DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.
|
|
- Διόσκουροι Λύκος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka suurtähtedega. Kirjutatakse nt. kas kolmnurk ABC või ABC. Kirjapilt kolmnurk ABC on vale. Kolmnurga sisenurki tähistatakse tavaliselt kreeka tähtede α, β ja γ abil (vastavalt A, B ja C juures), mille vastasküljed on vastavalt a, b ja c. Kolmnurga iga kahe külje summa on suurem kui kolmas külg./ Suvalise kolmnurga külgede pikkused a, b ja c, rahuldavad alati võrratusi: a + b > c, a + c > b ja b + c > a. ÜL. 1. Selgita, kas järgmised lõigud võivad olla kolmnurga külgedeks: 1) 4 dm, 4 dm, 4 dm; ) 3 m, 9 m, 1 m; 3) 5 cm, 8 cm, 1 cm; 4) 0,6 dm, 1,4 dm,,3 dm. Kolmnurga kõigi külgede summa on kolmnurga ümbermõõt. Tähis on P. ÜL.. Kolmnurga üks külg on 5,4 dm, teine 6,8 dm ja kolmas teisest,3 dm võrra lühem. Arvuta kolmnurga ümbermõõt. ÜL. 3. Kolmnurga ümbermõõt on 4,8 m. Üks külg on 1, m ja teine 3 1 ümbermõõdust. Arvuta kolmnurga puuduvad küljed. ÜL. 4. Kolmnurga üks külg on 6 dm ja see moodustab 30% ümbermõõdust. Ülejäänud kaks külge on võrdse pikkusega. Arvuta kolmnurga teised küljed. 1 ÜL. 5. Kolmnurga üks külg on 1 cm, teine külg sellest 1 korda lühem ja kolmas moodustab 90% teisest küljest. Tee võimalikud arvutused. TEOR. Kolmnurga sisenurkade summa on 180 o. ÜL. 6. Leia kolmnurga puuduv nurk, kui kaks sisenurka on: 1) 56 o ja 57 o ; ) 10 o ja 130 o ; 3) 13 o ja 1 o. ÜL. 7. Leia täisnurkse kolmnurga teine teravnurk, kui üks teravnurk on 5 o ; 87 o ; 33 o ; 66 o. ÜL. 8. Leia võrdhaarse kolmnurga alusnurk, kui tipunurk on 45 o ; 87 o ; 90 o ; 10 o. ÜL. 9. Leia võrdhaarse kolmnurga tipunurk, kui alusnurk on 1 o ; 77 o ; 44 o ; 60 o. ÜL. 10. Kui suur nurga moodustab võrdhaarses kolmnurgas haarale tõmmatud kõrgus alusega, kui tipunurk on 40 o ; 100 o ; 140 o ; 5 o? ÜL. 11. Kolmnurga nurkade suurused on väljendatud kolme järjestikuse täisarvuga. Leia need nurgad. ÜL. 1. Kolmnurga üks nurk on teisest 44 o võrra suurem, kolmas nurk on aga teisest korda suurem. Leia kolmnurga nurgad. DEF. Kolmnurga sisenurga kõrvunurka nim. kolmnurga välisnurgaks. Välisnurga OMADUS. Kolmnurga iga välisnurk on võrdne temaga mitte kõrvu olevate sisenurkade summaga. ÜL. 13. Kolmnurga välisnurk on 4 korda suurem ühest temaga mitte kõrvu olevast sisenurgast. Teine mitte kõrvu olev sisenurk on 75 o. Leia välisnurk. Kordamine. Koostas M. Kikas. Kasutatud materjalid: A. Telgmaa, E. Nurk, Matemaatika VI klassile. osa;. M. Lepik, E. Nurk,
2 Kolmnurk ÜL. 14. Kolmnurga kaks nurka erinevad teineteisest 30 o võrra. Nende nurkadega mitte kõrvu olev välisnurk on väiksemast nurgast 3 korda suurem. Leia kolmnurga nurgad. ÜL. 15. Leia kolmnurga ülejäänud nurgad, kui üks nurk on 40 o ja sellega mitte kõrvu olev välisnurk on 100 o ; 15 o ; 48 o ; 10 o. DEF. Kolmnurka, mille kõik nurgad on teravnurgad nim. teravnurkseks. DEF. Kolmnurka, mille üks nurk on nürinurk nim. nürinurkseks. DEF. Kolmnurka, mille üks nurk on täisnurk nim. täisnurkseks. DEF. Kolmnurka, mille kõik küljed on erineva pikkusega nim. erikülgseks (või isekülgseks). DEF. Kolmnurka, mille kaks külge on võrdsed nim. võrdhaarseks. Võrdsed küljed on haarad ja kolmas külg on alus. Aluse lähisnurki nim. alusnurkadeks, aluse vastasnurka nim. tipunurgaks. DEF. Kolmnurka, mille kõik küljed on võrdsed nim. võrdkülgseks ehk korrapäraseks kolmnurgaks. Korrapärane kolmnurk on võrdhaarse kolmnurga erijuht. Iga võrdkülgne kolmnurk on võrdhaarne. ÜL. 16. Arvuta võrdhaarse kolmnurga alusnurk, kui tipunurk on 100 o ; 36 o ; 84 o ; 16 o. ÜL. 17. Arvuta võrdhaarse kolmnurga tipunurk, kui alusnurk on 7 o ; 35 o ; 57 o ; 88 o. ÜL. 18. Arvuta teravnurkse võrdhaarse kolmnurga nurgad, kui haarale tõmmatud kõrgus moodustab alusega nurga 0 o ; 16 o ; 58 o ; 36 o. ÜL. 19. Arvuta nürinurkse võrdhaarse kolmnurga nurgad, kui haarale tõmmatud kõrgus moodustab teise haaraga nurga 10 o ; 60 o ; 38 o ; 74 o. DEF. Kolmnurga tipust vastaskülje või selle pikendusele tõmmatud ristlõiku nim. kolmnurga kõrguseks. Tähis h. DEF. Külge, mille tipust on kõrgus tõmmatud nim. kolmnurga aluseks. Tähis a. a h Kolmnurga pindala võrdub aluse ja kõrguse poole korrutisega. Tähis S. S = a b Täisnurkse kolmnurga pindala võrdub kaatetite poole korrutisega. S = ÜL. 0. Kolmnurkse maatüki küljed on 40 m, 60 m ja 70 m. Valmista selle maatüki plaan mõõdus 1 : 1000, tee plaanilt vajalikud mõõtmised ja arvuta maatüki pindala. ÜL. 1. Arvuta kolmnurga külg a, kui 1) ÜL.. Arvuta kolmnurga külg h, kui 1) h = 65 dm ja a = 4,5 m ja S = 3,4 m ; ) h = 0,8 dm ja S =180dm ; ) a = 6,8 dm ja S =,55 cm. S = 357 cm. ÜL. 3. Kolmnurga kaks külge on 4 cm ja 3 dm. Esimesele küljele joonestatud kõrgus on 15 cm. Kui pikk on teisele küljele joonestatud kõrgus? ÜL. 4. Kolmnurga ABC külg AC = 4 d, küljele AC joonestatud kõrgus on 6 dm ja küljele BC joonestatud kõrgus 3 dm. Arvuta külg BC. TEOR. Kolmnurga kõrgused lõikuvad kõik ühes ja samas punktis. DEF. Kolmnurga kõrguste lõikepunkti nim. ortotsentriks. ÜL. 5. Joonesta 3 kolmnurka teravnurkne, nürinurkne ja täisnurkne. Joonesta igale kolmnurgale kõik kolm kõrgust. ÜL. 6. Mis liiki on kolmnurk, kui 1) kolmnurga kaks kõrgust on võrdsed ja asuvad väljaspool kolmnurka; ) kolmnurga kõik kõrgused poolitavad alused; 3) kolmnurga kaks kõrgust on teineteisega risti? Kordamine. Koostas M. Kikas. Kasutatud materjalid: A. Telgmaa, E. Nurk, Matemaatika VI klassile. osa;. M. Lepik, E. Nurk,
3 Kolmnurk 3 DEF. Lõiku, mis ühendab kolmnurga kahe külje keskpunkte nim. kolmnurga kesklõiguks. TEOR. Kolmnurga kesklõik on paralleelne kolmnurga ühe küljega ja võrdub poolega sellest küljest. Kolmnurga kesklõigud jaotavad nelinurga neljaks võrdseks kolmnurgaks. ÜL. 7. Kolmnurga küljed on 4,9 m, 56 dm ja 350 cm. Arvuta kesklõikude poolt moodustunud kolmnurga ümbermõõt. ÜL 8. Võrdkülgse kolmnurga ümbermõõt on 3,6 dm. Arvuta kesklõigu pikkus. ÜL. 9. Võrdhaarse kolmnurga haar on kaks korda pikem alusest ja kolmnurga ümbermõõt on 75 cm. Leia kolmnurga kesklõikude pikkused. ÜL. 30. Kolmnurga üks kesklõik on teisest 4 cm lühem, kolmas aga teisest cm pikem. Leia antud kolmnurga küljed, kui kesklõikudest moodustunud kolmnurga ümbermõõt on cm. ÜL. 31. Kolmnurga ümbermõõt on 68 cm. Üks kesklõik on 5 cm võrra pikem teisest, kuid 3 cm lühem kolmandast kesklõigust. Arvuta antud kolmnurga küljed. ÜL. 3. Võrdhaarse kolmnurga pindala on 56 cm ja alusega paralleelne kesklõik 7 cm. Arvuta kolmnurga tipu kaugus alusest. DEF. Lõiku, mis ühendab kolmnurga tipu vastaskülje keskpunktiga nim. kolmnurga mediaaniks. Kolmnurga mediaanide lõikepunkt on kolmnurga raskuskese. Kolmnurga mediaanid jaotavad kolmnurga kuueks pindvõrdseks kolmnurgaks. TEOR. Kolmnurga mediaanid lõikuvad kõik ühes punktis, mis jaotab iga mediaani kaheks osaks nii, et tipupoolne osa on kaks korda pikem küljepoolsest osast. ÜL. 33. Kolmnurga kahe mediaani pikkused on 3 dm ja 1,8 dm. Kui pikkadeks lõikudeks jaotab mediaanide lõikepunkt need mediaanid? ÜL. 34. Kui suured nurgad on võrdkülgse kolmnurga kahe mediaani vahel? ÜL. 35. Täisnurkse kolmnurga ABC kaatetid on AC = 6 cm ja BC = 9 cm. Lõik BD on kaatetile AC tõmmatud mediaan. Arvuta kolmnurga ABD pindala. ÜL. 36. Kolmnurk ABC on võrdhaarne. Lõik AD on mediaan ning ADC = 14 ja BC = AB. Leia kolmnurga ABC nurgad. ÜL. 37. Kolmnurkadele on joonestatud mediaan. Märgi raskuskese ilma teisi mediaane joonestamata. Kordamine. Koostas M. Kikas. Kasutatud materjalid: A. Telgmaa, E. Nurk, Matemaatika VI klassile. osa;. M. Lepik, E. Nurk,
4 Kolmnurk 4 ÜL. 38. Võrdhaarse kolmnurga ümbermõõt on 0 cm. Tipust tõmmatud nurgapoolitaja jaotab kolmnurga kaheks osaks nii, et kummagi osa ümbermõõt on 16 cm. Leia nurgapoolitaja pikkus. Kordamine. Koostas M. Kikas. Kasutatud materjalid: A. Telgmaa, E. Nurk, Matemaatika VI klassile. osa;. M. Lepik, E. Nurk,
5 Kolmnurk 5 Kolmnurga kõigi külgede keskristsirged lõikuvad ühes ja samas punktis, mis asub kolmnurga igast tipust ühel ja samal kaugusel. Kolmnurga ümberringjoone keskpunktiks on kolmnurga külgede keskristsirgete lõikepunkt. DEF. Kolmnurka, millele on joonestatud ümberringjoon nim. kõõlkolmnurgaks. ÜL. 39. Joonesta teravnurkne, täisnurkne ja nürinurkne kolmnurk. Joonesta igale kolmnurgale ümberringjoon. Kus asub ümberringjoone keskpunkt, kui kolmnurk on a) teravnurkne; b) täisnurkne; c) nürinurkne? ÜL. 40. Täisnurkse kolmnurga kaatetid on 7 cm ja 4 cm. Arvuta hüpotenuusile joonestatud mediaani pikkus. Kolmnurga kõik nurgapoolitajad lõikuvad ühes ja samas punktis, mis asub kolmnurga igast küljest ühel ja samal kaugusel. Kolmnurga nurgapoolitajate lõikepunkt on kolmnurga siseringjoone keskpunkt. DEF. Kolmnurka, millele on joonestatud siseringjoon nimetatakse puutujakolmnurgaks. Kolmnurga pindala võrdub kolmnurga ümbermõõdu ja siseringjoone raadiuse poole korrutisega. Pr S = = pr, kus p on pool kolmnurga ümbermõõdust. ÜL. 41. Joonesta teravnurkne, täisnurkne ja nürinurkne kolmnurk. Joonesta igale kolmnurgale siseringjoon. Tee vajalikud mõõtmised. Arvuta iga kolmnurga pindala ümbermõõdu ja raadiuse kaudu. ÜL. 4. Missugune lause on tõene, missugune väär? a) Kolmnurgal leidub ainult üks siseringjoon. b) Kolmnurga siseringjoone keskpunkt võib asuda kolmnurga küljel. c) Kolmnurga siseringjoone keskpunkt võib asuda kolmnurgast väljas. d) Kolmnurga siseringjoone keskpunkt on tema külgedest võrdsel kaugusel. e) Kolmnurga siseringjoone keskpunkt on kolmnurga tippudest võrdsel kaugusel. f) Kolmnurga siseringjoone keskpunktiks on külgede keskristsirgete lõikepunkt. g) Kolmnurgal leidub mitu ümberringjoont. h) Kolmnurga ümberringjoone keskpunkt on tema külgedest võrdsel kaugusel. i) Kolmnurga ümberringjoone keskpunkt on tema tippudest võrdsel kaugusel. j) Kolmnurga ümberringjoone keskpunktiks on tema külgede keskristsirgete lõikepunkt. k) Kolmnurga ümberringjoone keskpunkt võib asuda kolmnurgast väljas. Kordamine. Koostas M. Kikas. Kasutatud materjalid: A. Telgmaa, E. Nurk, Matemaatika VI klassile. osa;. M. Lepik, E. Nurk,
KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
Analüütilise geomeetria praktikum II. L. Tuulmets
Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga
Geomeetria põhivara. Jan Willemson. 19. mai 2000.a.
Geomeetria põhivara Jan Willemson 19. mai 2000.a. 1 Kolmnurk Kolmnurgas tasub mõelda järgmistest lõikudest ja sirgetest: kõrgused, nurgapoolitajad, välisnurkade poolitajad, külgede keskristsirged, mediaanid,
,millest avaldub 21) 23)
II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
Eesti koolinoorte XLI täppisteaduste olümpiaad
Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise
Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid
Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
; y ) vektori lõpppunkt, siis
III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf
Eesti LIV matemaatikaolümpiaad
Eesti LIV matemaatikaolümpiaad 31. märts 007 Lõppvoor 9. klass Lahendused 1. Vastus: 43. Ilmselt ei saa see arv sisaldada numbrit 0. Iga vähemalt kahekohaline nõutud omadusega arv sisaldab paarisnumbrit
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
LOOGIKA ELEMENTE MATEMAATIKAS. GEOMEETRIA AKSIOMAATILISEST ÜLESEHITUSEST. Koostanud Hilja Afanasjeva
LOOGIKA ELEMENTE MATEMAATIKAS. GEOMEETRIA AKSIOMAATILISEST ÜLESEHITUSEST EESSÕNA Koostanud Hilja Afanasjeva Enne selle teema käsitlemist avame mõned materjalist arusaamiseks vajalikud mõisted hulgateooriast.
Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül.
Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln.6 I kursus NÄIDISTÖÖ nr.: Astmed.. Arvutada avaldise täpne väärtus. 8 * (,8)
20. SIRGE VÕRRANDID. Joonis 20.1
κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii
Eesti koolinoorte XLIX täppisteaduste olümpiaad
Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.
Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused
Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].
REAALAINETE KESKUS JAAK SÄRAK
REAALAINETE KESKUS JAAK SÄRAK TALLINN 2006 1 DESCRIPTIVE GEOMETRY Study aid for daily and distance learning courses Compiler Jaak Särak Edited by Tallinn College of Engineering This publication is meant
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
Kontekstivabad keeled
Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2
Vektorite sklrkorrutis Vtleme füüsikkursusest tuntud olukord, kus kehle mõjub jõud F r j keh teeb selle jõu mõjul nihke s Konkreetsuse huvides olgu kehks rööbsteel liikuv vgun Jõud F r mõjugu vgunile rööbstee
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline).
Prism Prisms nimese ulu, mille s u on vsvl rlleelsee j võrdsee ülgedeg ulnurgd, ning ülejäänud ud on rööüliud, millel on ummgi ulnurgg üine ülg. Prlleelseid ulnuri nimese rism õjdes j nende ulnurde ülgi
28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.
8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
MATEMAATILISEST LOOGIKAST (Lausearvutus)
TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias
ektorid Matemaatikas tähistab vektor vektorruumi elementi. ektorruum ja vektor on defineeritud väga laialt, kuid praktikas võime vektorit ette kujutada kui kindla arvu liikmetega järjestatud arvuhulka.
HULGATEOORIA ELEMENTE
HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad
Staatika ja kinemaatika
Staatika ja kinemaatika MHD0071 I. Staatika Leo eder Mehhatroonikainstituut Mehaanikateaduskond allinna ehnikaülikool 2016 Sisukord I Staatika 1. Sissejuhatus. 2. Newtoni seadused. 3. Jõud. 4. ehted vektoritega.
Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool. Andrus Salupere STAATIKA ÜLESANDED
Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool Andrus Salupere STAATIKA ÜLESANDED Tallinn 2004/2005 1 Eessõna Käesolev ülesannete kogu on mõeldud kasutamiseks eeskätt Tallinna
Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui
Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.
TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots
TARTU ÜLIKOOL Teaduskool STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
Astronoomia termineid (mis ei tarvitse tuttavad olla)
Astronoomia termineid (mis ei tarvitse tuttavad olla) aastaparallaks Maa orbiidi raadiuse pikkusele nihkele vastav vaatesuuna muutus. Ehk teiste sõnadega: nurk, mille all paistab Maa orbiidi raadius vaadeldavalt
Fotomeetria. Laineoptika
Fotomeetria 1. Päikese ja Maa vaheline kaugus on 1,5 10 8 km. Kui kaua tuleb valgus Päikeselt Maale? (Vastus: 500 s) 2. Fizeau ajaloolises katses valguse kiiruse määramiseks oli 720 hambaga hammasratta
ALGEBRA I. Kevad Lektor: Valdis Laan
ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja
2. HULGATEOORIA ELEMENTE
2. HULGATEOORIA ELEMENTE 2.1. Hulgad, nende esitusviisid. Alamhulgad Hulga mõiste on matemaatika algmõiste ja seda ei saa def ineerida. Me võime vaid selgitada, kuidas seda abstraktset mõistet endale kujundada.
MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM
Lea Lepmann Tiit Lepmann MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM Ülesanded, lahendused, kommentaarid ja soovitused Kõigi käesolevas kogumikus kasutatud riigi- ja katseeksamite ülesannete autoriõigused
Funktsioonide õpetamisest põhikooli matemaatikakursuses
Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,
Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008
Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub
Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV
U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS
1 Funktsioon, piirväärtus, pidevus
Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks
Smith i diagramm. Peegeldustegur
Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes
Vektor. Joone võrrand. Analüütiline geomeetria.
Vektor. Joone võrrand. Analüütiline geomeetria. Hele Kiisel, Hugo Treffneri Gümnaasium Analüütilise geomeetria teemad on gümnaasiumi matemaatikakursuses jaotatud kaheks osaks: analüütiline geomeetria tasandil,
Sissejuhatus. Kinemaatika
Sissejuhatus Enamuse füüsika ülesannete lahendamine taandub tegelikult suhteliselt äikese hulga ideede rakendamisele (öeldu kehtib ka teiste aldkondade, näiteks matemaatika kohta). Seega on aja õppida
Eesti koolinoorte XLIX täppisteaduste olümpiaad
Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. VII klass I osa: Lahendamiseks on aega 40 minutit. Sellele lehele kirjuta ainult vastused, lahendamiseks
3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE
3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3.1. Loendamise põhireeglid Kombinatoorika on diskreetse matemaatika osa, mis uurib probleeme, kus on tegemist kas diskreetse hulga mingis mõttes eristatavate osahulkadega
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi
Sõiduki tehnonõuded ja varustus peavad vastama järgmistele nõuetele: Grupp 1 Varustus
Majandus- ja kommunikatsiooniministri 13.06.2011. a määruse nr 42 Mootorsõiduki ja selle haagise tehnonõuded ning nõuded varustusele lisa 1 NÕUDED ALATES 1. JAANUARIST 1997. A LIIKLUSREGISTRISSE KANTUD
6 Mitme muutuja funktsioonid
6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad
Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine
TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
Tehniline Mehaanika. I. Staatika II. Tugevusõpetus III. Kinemaatika IV. Dünaamika V. Masinaelemendid /aparaatide detailid/ I STAATIKA
Tehniline Mehaanika I. Staatika II. Tugevusõpetus III. Kinemaatika IV. Dünaamika V. Masinaelemendid /aparaatide detailid/ I STTIK 1.1. Põhimõisted Staatika on jäikade kehade tasakaaluõpetus. Ta uurib tingimus,
Eesti koolinoorte XLIX täppisteaduste olümpiaadi
Eesti koolinoorte XLIX täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 7. märtsil 2002. a. IX klass Lahendamisaega on 5 tundi. Iga ülesande õige ja ammendavalt põhjendatud lahendus annab 7 punkti.
Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise
Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja
Andmeanalüüs molekulaarbioloogias
Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.
Eesti koolinoorte 22. füüsika lahtine võistlus
Eesti koolinoorte. füüsika lahtine võistlus 6. november 011. a. Noorema rühma lahendused 1. (POSTID) Posti pikkus on pärast soojushulga andmist: l = l algne(1 + a)q cm Sellest saab arvutad, kui pikaks
Matemaatiline analüüs IV praktikumiülesannete kogu a. kevadsemester
Matemaatiline analüüs IV praktikumiülesannete kogu 4. a. kevadsemester . Alamhulgad ruumis R m. Koonduvad jadad. Tõestage, et ruumis R a) iga kera s.o. ring) U r A) sisaldab ruutu keskpunktiga A = a,b),
T~oestatavalt korrektne transleerimine
T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:
KATEGOORIATEOORIA. Kevad 2016
KTEGOORITEOORI Kevad 2016 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me
Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 15. november a.
. a) A mutant E.coli B β galaktosidaas C allolaktoos D laktoos b) N = 2 aatomit Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 0. klass) 5. november 200. a. molekulis 6 prootonit + aatomit
Matemaatiline analüüs II praktikumiülesannete kogu a. kevadsemester
Matemaatiline analüüs II praktikumiülesannete kogu 5. a. kevadsemester . Kahe ja kolme muutuja funktsiooni määramispiirkond, selle raja, kinnisus ja lahtisus. Olgu X ja Y hulgad. Kujutus e. funktsioon
Ainevaldkond Matemaatika gümnaasiumi ainekava
Ainevaldkond Matemaatika gümnaasiumi ainekava 1. Ainevaldkonna õppeainete kohustuslikud kursused Lai matemaatika koosneb 14 kursusest: 10 klass: 1. Avaldised ja arvuhulgad 2. Võrrandid ja võrrandisüsteemid
KATEGOORIATEOORIA. Kevad 2010
KTEGOORITEOORI Kevad 2010 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me
VFR navigatsioon I (Mõisted ja elemendid I)
VFR navigatsioon I (Mõisted ja elemendid I) 1. Suunad ja nende tähistamine. 2. Maakera ja sellega seonduv. 3. Maa magnetism. 4. Kursid (suunanurkade tüübid). 5. Navigatsiooniline kiiruste kolmnurk Min
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH
Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.
Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud
NORDrect Ventilatsiooni kandiline torustik
Ventitsiooni kndiine torustik www.etsnord.ee 0 0 Üdist EKT Toru EKP Põv EKPK Põv EKK Üeminek 0 EKD Üeminek 0 EKN Nihe ESS Sdu ESK Sdu ESD Sdu ESDR Sdu EKM Komik EKO Pime EKOL Pime EVO Õhuhre võrgug ESV
I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal
I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]
Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397
Ecophon Line LED Ecophon Line on täisintegreeritud süvistatud valgusti. Kokkusobiv erinevate Focus-laesüsteemidega. Valgusti, mida sobib kasutada erinevates ruumides: avatud planeeringuga kontorites; vahekäigus
Skalaar, vektor, tensor
Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,
8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm.
TTÜ EHHATROONIKAINSTITUUT HE00 - ASINATEHNIKA -, 5AP/ECTS 5 - -0-- E, S 8. KEEVISLIITED NÄIDE δ > 4δ δ b k See 8.. Kattekeevisiide Arvutada kahepoone otsõmbus teraspaatide (S5JG) ühendamiseks. 40 kn; δ
Kandvad profiilplekid
Kandvad profiilplekid Koosanud voliaud ehiusinsener, professor Kalju Looris ja ehnikalisensiaa Indrek Tärno C 301 Pärnu 2003 SISUKORD 1. RANNILA KANDVATE PROFIILPLEKKIDE ÜLDANDMED... 3 2. DIMENSIOONIMINE
HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G
HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%
STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013
Ι 47 d 11 11 10 kw kw kw d 2015 811/2013 Ι 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi 2010/30/ täiendavates määrustes () nr 811/2013,
1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD
1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki
Sheet H d-2 3D Pythagoras - Answers
1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm
Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD
Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD 1 Nõudmised krüptoräsidele (Hash-funktsionidele) Krüptoräsiks nimetatakse ühesuunaline funktsioon
Kineetiline ja potentsiaalne energia
Kineetiline ja potentsiaalne energia Koostanud: Janno Puks Kui keha on võimeline tegema tööd, siis ta omab energiat. Seetõttu energiaks nimetatakse keha võimet teha tööd. Keha poolt tehtud töö ongi energia
Formaalsete keelte teooria. Mati Pentus
Formaalsete keelte teooria Mati Pentus http://lpcs.math.msu.su/~pentus/ftp/fkt/ 2009 13. november 2009. a. Formaalsete keelte teooria 2 Peatükk 1. Keeled ja grammatikad Definitsioon 1.1. Naturaalarvudeks
Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus
Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus 1. Haljala valla metsa pindala Haljala valla üldpindala oli Maa-Ameti
RF võimendite parameetrid
RF võimendite parameetrid Raadiosageduslike võimendite võimendavaks elemendiks kasutatakse põhiliselt bipolaarvõi väljatransistori. Paraku on transistori võimendus sagedusest sõltuv, transistor on mittelineaarne
Kitsas matemaatika-3 tundi nädalas
Kitsas matemaatika-3 tundi nädalas Õpitulemused I kursus-arvuhulgad. Avaldised. Võrrand, võrratus. 1) eristab ratsionaal-, irratsionaal- ja reaalarve; 2) eristab võrdust, samasust, võrrandit ja võrratust;
Eesti koolinoorte 51. täppisteaduste olümpiaad
Eesti koolinoorte 5 täppisteaduste olümpiaad Füüsika lõppvoor 7 märts 2004 a Põhikooli ülesannete lahendused ülesanne (KLAASTORU) Plaat eraldub torust siis, kui petrooleumisamba rõhk saab võrdseks veesamba