεωρητικών τιμών και ο δείκτης προσαρμογής, ενώ τα δεδομένα διαχωρίστηκαν, με τυχαίο τρόπο, σε δεδομένα προσαρμογής (80%) και επικύρωσης (20%). Το μοντέλο που επιλέχτηκε είναι: vˆ 0,047 2 = D H με R 2 = 0,75 και τυπικό σφάλμα εκτίμησης = 0,08. Ξενόγλωσση βιβλιογραφία Assmann, E The Principles of Forest Yield Study. Pergamon Press, Oxford. 506 p. Avery, T., and Burkhart, H Forest measurements. McGraw Hill, Boston, USA. 456 p. Burkhart, H Cubic-foot volume of Loblolly pine to any merchantable top limit. Southern Journal of Applied Forestry 1: 7-9. Draper, N., and Smith, H Εφαρμοσμένη ανάλυση παλινδρόμησης. Εκδόσεις Παπαζήση, Αθήνα. 835 σελ. Everitt, B., and Skrondal, A Cambridge Dictionary of Statistics. 4 th edition. University Press, Cambridge UK. 478 p. Ezekiel, M. and Fox, K Methods of correlation and regression analysis. John Wiley and Sons, New York. 548 p. Gevorkiantz, S., and Olsen, L Composite volume tables for timber and their application in the Lake States. U.S. Dep. Agric. Tech. Bull

21 Google Earth Gordon, A., Lundgren, C., and Hay, E Development of a composite taper equation to predict over- and under-bark diameter and volume of Eucalyptus saligna in New Zealand. New Zealand Journal of Forest Science 25(3): IBM SPSS Regression p. Janssen, P., and Heuberger, P Calibration of process-oriented models. Ecological Modelling 83: Marquardt, D., and Snee, R Ridge regression in practice. The American Statistician 29(1): Mathews, J Numerical methods for computer science, engineering and mathematics. Prentice-Hall, Englewood Cliffs, New Jersey. 507 p. Mayer, D., and Butler, D Statistical validation. Ecological Modelling 68: Romancier, R Weight and volume of plantation-grown loblolly pine. USDA For. Serv. Southeast. For. Exp. Stn. Res. Note 161. Schumacher, F., and Hall, F Logarithmic expression of timber-tree volume. Journal of Agricultural Research 47: Sharma, M., and Oderwald, R Dimensionally compatible volume and taper equations. Canadian Journal of Forest Research 31: Spurr, S Forest inventory. Ronald Press, New York. 476 p. Uphof, J Dictionary of economic plants. Lehre: Cramer, New York. 890 p. Van Laar, A., and Akça, A Forest Mensuration. Cuvillier Verlag, Göttingen, Germany. 418 p. 18

22 Wackerly, D., Mendenhall, W., and Scheaffer, R Mathematical statistics with applications. 7 th edition. Duxbury Press. Belmont. 944 p. Williams, M., and Schreuder, H Guidelines for choosing volume equations in the presence of measurement error in height. Canadian Journal of Forest Research 30: Ελληνική βιβλιογραφία Αθανασιάδης, Ν Δασική Βοτανική ΙΙ. Εκδόσεις Γιαχούδη Γιαπούλη, Θεσσαλονίκη. 309 σελ. Διαχειριστική Μελέτη Δασικού Συμπλέγματος ΝΑ Βερμίου ( ). 271 σελ. Κιτικίδου, Κ Εφαρμοσμένη στατιστική με χρήση του στατιστικού πακέτου SPSS. Εκδόσεις Τζιόλα, Θεσσαλονίκη. 288 σελ. Μάτης, Κ. 2004α. Δασική Βιομετρία ΙΙ. Δεντρομετρία. Εκδόσεις Πήγασος, Θεσσαλονίκη. 674 σελ. Μάτης, Κ. 2004β. Δειγματοληψία φυσικών πόρων. Εκδόσεις Πήγασος, Θεσσαλονίκη. 525 σελ. 19

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΜΕ ΘΕΜΑ: Μαζοπίνακες για τη δασική πεύκη (Pinus sylvestris L.) στο κεντρικό τμήμα της οροσειράς της Ροδόπης.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΜΕ ΘΕΜΑ: Μαζοπίνακες για τη δασική πεύκη (Pinus sylvestris L.) στο κεντρικό τμήμα της οροσειράς της Ροδόπης. ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΔΑΣΟΛΟΓΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ: ΑΕΙΦΟΡΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΤΕΥΘΥΝΣΗ Γ : ΟΙΚΟΛΟΓΙΑ

Διαβάστε περισσότερα

Μαζοπίνακες για τη δασική πεύκη (Pinus sylvestris L.) στο κεντρικό τμήμα της οροσειράς της Ροδόπης.

Μαζοπίνακες για τη δασική πεύκη (Pinus sylvestris L.) στο κεντρικό τμήμα της οροσειράς της Ροδόπης. Μαζοπίνακες για τη δασική πεύκη (Pinus sylvestris L.) στο κεντρικό τμήμα της οροσειράς της Ροδόπης. Ιωάννης Λυπηρίδης Δασολόγος 1 ΠΕΡΙΓΡΑΜΜΑ Εισαγωγή Περιοχή έρευνας Υλικά και Μέθοδοι Αποτελέσματα - Συζήτηση

Διαβάστε περισσότερα

ΒΛΑΧΟΠΟΥΛΟΣ ΓΕΡΑΣΙΜΟΣ Δασολόγος

ΒΛΑΧΟΠΟΥΛΟΣ ΓΕΡΑΣΙΜΟΣ Δασολόγος ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΔΑΣΟΛΟΓΙΑΣ ΚΑΙ ΔΙΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΑΕΙΦΟΡΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΤΕΥΘΥΝΣΗ Γ : ΟΙΚΟΛΟΓΙΑ

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΜΕ ΘΕΜΑ: «ΜΑΖΟΠΙΝΑΚΕΣ ΓΙΑ ΤΗ ΧΑΛΕΠΙΟ ΠΕΥΚΗ (PINUS HALEPENSIS) ΤΟΥ ΔΑΣΟΥΣ ΤΑΤΟΪΟΥ ΠΑΡΝΗΘΑΣ ΑΤΤΙΚΗΣ»

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΜΕ ΘΕΜΑ: «ΜΑΖΟΠΙΝΑΚΕΣ ΓΙΑ ΤΗ ΧΑΛΕΠΙΟ ΠΕΥΚΗ (PINUS HALEPENSIS) ΤΟΥ ΔΑΣΟΥΣ ΤΑΤΟΪΟΥ ΠΑΡΝΗΘΑΣ ΑΤΤΙΚΗΣ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΜΕ ΘΕΜΑ: «ΜΑΖΟΠΙΝΑΚΕΣ ΓΙΑ ΤΗ ΧΑΛΕΠΙΟ ΠΕΥΚΗ (PINUS HALEPENSIS) ΤΟΥ ΔΑΣΟΥΣ ΤΑΤΟΪΟΥ ΠΑΡΝΗΘΑΣ ΑΤΤΙΚΗΣ» Μεταπτυχιακή Φοιτήτρια: Αγγελάκη Ειρήνη Επιβλέπουσα Καθηγήτρια: Κιτικίδου Κυριακή

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΜΕ ΘΕΜΑ: Μαζοπίνακες για τη χαλέπιο πεύκη (Pinus halepensis) του δάσους Τατοΐου Πάρνηθας Αττικής. ΕΙΡΗΝΗ ΑΓΓΕΛΑΚΗ Δασολόγος

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΜΕ ΘΕΜΑ: Μαζοπίνακες για τη χαλέπιο πεύκη (Pinus halepensis) του δάσους Τατοΐου Πάρνηθας Αττικής. ΕΙΡΗΝΗ ΑΓΓΕΛΑΚΗ Δασολόγος ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΔΑΣΟΛΟΓΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ: ΑΕΙΦΟΡΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΤΕΥΘΥΝΣΗ Γ : ΟΙΚΟΛΟΓΙΑ

Διαβάστε περισσότερα

«Εφαρμογή της ανάλυσης επιβίωσης για την αξιολόγηση της θνησιμότητας των δέντρων στο δάσος Ελατιάς Δράμας»

«Εφαρμογή της ανάλυσης επιβίωσης για την αξιολόγηση της θνησιμότητας των δέντρων στο δάσος Ελατιάς Δράμας» Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Δασολογίας Μεταπτυχιακή διατριβή «Εφαρμογή της ανάλυσης επιβίωσης για την αξιολόγηση της θνησιμότητας των δέντρων στο δάσος Ελατιάς Δράμας» Αποστολοπούλου Ευαγγελία

Διαβάστε περισσότερα

Δασική Βιομετρία ΙΙ. Ενότητα 1: Εισαγωγή. Γεώργιος Σταματέλλος Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Δασική Βιομετρία ΙΙ. Ενότητα 1: Εισαγωγή. Γεώργιος Σταματέλλος Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή Γεώργιος Σταματέλλος Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Αξιολόγηση της παρούσας κατάστασης των περιοχών έρευνας από δασοκομική και οικοφυσιολογική άποψη

Αξιολόγηση της παρούσας κατάστασης των περιοχών έρευνας από δασοκομική και οικοφυσιολογική άποψη LIFE + AdaptFor Αξιολόγηση της παρούσας κατάστασης των περιοχών έρευνας από δασοκομική και οικοφυσιολογική άποψη Επίδραση της κλιματικής αλλαγής στα Δασικά οικοσυστήματα Καλλιόπη Ραδόγλου & Γαβριήλ Σπύρογλου

Διαβάστε περισσότερα

Δασική Δειγματοληψία

Δασική Δειγματοληψία Δασική Δειγματοληψία Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Δασολογίας και Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων 5 ο εξάμηνο ΚΙΤΙΚΙΔΟΥ ΚΥΡΙΑΚΗ Εισαγωγή Δειγματοληψία Επιλογή ενός μέρους από ένα σύνολο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΔΑΣΟΛΟΓΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ: ΑΕΙΦΟΡΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΤΕΥΘΥΝΣΗ Γ : ΟΙΚΟΛΟΓΙΑ

Διαβάστε περισσότερα

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου 4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.

Διαβάστε περισσότερα

Δειγματοληψία στην Ερευνα. Ετος

Δειγματοληψία στην Ερευνα. Ετος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)

Διαβάστε περισσότερα

-1- Π = η απόλυτη παράλλαξη του σημείου με το γνωστό υψόμετρο σε χιλ.

-1- Π = η απόλυτη παράλλαξη του σημείου με το γνωστό υψόμετρο σε χιλ. -1- ΜΕΤΡΗΣΗ ΥΨΟΜΕΤΡΩΝ ΣΗΜΕΙΩΝ ΤΟΥ ΑΝΑΓΛΥΦΟΥ. Η γνώση των υψομέτρων διαφόρων σημείων μιας περιοχής είναι πολλές φορές αναγκαία για ένα δασοπόνο. Η χρησιμοποίηση φωτογραμμετρικών μεθόδων με τη βοήθεια αεροφωτογραφιών

Διαβάστε περισσότερα

Πρότυπα οικολογικής διαφοροποίησης των μυρμηγκιών (Υμενόπτερα: Formicidae) σε κερματισμένα ορεινά ενδιαιτήματα.

Πρότυπα οικολογικής διαφοροποίησης των μυρμηγκιών (Υμενόπτερα: Formicidae) σε κερματισμένα ορεινά ενδιαιτήματα. Πρότυπα οικολογικής διαφοροποίησης των μυρμηγκιών (Υμενόπτερα: Formicidae) σε κερματισμένα ορεινά ενδιαιτήματα. Γεωργιάδης Χρήστος Λεγάκις Αναστάσιος Τομέας Ζωολογίας Θαλάσσιας Βιολογίας Τμήμα Βιολογίας

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Θεωρία και εφαρμογές επεξεργασίας πληροφορίας 2.

Διαβάστε περισσότερα

Προσαρμογή της Διαχείρισης των Δασών στην Κλιματική Αλλαγή στην Ελλάδα: Δασαρχείο Καλαμπάκας

Προσαρμογή της Διαχείρισης των Δασών στην Κλιματική Αλλαγή στην Ελλάδα: Δασαρχείο Καλαμπάκας Προσαρμογή της Διαχείρισης των Δασών στην Κλιματική Αλλαγή στην Ελλάδα: Δασαρχείο Καλαμπάκας Ομάδα έργου: Παναγιώτης Πουλιανίδης, Αναστασία Κάκια, Φωτεινή Πελεκάνη Σεμινάριο Κατάρτισης Δασικών Υπηρεσιών

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Η παρακολούθηση των δασών στο πλαίσιο της κλιματικής αλλαγής

Η παρακολούθηση των δασών στο πλαίσιο της κλιματικής αλλαγής Η παρακολούθηση των δασών στο πλαίσιο της κλιματικής αλλαγής Γιώργος Πουλής, Δασολόγος M.Sc. Ελληνικό Κέντρο Βιοτόπων - Υγροτόπων Διάρθρωση της παρουσίασης Σχεδιασμός ενός προγράμματος παρακολούθησης Η

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου 4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

Δασική Βιομετρία ΙΙ. Ενότητα 4: Μέτρηση Συστάδων. Γεώργιος Σταματέλλος Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Δασική Βιομετρία ΙΙ. Ενότητα 4: Μέτρηση Συστάδων. Γεώργιος Σταματέλλος Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Μέτρηση Συστάδων Γεώργιος Σταματέλλος Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 Περιεχόμενα Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 1 Εισαγωγή 21 1.1 Γιατί χρησιμοποιούμε τη στατιστική; 21 1.2 Τι είναι η στατιστική; 22 1.3 Περισσότερα για την επαγωγική στατιστική 23 1.4 Τρεις

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression

Διαβάστε περισσότερα

AdaptFor Προσαρμογή της διαχείρισης των δασών στην κλιματική αλλαγή στην Ελλάδα

AdaptFor Προσαρμογή της διαχείρισης των δασών στην κλιματική αλλαγή στην Ελλάδα LIFE+ Περιβαλλοντική Πολιτική και Διακυβέρνηση 2008 AdaptFor Προσαρμογή της διαχείρισης των δασών στην κλιματική αλλαγή στην Ελλάδα Βασιλική Χρυσοπολίτου Δήμητρα Κεμιτζόγλου 13.12.2010, Αθήνα Δήμητρα Κεμιτζόγλου

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή. ΤΕΙ Στερεάς Ελλάδας. Τμήμα Φυσικοθεραπείας. Προπτυχιακό Πρόγραμμα. Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο )

Ενότητα 1: Εισαγωγή. ΤΕΙ Στερεάς Ελλάδας. Τμήμα Φυσικοθεραπείας. Προπτυχιακό Πρόγραμμα. Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 1: Εισαγωγή Δρ. Χρήστος Γενιτσαρόπουλος Λαμία, 2017 1.1. Σκοπός και

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

Απλή Ευθύγραµµη Συµµεταβολή

Απλή Ευθύγραµµη Συµµεταβολή Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Δεδομένων

Εισαγωγή στην Ανάλυση Δεδομένων ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (3 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

Ανάλυση και Σχεδιασμός Μεταφορών Ι Δειγματοληψία - Μέθοδοι συλλογής στοιχείων

Ανάλυση και Σχεδιασμός Μεταφορών Ι Δειγματοληψία - Μέθοδοι συλλογής στοιχείων Δειγματοληψία - Μέθοδοι συλλογής στοιχείων Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος ppapant@upatras.gr Πάτρα, 2017 Στόχοι Βασικές έννοιες στατιστικής Μέθοδοι συλλογής στοιχείων

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)

Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Δασική Βιομετρία ΙΙ. Ενότητα 3: Μέτρηση Ιστάμενων Δέντρων. Γεώργιος Σταματέλλος Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος

Δασική Βιομετρία ΙΙ. Ενότητα 3: Μέτρηση Ιστάμενων Δέντρων. Γεώργιος Σταματέλλος Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Μέτρηση Ιστάμενων Δέντρων Γεώργιος Σταματέλλος Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης

Διαστήματα Εμπιστοσύνης Διαστήματα Εμπιστοσύνης 00 % Διαστήματα Εμπιστοσύνης για τη μέση τιμή ενός πληθυσμού Κατανομή Διασπορά Μέγεθος δείγματος Διάστημα Εμπιστοσύνης Κανονική Γνωστή Οποιοδήποτε Οποιαδήποτε Γνωστή Μεγάλο 30 Z

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Αποκλίσεις των εκτιμήσεων όγκου και αξίας των δένδρων υλοτομίας

Αποκλίσεις των εκτιμήσεων όγκου και αξίας των δένδρων υλοτομίας Αποκλίσεις των εκτιμήσεων όγκου και αξίας των δένδρων υλοτομίας στο Πανεπιστημιακό Δάσος Περτουλίου Ιωάννης Παπαδόπουλος 1, Γεώργιος Σταματέλλος, Νικόλαος Στάμου 3 Περίληψη Οι ακριβείς εκτιμήσεις του όγκου

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

ΔΟΜΗ ΤΟΥ ΞΥΛΟΥ ΔΟΜΗ ΞΥΛΟΥ 2. ΑΥΞΗΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΞΥΛΟΥ. Εργαστήριο Δομής Ξύλου. Στέργιος Αδαμόπουλος

ΔΟΜΗ ΤΟΥ ΞΥΛΟΥ ΔΟΜΗ ΞΥΛΟΥ 2. ΑΥΞΗΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΞΥΛΟΥ. Εργαστήριο Δομής Ξύλου. Στέργιος Αδαμόπουλος ΔΟΜΗ ΞΥΛΟΥ 2. ΑΥΞΗΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΞΥΛΟΥ Δασικά δέντρα α β Κωνοφόρα (α): αειθαλή δέντρα που τα φύλλα τους είναι βελονόμορφα και οι καρποί τους έχουν σχήμα κώνου, π.χ. πεύκη, ελάτη Πλατύφυλλα (β):

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Βλάστηση της Ελλάδας. Καθηγητής Δημήτριος Χριστοδουλάκης Τμήμα Βιολογίας Τομέας Βιολογίας Φυτών Τηλ.

Βλάστηση της Ελλάδας. Καθηγητής Δημήτριος Χριστοδουλάκης Τμήμα Βιολογίας Τομέας Βιολογίας Φυτών   Τηλ. Βλάστηση της Ελλάδας Καθηγητής Δημήτριος Χριστοδουλάκης Τμήμα Βιολογίας Τομέας Βιολογίας Φυτών E-mail: dkchrist@upatras.gr Τηλ.: 2610 997277 Χλωρίδα: Το σύνολο των φυτικών ειδών μιας περιοχής. Βλάστηση:

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Η παλυνολογία εξετάζει την παλαιοβλάστηση τα παλαιο-περιβάλλοντα το παλαιο-κλίμα Την επίδραση του ανθρώπου (π.χ. γεωργία)

Η παλυνολογία εξετάζει την παλαιοβλάστηση τα παλαιο-περιβάλλοντα το παλαιο-κλίμα Την επίδραση του ανθρώπου (π.χ. γεωργία) ΠΑΛΥΝΟΛΟΓΙΑ Παλυνολογία είναι η μελέτη των κόκκων γύρεως (pollen) και των σπορίων (spores) Περιλαμβάνει και: βρυόφυτα (bryophytes), φύκη (phycophyta, algae) και μύκητες (mycophyta, fungi) Η παλυνολογία

Διαβάστε περισσότερα

Εφαρμογές Γραμμικού Προγραμματισμού

Εφαρμογές Γραμμικού Προγραμματισμού Εφαρμογές Γραμμικού Προγραμματισμού Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής Τηλ. & Φαξ: 25210 60435

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

Δασική Βιομετρία ΙΙ. Ενότητα 5: Ασκήσεις και Σχήματα. Γεώργιος Σταματέλλος Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος

Δασική Βιομετρία ΙΙ. Ενότητα 5: Ασκήσεις και Σχήματα. Γεώργιος Σταματέλλος Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ασκήσεις και Σχήματα Γεώργιος Σταματέλλος Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη

Διαβάστε περισσότερα

3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές

3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές ο Φυλλάδιο Ασκήσεων Εφαρμογές 2 ο Φυλλάδιο Ασκήσεων Εφαρμογή 1 ΣΥΓΚΡΙΣΗ ΤΗΣ ΗΛΙΚΙΑΣ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΣΕ ΔΥΟ ΕΠΙΧΕΙΡΗΣΕΙΣ Παρακάτω βλέπουμε τα ιστογράμματα και τα πολύγωνα των σχετικών (%) και σχετικών αθροιστικών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα 1 / 3 / 2012 ΥΠΟΥΡΓΕΙΟ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα 1 / 3 / 2012 ΥΠΟΥΡΓΕΙΟ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα 1 / 3 / 2012 ΥΠΟΥΡΓΕΙΟ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΝΕΡΓΕΙΑΣ & ΚΛΙΜ.ΑΛΛΑΓΗΣ Αριθ.Πρωτ.Οικ. 10842 / δ ΓΕΝ.Δ/ΝΣΗ ΟΙΚΟΝ.ΥΠΗΡΕΣΙΩΝ Δ/ΝΣΗ ΟΙΚΟΝΟΜΙΚΟΥ ΤΜΗΜΑ ΔΙΟΙΚ.ΜΕΡΙΜΝΑΣ Ταχ.Δ/νση : Πανόρμου 2

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION)

ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION) 4. ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION) Η μέθοδος της βηματικής παλινδρόμησης (stepwise regression) είναι μιά άλλη μέθοδος επιλογής ενός "καλού" υποσυνόλου ανεξαρτήτων μεταβλητών.

Διαβάστε περισσότερα

ΑΥΞΗΤΙΚΕΣ ΔΙΑΦΟΡΕΣ ΜΕΤΑΞΥ ΟΙΚΟΓΕΝΕΙΩΝ ΧΑΛΕΠΙΟΥ ΠΕΥΚΗΣ ΣΕ ΦΥΤΕΙΑ ΑΠΟΓΟΝΩΝ ΣΤΗ Β. ΕΥΒΟΙΑ

ΑΥΞΗΤΙΚΕΣ ΔΙΑΦΟΡΕΣ ΜΕΤΑΞΥ ΟΙΚΟΓΕΝΕΙΩΝ ΧΑΛΕΠΙΟΥ ΠΕΥΚΗΣ ΣΕ ΦΥΤΕΙΑ ΑΠΟΓΟΝΩΝ ΣΤΗ Β. ΕΥΒΟΙΑ 1 ΑΥΞΗΤΙΚΕΣ ΔΙΑΦΟΡΕΣ ΜΕΤΑΞΥ ΟΙΚΟΓΕΝΕΙΩΝ ΧΑΛΕΠΙΟΥ ΠΕΥΚΗΣ ΣΕ ΦΥΤΕΙΑ ΑΠΟΓΟΝΩΝ ΣΤΗ Β. ΕΥΒΟΙΑ Κομματά Αικατερίνη (1), Αριστοτέλης Χ. Παπαγεωργίου (1), Ιωαννίδης Κων/νος (2), Βαρελίδης Κων/νος (2), Ζυγομαλά

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Ανακοίνωση για υπηρεσίες οικοφυσιολόγου

Ανακοίνωση για υπηρεσίες οικοφυσιολόγου Ανακοίνωση για υπηρεσίες οικοφυσιολόγου Στο πλαίσιο του έργου «Προσαρμογή της διαχείρισης των δασών στην κλιματική αλλαγή στην Ελλάδα» το οποίο χρηματοδοτείται από το πρόγραμμα LIFE Περιβαλλοντική Πολιτική

Διαβάστε περισσότερα

ΑΠΟΔΟΣΗ ΣΕ ΥΨΟΣ ΚΑΙ ΔΙΑΜΕΤΡΟ ΤΗΣ ΧΑΛΕΠΙΟΥ ΠΕΥΚΗΣ (PINUS ΗALEPENSIS) ΣΕ ΦΥΤΕΙΑ ΑΠΟΓΟΝΩΝ ΣΤΗ Β. ΕΥΒΟΙΑ

ΑΠΟΔΟΣΗ ΣΕ ΥΨΟΣ ΚΑΙ ΔΙΑΜΕΤΡΟ ΤΗΣ ΧΑΛΕΠΙΟΥ ΠΕΥΚΗΣ (PINUS ΗALEPENSIS) ΣΕ ΦΥΤΕΙΑ ΑΠΟΓΟΝΩΝ ΣΤΗ Β. ΕΥΒΟΙΑ ΑΠΟΔΟΣΗ ΣΕ ΥΨΟΣ ΚΑΙ ΔΙΑΜΕΤΡΟ ΤΗΣ ΧΑΛΕΠΙΟΥ ΠΕΥΚΗΣ (PINUS ΗALEPENSIS) ΣΕ ΦΥΤΕΙΑ ΑΠΟΓΟΝΩΝ ΣΤΗ Β. ΕΥΒΟΙΑ Κομματά Αικατερίνη (1), Αριστοτέλης Χ. Παπαγεωργίου (1), Βαρελίδης Κων/νος (2), Ιωαννίδης Κων/νος (2),

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Μέθοδος των περιοδικών ξυλωδών λημμάτων

Μέθοδος των περιοδικών ξυλωδών λημμάτων Μέθοδος των περιοδικών ξυλωδών λημμάτων Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής Τηλ. & Φαξ: 25210

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΕΣ ΕΝΝΟΙΕΣ. Στατιστική????? Κάθε μέρα ερχόμαστε σε επαφή 24/02/2018

ΣΤΑΤΙΣΤΙΚΕΣ ΕΝΝΟΙΕΣ. Στατιστική????? Κάθε μέρα ερχόμαστε σε επαφή 24/02/2018 ΣΤΑΤΙΣΤΙΚΕΣ ΕΝΝΟΙΕΣ Αντώνης Κ. Τραυλός (B.A., M.A., Ph.D.) Καθηγητής ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ Σχολή Επιστημών Ανθρώπινης Κίνησης και Ποιότητας Ζωής Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού Στατιστική?????

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

Κεφάλαιο 5. Βασικές έννοιες ελέγχων υποθέσεων και έλεγχοι κανονικότητας

Κεφάλαιο 5. Βασικές έννοιες ελέγχων υποθέσεων και έλεγχοι κανονικότητας Κεφάλαιο 5 Σύνοψη Βασικές έννοιες ελέγχων υποθέσεων και έλεγχοι κανονικότητας Βασικές έννοιες και ορισμοί του ελέγχου υποθέσεων, γραφικοί έλεγχοι κανονικότητας μέσω των ιστογραμμάτων (διαδρομές Analyze

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;

Διαβάστε περισσότερα

Ανάλυση και Σχεδιασμός Μεταφορών Ι Γένεση Μετακινήσεων

Ανάλυση και Σχεδιασμός Μεταφορών Ι Γένεση Μετακινήσεων Γένεση Μετακινήσεων Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος ppapant@upatras.gr Πάτρα, 2017 Εισαγωγή Αθροιστικά μοντέλα (Aggregate models) Ανάλυση κατά ζώνη πόσες μετακινήσεις ξεκινούν

Διαβάστε περισσότερα

Εισαγωγή στην κοινωνική έρευνα. Earl Babbie. Κεφάλαιο 6. Δειγματοληψία 6-1

Εισαγωγή στην κοινωνική έρευνα. Earl Babbie. Κεφάλαιο 6. Δειγματοληψία 6-1 Εισαγωγή στην κοινωνική έρευνα Earl Babbie Κεφάλαιο 6 Δειγματοληψία 6-1 Σύνοψη κεφαλαίου Σύντομη ιστορία της δειγματοληψίας Μη πιθανοτική δειγματοληψία Θεωρία και λογική της πιθανοτικής Δειγματοληψίας

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY)

ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY) ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY) 1) Ανάλυση 1 δείγματος (Πιστοποιημένο Υλικό Αναφοράς (CRM), εμπορικό δείγμα ελέγχου (control sample), υπόλειμμα διεργαστηριακού) με γνωστή τιμή αναφοράς (μ). Αναλύεται

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο

Διαβάστε περισσότερα

Διάστημα εμπιστοσύνης της μέσης τιμής

Διάστημα εμπιστοσύνης της μέσης τιμής Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΕΞΙΣΩΣΕΩΝ ΜΟΡΦΑΡΙΘΜΟΥ ΓΙΑ ΤΗΝ ΠΛΑΤΥΦΥΛΛΗ ΔΡΥ (Quercus frainetto Ten.) ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΥ ΔΑΣΟΥΣ ΤΑΞΙΑΡΧΗ

ΥΠΟΛΟΓΙΣΜΟΣ ΕΞΙΣΩΣΕΩΝ ΜΟΡΦΑΡΙΘΜΟΥ ΓΙΑ ΤΗΝ ΠΛΑΤΥΦΥΛΛΗ ΔΡΥ (Quercus frainetto Ten.) ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΥ ΔΑΣΟΥΣ ΤΑΞΙΑΡΧΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΔΑΣΟΛΟΓΙΑΣ ΚΑΙ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΟΜΕΑΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΟ ΔΑΣΙΚΗΣ ΒΙΟΜΕΤΡΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΥΠΟΛΟΓΙΣΜΟΣ ΕΞΙΣΩΣΕΩΝ

Διαβάστε περισσότερα

Οργανικός Άνθρακας στα Δασικά Εδάφη της Ελλάδας

Οργανικός Άνθρακας στα Δασικά Εδάφη της Ελλάδας Οργανικός Άνθρακας στα Δασικά Εδάφη της Ελλάδας Π. Μιχόπουλος Εθνικό Ίδρυμα Αγροτικής Έρευνας (ΕΘ.Ι.ΑΓ.Ε.) Ι Ε Ινστιτούτο Μεσογειακών Δασικών Οικοσυστημάτων και Τεχνολογίας Δασικών Προϊόντων Υπουργείο

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Πειραματικό σχέδιο και ANOVA Η βασική διαφορά μεταξύ των πειραματικών σχεδίων είναι ο τρόπος με τον οποίο ταξινομούνται ή κατατάσσονται οι πειραματικές μονάδες (πειραματικά τεμάχια) Σε όλα τα σχέδια

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα