LUCRAREA NR COMUTAREA TRANZISTORULUI BIPOLAR

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "LUCRAREA NR COMUTAREA TRANZISTORULUI BIPOLAR"

Transcript

1 LUCRARA NR 19 - COMUARA RANZSORULU BPOLAR 1 Sopul lurării: e udiază reimul de omuare al raziorului bipolar, e măoară impii de omuare direă şi iveră, preum şi iflueţa diferielor elemee ale hemei aupra aeora; e udiază efiieţa uor heme de aelerare a omuării şi de eviare a irării î auraţie a raziorului 2 Reimul de omuare al uui razior bipolar oă di reerea lui di area de bloare î area de oduţie - î reiuea aivă ormală au î auraţie - şi iver Î area de bloare, ambele joţiui ale razioarelor u polarizae iver; pri razior irulă ureţii b şi (î oexiuea C), de obiei, elijabili peru razioarele di iliiu, afel îâ eiuile la borele razioarelor bloae u deermiae umai de elemeele iruiului exerior aeora Î area de oduţie, raziorul are joţiuea bază-emior polarizaă dire iar joţiuea oleor-bază ee fie bloaă (î azul fuţioării î reiuea aivă ormală) fie polarizaă dire (î azul î are raziorul fuţioează la auraţie) Fuţioarea raziorului î auraţie, î iruiele de omuaţie, preziă avaaje, preum realizarea uui oefiie bu de uilizare a eiuii de alimeare, puere diipaă miă pe razior, abiliae a eiuii de ieşire, dar are şi dezavaajul uui imp de omuare iveră mai mare, daoriă ariilor oae uplimear î bază Codiţia de fuţioare î auraţie a uui razior bipolar ee a şi joţiuea oleor-bază Ca a raziorului ă fie polarizaă dire, eea e, peru iruiul di fi1 devie: > = â (1) ude ee ureul de bază la auraţie iipieă iar ee ureul dire pri baza raziorului Î auraţie, raziorul ee araeriza pri eiuea bază-emior, V B, de ira,7 -,9 V (î fuţie de ureul de emior) şi pri eiuea de oleor de auraţie, V e a, de ira,1 -,3 V (î fuţie de ureul de oleor), elijabilă eiuile pe joţiui fiid foare mii au, orium, uoue, peru u razior bipolar aura, ureţii pri el u deermiaţi de elemeele iruiului exerior Se adauă şi relaţia: = B + C Î reiuea de auraţie, raziorul ee araeriza şi pri radul de auraţie: = (2) 3 Îârzierea, la omuarea dir-o are î ala, a raziorului, ee deermiaă aâ de feomeele de aumulare a ariii de purăori î baza raziorului, araerizae pri oaele de imp ô (oaa de imp de viaţă a eleroilor mioriari î exe î bază) şi ô (oaa de imp de oare) â şi de apaiăţile de barieră ale joţiuilor raziorului, C be, e oează âd raziorul ee bloa, repeiv C b e oează şi âd raziorul ee dehi, î reiuea aivă ormală (î peial, la rezieţe de oleor de valoare mare) Peru razioarele de omuaţie, e iau măuri eholoie peru mişorarea oaelor de imp ô şi ô (rearea uor eri de reombiare uplimeari pri dopare u aomi de aur, oeraţii mari de impuriăţi) şi a apaiăţilor de barieră (uprafeţe mii ale joţiuilor) Rezulă ureţi reziduali ai joţiuilor de valoare miă şi, dei, eiui diree pe joţiui dehie de valori mai mari (ira,7 -,9 V); de aemei, faorul de ure al raziorului, â, va avea valori relaiv mii, de ira 3-5, avâd î vedere reombiarea favorizaă a purăorilor mioriari î bază 4 Reimul de omuare al raziorului bipolar e poae udia pe iruiul ehivale di fi1, ude rezieţa R limiează ureul de oleor al raziorului, eea e permie şi obţierea reimului de auraţie Cureţii (dire) şi (iver) depid de ofiuraţia iruiului exerior

2 şi de eiuea bază-emior, V B, a raziorului, la fel a şi ureul de oleor al raziorului, C = C a Formele de udă ale ureţilor de bază şi de oleor u reprezeae î fi2; aşa um e obervă, la omuarea iveră, pri baza raziorului, e abileşe u ure iver (- ) are exiă R B 1 - B 2 1 a 9 a fi 191 fi 19 2 aâ imp â mai exiă ariă de purăori mioriari oaă î baza raziorului V + V Peru iruiul ea, di fi6, e riu ureţii: = (3), + P R2 + V VCC = + (4), C a = (5) + P R2 RC S-au elija ăderile de eiue de pe rezieţele r b şi r foloie peru măurarea ureţilor repeivi 5 Comuarea direă ee araerizaă, pe de o pare, prir-u imp de îârziere, î, deermia de îărarea apaiăţii parazie de irare a raziorului bipolar şi pri impul de difuzie al purăorilor mioriari de la emior la oleor (foare mi), ereprezea î fi2 şi, pe de ală pare, pri impul de reşere are, dedu di euaţiile meodei ariii peru reim razioriu, e alulează u relaţiile: - peru omuarea î reiuea aivă ormală: ô σ = 2,3 ô (6) 1 - peru omuarea î reiuea de auraţie: = τ r l,9 (7) 1 Se remară depedeţa impului de omuare direă ( d = î + r r ) de radul de auraţie al raziorului 6 Comuarea iveră a raziorului di reiuea de auraţie ee araerizaă pri impul de + oare, e e poae alula u relaţia: = ô l (8) + şi pri impul de ădere, da de relaţia: = + l 1 ô (9) Obervaţie: daă ô ô, aui e obţie: = + = + l 1 i ô (1) relaţie are, fiid idepedeă de, araă ă impul de omuare iveră depide de aiaea de ariă oală oaă î baza raziorului (proporţioală u ) şi de ureul de bază iver ( ) are elimiă aria di bază 7 Peru mişorarea impilor de omuare ai uui razior bipolar, e poae foloi o hemă de aelerare a omuării a î fi3 i r i

3 La apliarea alului poziiv al eiuii de irare, e obţie u ure de bază de valoare mare (apaiaea e omporă a u ur irui pe froul impulului): ( V V C + V P V ) = (11) u: V C =, are aiură u imp de R2 + R2 + P reşere foare mi, dar are ade î imp, afel ă, valoarea de reim aţioar: V + V ( ) = (12) ă aiure aurarea raziorului u u rad de auraţie â mai R + P R 1 mi (1 2), aproape de auraţie iipieă 2 v R P R C a V 1 R 2 B 1 B 1 - B 2 - B 2 ( ) ( ) 8 ( ) 8 ( ) -V fi 19 3 fi 19 4 La apliarea alului eaiv al eiuii de irare, e obţie u ure, (), de valoare foare mare: ( + V C + V P( V ) ) = + (13) u: V C =, are aiură impi de R2 + P oare şi de ădere de valori mii upă apliarea alului de eiue la irare, apaiaea de aelerare îepe ă e îare (deare), eea e due la mişorarea ureţilor de bază (î valoare aboluă) aşa um e vede şi î fi4 R v a ) fi limiarea impului de oare, are repreziă o îârziere eă îre impulul de omadă şi răpuul iruiului, e fae pri uilizarea uor iruie de eviare a irării î auraţie, are au şi proprieaea de a meţie la ieşire o eiue miă, fixă, idepedeă de paramerii raziorului Î fi5 u reprezeae iruie are foloe meoda ariii eliiare (a), iefiieă, di auza ureului mare e irulă pri razior şi diodă, repeiv meoda reaţiei eaive eliiare pri are, pri diodă, e deviază urpluul de ure de irare de omadă (fi5b) dealizâd araeriiile diodelor î oduţie direă, araeriia diamiă î plaul C, U C al araeriiilor aie ale raziorului va fi a î fi5 Preupuâd ă V = V B, peru azul î are dipoziivele repeive u dehie, e obţi valorile: V = V + peru fi5a; V = - V + V B = peru fi5b SFĂŞURARA LUCRĂR R v b ) ) i C v

4 1 Se ideifiă moajul di fi6 Se alimeează u V CC = 1 V (la bora 2) şi u V = 3 V (la bora 3) şi e apliă la irare (bora 4) impuluri poziive de ampliudie V = 5 V şi u duraa şi perioada ufiie de mari (µe) Cureul de oleor e vizualizează la borele rezieţei r (bora 5, faţă de maă, pe irarea de aleraiv a oiloopului) Cureul de bază e vizualizează pe rezieţa r b (îre borele 7 şi 8) u u oiloop u irarea difereţială eiuea de ieşire e vizualizează pe oleor (bora 6), pe irarea de ure oiuu a oiloopului 2 Se relează poeţiomerul P afel îâ ă e realizeze o omuare î reiuea aivă ormală Se măoară impul de reşere (pâă la,9 di valoarea fială a ureului de oleor) şi e alulează oaa de imp de viaţă a purăorilor mioriari î exe di bază: ô = r / 2,3 5 r 4 v i R 1 1 P C a 9 r b 7 8 R 6 11 C S 2 -V 3 fi 19 6 Se măoară valoarea fială a ureului de oleor şi valorile ureţilor de bază; e măoară impul de ădere şi e verifiă u valoarea alulaă u relaţia (9) î are e îlouieşe u 3 Se relează poeţiomerul P afel îâ ă e realizeze o omuare direă la limia de irare î auraţie a raziorului (âd ô =) ; măurâd C a şi =, rezulă faorul de ure al raziorului â (daă u e poae măura ureul de bază, e va lua peru â valoarea daă î aexă peru raziorul foloi) 4 Se ree poeţiomerul P pe poziţia miimă (ur iruia) Se alulează ureţii pri razior u relaţiile (3), (4) şi (5) Se udiază iflueţa ampliudiii impulului de omadă, V şi a eiuii de bloare, V, aupra impilor de omuare ai raziorului, ompleâd abelul 1 impii de omuare e alulează u relaţiile (6), (7), (8) şi (9) luâd ô = ô, iar măurăoarea lor e fae pe ureul de oleor Se fixează, peru măurăorile ulerioare, V = 3 V, V = 5 V 5 Se vizualizează ureţii de bază şi de oleor preum şi eiuea de ieşire a iruiului; e deeează formele de udă şi e ompară u ele eoreie peru o omuare î reiuea aivă ormală şi peru o omuare î reiuea de auraţie 6 Se meţie perioada oaă şi e mişorează duraa impulului poziiv de omadă Se oează valoarea la are impul de oare îepe ă e mişoreze şi apoi e va deermia oaa de imp de oare (aproximaiv) 7 Î odiţiile omiale, e uplează apaiaea C B la ieşirea raziorului şi e vizualizează eiuea de ieşire şi ureul pri rezieţa r (ee diferi de ureul de oleor al raziorului!) Se măoară impii de omuaţie, oiderâd a mărime de ieşire eiuea di oleorul raziorului 8 Se uplează iruiul de aelerare şi e vizualizează formele de udă ale ureţilor de bază şi de oleor şi ale eiuii de ieşire Peru o poziţie iermediară a poeţiomerului P, e măoară impii de omuare şi e re î abel Se oaă, aliaiv, efeul poeţiomerului aupra impilor de omuare 9 Se realizează, pe râd, ele două iruie de eviare a irării î auraţie Se oaă iefiieţa meodei u ariă eliiară Peru iruiul di fi5b, e apliă impuluri de omadă şi

5 e vizualizează eiuea de la ieşire şi ureul pri rezieţa r ; e măoară impii de omuare u şi fără diodă şi e ompară rezulaele Se va lua = 2 V Se alulează ureţii pri razior ( C şi B ) peru P = u şi fără irui de eviare a irării î auraţie a raziorului

FILTRE LC PROIECTATE PE BAZA PARAMETRILOR DE LUCRU

FILTRE LC PROIECTATE PE BAZA PARAMETRILOR DE LUCRU FILTE L POIETATE PE BAZA PAAMETILO DE LUU Obieul lurării Măurăori aupra uor filre L obţiue pri ieă pe baa paramerilor de luru şi aume, abariul aeuării de luru şi reieţele de ermiaţie. Apee eoreie Proiearea

Διαβάστε περισσότερα

Analiza bivariata a datelor

Analiza bivariata a datelor Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele

Διαβάστε περισσότερα

Sisteme de ordinul I şi II

Sisteme de ordinul I şi II Siseme de ordiul I şi II. Scopul lucrării Se sudiază comporarea î domeiul imp şi frecveţă a sisemelor de ordiul II. Siseme de ordiul I. Comporarea î domeiul imp a sisemelor de ordiul I U sisem de ordiul

Διαβάστε περισσότερα

5. Polii şi zerourile funcţiei de transfer

5. Polii şi zerourile funcţiei de transfer 5. Polii şi zerourile fucţiei de rafer 5.. Răpuul la emalul expoeţial Fie iemul m bm ( z ) i= i Y() = G()U() (.), G () =, cu poli impli. a ( p ) j= j λ u u( ) = ue σ Se aplică : ( ), U() =. (5.) λ Se uilizează

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

2.1. Procese si sisteme dinamice. Model.

2.1. Procese si sisteme dinamice. Model. 2. SISTEME DINAMICE 2.. Procee i ieme diamice. Model. U iem ee u aamblu de obiece delimia de mediul îcojurăor prir-o uprafaţă reală au imagiară, aamblu ale cărui elemee e află î ieracţiue şi ervec îdepliirii

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte. Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor

Διαβάστε περισσότερα

4. Analiza în timp a sistemelor liniare continue şi invariante

4. Analiza în timp a sistemelor liniare continue şi invariante RA C5 4. Aaliza î im a iemelor liiare coiue şi ivariae Aaliza î im rereziă deermiarea răuului î im a iemelor coiderae, la divere iuri de emale de irare şi deermiarea ricialelor rorieăţi (abiliae, erformaţe

Διαβάστε περισσότερα

METODA OPERATIONALA LAPLACE

METODA OPERATIONALA LAPLACE 5 METODA OPERATIONAA APACE Ace capiol ee axa î pricipal pe aaliza de ip irare-ieşire I-E a iemelor liiare coiue eede cu ajuorul formalimului operaţioal aplace I plu u abordae şi aalizae uele caraceriici

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6)

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6) SEMINAR TRANSFORMAREA LAPLACE. Probleme. Foloind proprieaea de liniariae, ă e demonreze urmăoarele: in σ(, Re > ; ( + penru orice C. co σ( h σ( ch σ(, Re > ; ( +, Re > ; (3, Re > ; (4. Să e arae că penru

Διαβάστε περισσότερα

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA,

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA, TEORIA SISTEMELOR AUTOMATE Prof. dr. ig. Vler DOLGA, Curi_7_ Aliz i ruul iemelor liire i domeiul im II. Sieme de ordiul. Ruul iemului l emle drd imul uir re uir rm 3. Noiui rivid clie iemului de ordiul

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire 4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru

Διαβάστε περισσότερα

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa Deodularea (Deecia) senalelor MA, Deecia de anveloa Deodularea ese recuerarea senalului odulaor din senalul MA. Aceasa se oae face erfec nuai daca s( ) ese de banda liiaa iar Deodularea senalelor MA se

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

METODE AVANSATE DE MASURARE COMANDA SI AUTOMATIZARE

METODE AVANSATE DE MASURARE COMANDA SI AUTOMATIZARE Elea Chirilă METODE AVANSATE DE MASURARE COMANDA SI AUTOMATIZARE NOTE DE CURS . NOTIUNI DE TEORIA AUTOMATIZARII.. Elemee ip ale sisemelor de reglare auomaa Relaţiile maemaice care exprimă feomeele fizice

Διαβάστε περισσότερα

Curs 9. Teorema limită centrală. 9.1 Teorema limită centrală. Enunţ

Curs 9. Teorema limită centrală. 9.1 Teorema limită centrală. Enunţ Curs 9 Teorema limiă cerală 9 Teorema limiă cerală Euţ Teorema Limiă Cerală TLC) ese ua dire cele mai imporae eoreme di eoria probabiliăţilor Iuiiv, orema afirmă că suma uui umăr mare de v a idepedee,

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora.

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora. Cap PRIMITIVE 5 CAPITOLUL PRIMITIVE METODE GENERALE DE CALCUL ALE PRIMITIVELOR Î aces paragraf vom reamii oţiuea de primiivă, proprieăţile primiivelor şi meodele geerale de calcul ale acesora Defiiţia

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI) Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul

Διαβάστε περισσότερα

6. AMPLIFICATOARE DE RADIOFRECVENŢĂ DE PUTERE

6. AMPLIFICATOARE DE RADIOFRECVENŢĂ DE PUTERE 6 AMPFAOARE DE RADOFREVENŢĂ DE PUERE ervalul e frecveţe îre sue e khz şi MHz se mai umeşe şi omeiul e RaioFrecveţă (RF) Pese MHz îcepe omeiul Frecveţelor Foare Îale (FFÎ) Rezulă că locul Amplificaorului

Διαβάστε περισσότερα

COMUTAREA TRANZISTORULUI BIPOLAR

COMUTAREA TRANZISTORULUI BIPOLAR Lucrarea nr. 2 COMUAREA RANZISORULUI BIPOLAR Cuprins I. Scopul lucrării II. III. IV. Noţiuni teoretice Desfăşurarea lucrării emă de casă 1 I. Scopul lucrării : Se studiază regimul de comutare al tranzistorului

Διαβάστε περισσότερα

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5 Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Formula lui Taylor. 25 februarie 2017

Formula lui Taylor. 25 februarie 2017 Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =

Διαβάστε περισσότερα

Studiul chopperelor de putere individuale

Studiul chopperelor de putere individuale aboraor: Eleroniă Indsrială Eleronia de Pere Sdil hopperelor de pere individale hopperele de pere a roll de a modifia valoarea medie a ensinii apliae nei sarini, alimenarea irili fiind onsiia de o srsa

Διαβάστε περισσότερα

TEMA 10 TESTE DE CONCORDANŢĂ

TEMA 10 TESTE DE CONCORDANŢĂ TEMA 0 TESTE DE CONCORDANŢĂ Obiective Cuoaşterea coceptelor reritoare la testele de cocordaţă Aaliza pricipalelor teste de cocordaţă Aplicaţii rezolvate Aplicaţii propuse Cupris 0. Cocepte reritoare la

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

PROBLEME CU PARTEA ÎNTREAGĂ ŞI

PROBLEME CU PARTEA ÎNTREAGĂ ŞI PROBLEME CU PARTEA ÎNTREAGĂ ŞI PARTEA FRACŢIONARĂ. Să se rezolve ecuaţia {x} {008 x} =.. Fie r R astfel ca r 9 ] 00 Determiaţi 00r]. r 0 ] r ]... r 9 ] = 546. 00 00 00 Cocurs AIME (SUA), 99. Câte ditre

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

INTRODUCERE IN TEORIA SISTEMELOR

INTRODUCERE IN TEORIA SISTEMELOR INTRODUCERE IN TEORIA SISTEMELOR Teoria sisemelor repreziă u asamblu de cocepe cuoşiţe meode şi pricipii idepedee de aplicaţii ecesare şi uile sudiului srucurii proprieăţilor şi caracerisicilor diamice

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1 3.4 Iegrre fucţiilor rigoomerice ) R( si,cos ) d Susiuţi recomdă ese: uei fucţii rţiole. g =, (, ) şi iegrl dă se reduce l iegrre si cos si cos g si + cos + g = = = + cos si g cos + si + g = = = + = rcg

Διαβάστε περισσότερα

Elementul de întârziere de ordinul doi, T 2

Elementul de întârziere de ordinul doi, T 2 5..04 u Fig..83.5..3. Elemeul de îârziere de ordiul doi, Elemeul de îârziere de ordiul doi coţie douǎ elemee cumulore de eergie su subsţǎ. Peru elemeul de ordi doi ecuţi difereţilǎ se oe scrie î mi mule

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Modulatia cu unda continua. Definitii

Modulatia cu unda continua. Definitii Modulaia u uda oiua Proedeu eeial i ouiaiile aalogie Deiiii Modulaia ee u proedeu de raer de ioraie de la u eal, ui odulaor, la u al eal, ui puraor, ai bie adapa la evoile proeului de raiie a ioraiei,

Διαβάστε περισσότερα

CIRCUITE ELEMENTARE CU AMPLIFICATOARE OPERAȚIONALE

CIRCUITE ELEMENTARE CU AMPLIFICATOARE OPERAȚIONALE LUCAEA nr. CICUITE ELEMENTAE CU AMPLIFICATOAE OPEAȚIONALE Scopul lucrării: Se sudiază câeva dinre circuiele elemenare ce se po realiza cu amplificaoare operaţionale (), în care acesea sun considerae ca

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z : Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Marin Chirciu INEGALITĂŢI TRIGONOMETRICE DE LA INIŢIERE LA PERFORMANŢĂ EDITURA PARALELA 45

Marin Chirciu INEGALITĂŢI TRIGONOMETRICE DE LA INIŢIERE LA PERFORMANŢĂ EDITURA PARALELA 45 Main Chiiu INEGLITĂŢI TIGONOMETICE DE L INIŢIEE L PEFOMNŢĂ Cuins Consideații eliminae... 7 Soluţii Caitolul Inegalități u unghiui. Inegalitatea lui Jensen... 4 4 Caitolul Funții tigonometie ale jumătății

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

9. Circuit de temporizare integrat 555

9. Circuit de temporizare integrat 555 Srucura circuielor digiale, N. Cupcea (noiţe) 35 9. Circui de emporizare inegra 555 - circui de emporizare inegra monoliic bipolar foare versail: monosabil, asabil, generaor de diferie forme de undă -

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea EDIŢIA A IV-A 4 6 MAI 004 CLASA a V-a I. Să se determie abcd cu proprietatea abcd - abc - ab -a = 004 Gheorghe Loboţ II Comparaţi umerele A B ude A = 00 00 004 004 şi B = 00 004 004 00. Vasile Şerdea III.

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

TIPURI DE DEZINTEGRĂRI NUCLEARE. Dezintegrarea α

TIPURI DE DEZINTEGRĂRI NUCLEARE. Dezintegrarea α TIPURI D DZINTGRĂRI NUCLR Dzitgaa -mita d căt ul ucl adioactiv, stuctui compact d doi potoi şi doi utoi (ucl d hliu şi a ui catităţi apciabil d gi Q Z X 4 Z Y Q 38 9 4.47 ai U 9 34 9 Th Q (4.7 V s îtâlşt

Διαβάστε περισσότερα

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση του αριθμού του οικονομικά ενεργού

Διαβάστε περισσότερα

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ LUCRARE CONCEPUTĂ ȘI REALIZATĂ DE COLECTIVUL CLASEI a XI-a A, PROFIL REAL, SPECIALIZAREA MATEMATICĂ-INFORMATICĂ.

Διαβάστε περισσότερα

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă

Διαβάστε περισσότερα

Electronică anul II PROBLEME

Electronică anul II PROBLEME Electronică anul II PROBLEME 1. Găsiți expresiile analitice ale funcției de transfer şi defazajului dintre tensiunea de ieşire şi tensiunea de intrare pentru cuadrupolii din figurile de mai jos și reprezentați-le

Διαβάστε περισσότερα

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο απασχολούμενου πληθυσμού - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού υπολογίζεται με τη διαίρεση του αριθμού του ισοδύναμου πλήρως

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

4. Ecuaţii diferenţiale de ordin superior

4. Ecuaţii diferenţiale de ordin superior 4.. Ecuaţii liiare 4. Ecuaţii difereţiale de ordi superior O problemã iportatã este rezolvarea ecuaţiilor difereţiale de ordi mai mare ca. Sut puţie ecuaţiile petru care se poate preciza forma aaliticã

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Ο γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση της ετήσιας αύξησης του οικονομικά ενεργού πληθυσμού

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

(2), ,. 1).

(2), ,. 1). 178/1 L I ( ) ( ) 2019/1111 25 2019,, ( ), 81 3,,, ( 1 ), ( 2 ),, : (1) 15 2014 ( ). 2201/2003. ( 3 ) ( ). 2201/2003,..,,. (2),..,,, 25 1980, («1980»),.,,. ( 1 ) 18 2018 ( C 458 19.12.2018,. 499) 14 2019

Διαβάστε περισσότερα

Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο

Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών υπολογίζεται με

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

REDRESOARE MONOFAZATE CU FILTRU CAPACITIV

REDRESOARE MONOFAZATE CU FILTRU CAPACITIV REDRESOARE MONOFAZATE CU FILTRU CAPACITIV I. OBIECTIVE a) Stabilirea dependenţei dintre tipul redresorului (monoalternanţă, bialternanţă) şi forma tensiunii redresate. b) Determinarea efectelor modificării

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο

Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών υπολογίζεται με τη διαίρεση

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Lucrarea Nr. 10 Etaje cu două tranzistoare

Lucrarea Nr. 10 Etaje cu două tranzistoare Lucrarea Nr. 0 Etaje cu două tranzistoare. Polarizarea în RAN A.Scopul lucrării - Determinarea unor PSF-uri optime pentru tranzistoarele etajului - Obervarea influenţei neîmperecherii tranzistoarelor în

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα