4. Ecuaţii diferenţiale de ordin superior
|
|
- Σωφρονία Μαλαξός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 4.. Ecuaţii liiare 4. Ecuaţii difereţiale de ordi superior O problemã iportatã este rezolvarea ecuaţiilor difereţiale de ordi mai mare ca. Sut puţie ecuaţiile petru care se poate preciza forma aaliticã a soluţiei. Cel mai frecvet utilizate sut ecuaţiile liiare. Forma geeralã a ecuaţiei liiare de ordi este ( ) ( ) y + a y a y = f (6) Ecuaţia liiarã omogeã asociatã ecuaţiei (6) este ( ) ( ) y + a y a y= 0 (7) Î legãturã cu ecuaţiile liiare şi omogee se poate demostra urmatorul rezultat importat. Teorema a) Dacã p N şi y, y,..., y p sut soluţii ale ecuaţiei (7) iar C, C,..., C p R atuci y = C y + C y C p y p este soluţie a ecuaţiei (7). b) Mulţimea soluţiilor ecuaţiei (7) formeazã u spaţiu vectorial de dimesiue. c) Dacã ecuaţia (7) admite soluţia compleǎ y = u + i v atuci fucţiile reale u şi v sut soluţii ale ecuaţiei (7). Observaţie : petru determiarea soluţiei geerale e ecuaţiei omogee trebuie determiate soluţii liiar idepedete Teorema Soluţiile y, y,..., y : I R ale ecuaţiei (7) sut liiar idepedeta dacã şi umai dacã eistã 0 I astfel îcât determiatul W ( y, y,..., y ) = y y y y'... y' y '... y '... y '... y ' (umit wroskiaul sistemului) sã fie eul î 0. Observaţii : ) Teorema Abel-Ostrogradski-Liouville aratã cã, dacã I este u iterval ce coţie pe 0 şi W ( y, y,..., y )( 0 ) 0, atuci W ( y, y,..., y ) 0 petru orice I ) Dacã y, y,..., y sut soluţii liiar idepedete ale ecuaţiei (7) şi C, C,..., C R atuci soluţia geeralã a ecuaţiei (7) este y = C y + C y C y. (8) Î cazul sistemelor cu coeficieţi costaţi determiarea soluţiilor liiar idepedete se face cu ajutorul ecuaţiei caracteristice, dar reprezitã o problemã complicatã î cazul sistemelor cu coeficieţi variabili.
2 Petru sistemele eomogee sa poate arãta cã : Teorema : Soluţia geeralã a ecuaţiei (6) este suma ditre soluţia geeralã a ecuaţiei omogee ataşatã, (7), şi o soluţie particularã a ecuaţiei (6). Metoda de rezolvare a ecuaţiilor liiare are trei paşi: - se rezolvã ecuaţia omogeã şi se obţie soluţia yg - se determiã o solutie y P a ecuaţiei eomogee - se scrie soluţia geeralã a ecuaţiei eomogee y= yg + yp Ecuaţii liiare cu coeficieţi costaţi A) Rezolvarea ecuaţiei omogee Forma geeralã a uei ecuaţii cu coeficieţi costaţi este ( ) ( ) y + ay a y' + ay = 0 (9) Problema rezolvãrii ecuaţiei (9) se reduce deci la determiarea uul sistem fudametal de soluţii. Î cele ce urmeazã prezetãm pricipala metodã de rezolvare petru ecuaţiile liiare. O soluţie a ecuaţiei se cautã sub forma y e λ îlocuire î ecuaţia (9) se obţie, dupã simplificarea cu =, pri aalogie cu cazul =. Pri e λ, ecuaţia caracteristicã λ + aλ a λ + a = 0 (0) Teorema 4 : Fie λ, λ,..., λ soluţiile ecuaţiei (0). a) - dacã λ, λ,... λ sut reale şi disticte ale ecuaţiei (0), atuci e λ, e λ,..., e λ sut soluţii liiar idepedete ale ecuaţiei (9). b) - dacã λ este rãdãciã realã cu ordiul de multiplicitate p petru ecuaţia (0), atuci e λ, e λ p,, e λ sut p soluţii liiar idepedeteale ecuaţiei (9). c) -dacã λ = a+ ib este rãdãciã compleã de ordiul p a ecuaţiei (0) atuci a a a a e cos b, e si b a e cos b, e si b a e cos b, e si b... a a e cos b, e si b sut soluţii liiar idepedete ale ecuaţiei (9). Sistemul fudametal de soluţii se obţie pri îsumarea soluţiilor liiar idepedete corespuzãtoare tuturor rãdãciilor ecuaţiei (0), iar soluţia geeralã a ecuaţiei (9) se obţie folosid formula (8).
3 Eemple : Sã se determie soluţia geeralã a urmãtoarelor ecuaţii :. y''' 6 y'' + y' 6y= 0 Ecuaţia caracteristicã este λ 6λ + λ 6= 0 şi are soluţiile λ =, λ =, λ =, Se aplicã a) di Teorema 4 şi se obţie sistemul fudametal de (trei) soluţii format di y = e, y = e, y = e. Soluţia geeralã este. y''' + y'' + y' + y = 0 = + + y Ce C e C e Ecuaţia caracteristicã este λ + λ + λ+ = 0 şi are soluţiile λ = λ = λ =. Se aplicã b) di Teoremã petru p =. Sistemul fudametal de (trei) soluţii este format di,, y = e y = e y = e. y'' + 4 y' + 5y= 0, iar soluţia geeralã este = + + y Ce C e C e Ecuaţia caracteristicã este λ + 4λ + 5= 0 şi are soluţiile λ = + i şi λ = i deci se aplicã c) di Teoremã petru a=, b=, p=. Sistemul fudametal de (douã) soluţii este format di soluţiile y = e cos şi y = e si iar soluţia geeralã este IV 4. y 4 y''' + 5 y'' 4 y' + 4y= 0 = cos + y Ce C e si 4 Ecuaţia caracteristicã este λ 4λ + 5λ 4λ + 4= 0 cu soluţiile λ = λ =, λ = i şi λ 4 = i. Soluţia geeralã este cos 4 y = Ce + C e + C + C si A) Determiarea uei soluţii particulare a ecuaţiei eomogee Forma geeralã a ecuaţiei eomogee cu coeficieţi costaţi este ( ) ( ) y + a y a y' + a y= f. Nu eistã metode geerale de determiare a uei soluţii particulare dar, î uele cazuri simple, se pot folosi rezultatele urmãtoare : Dacã f P = este u poliom de grad k atuci soluţia particularã este u poliom de acelaşi grad, cu coeficieţi ecuoscuţi care se vor determia pri îlocuirea î ecuaţie.
4 a a) Dacã f = e P ude sub forma P este u poliom de grad k eistã douã situaţii - Dacã a u este rãdãciã a ecuaţiei caracteristice soluţia particularã se cautã yp a = e Q, ude Q este u poliom de grad k cu coeficieţi ecuoscuţi - Dacã a ete rãdãciã de ordi r a ecuaţiei caracteristice atuci soluţia particularã se cautã sub forma coeficieţi ecuoscuţi yp r a = e Q, ude Q este u poliom de grad k cu a b) Dac ã f = e P cos( b) + Q si( b) atuci eistã de asemei douã situaţii - Dacã z = a+ bi u este soluţie a ecuaţiei caracteristice so luţia particularã se a cautã sub forma y = e S cos( b) + T si ( b), ude R( ) şi p S sut polioame cu coeficieţi ecuoscuţi avad drept grad cel mai mare ditre gradele lui P şi Q - Dacã z = a+ bi este soluţie de ordi r a ecuaţiei caracteristice soluţia particularã se cautã sub forma ude T şi p r a cos si y = e S b + T b, S sut polioam e cu coeficieţi ecuoscuţi avad drept grad cel mai mare ditre gradele lui P şi Q. Î uele situaţii, petru determiarea soluţiilor particulare, se poate aplica pricipiul superpoziţiei : ( ) ( ) Dacã y P şi y P sut soluţii ale ecuaţiilor y + a y a y = f, respectiv ( ) ( y + a y ) + + a ( ) y g ( )... =, atuci y P! + yp este soluţie a ecuaţiei ( ) ( + a y ) a y = f g y +. Eemple : Sã se determie câte o soluţie particularã petru urmãtoarelor ecuaţii :. y'' y' + y = Fucţia om de g = +. Atuci y' = a şi yp a b f este u poli radul I, deci soluţia particularã se cautã sub forma y'' = 0. Itroducâd î ecuaţie ob ţiem 0 a+ a+ b= şi di idetifica rea coeficieţilor rezultã a = şi, adicã b =. Soluţia particularã este y = +. P Sol uţia geeralã a ecuaţiei este y = Ce + Ce + +. y'' y' + y= e
5 Deoarece f = e = e P se îcadreazã la b) petru, a= P = şi a = este rãdãciã dublã a ecuaţiei caracteristice, soluţia particularã se va cãuta sub forma y = e A+ B. P Atuci y' = e ( A + B + A + ) şi y'' e ( A B 6A 4B 6A B) e ( 6 ) = Itroducâd î ecuaţie obţiem A+ B =. Di idetificarea coeficieţilor se obţie A = /6 şi B = 0. e Soluţia particularã este deci yp Soluţia geeralã a ecuaţiei este. y'' + y = si Fucţia = e /6. 0 f si e ( 0 cos si ) = 0, =, = 0 şi Q a b P y = Ce + Ce + e /6. = = + se îcadreazã la c) petru =. Deoarece z = 0 + i este soluţie a ecuaţiei caracteristice λ + = 0, soluţia particularã se va cãuta sub forma 0 yp = e ( A+ B) cos + ( C+ D) si. Îlocui î ecuaţie şi idetificâd coeficieţii se obţie sistemul A+ D = 0, 4C = 0, B+ C = 0, 4A= cu soluţia A= / 4, B= 0, C = 0, D= / 4. Soluţia perticularã este deci cos / 4 + si / 4. Soluţia geeralã a ecuaţiei este 4... Ecuaţii cu coeficieţi variabili y = C cos + C si cos / 4 + si / 4 Petru determiarea soluţiei geerale a ecuaţiei omogee cu coeficieţi variabili u eista metode geerale. Dacã îsã aceastã soluţie poate fi precizatã, petru determiarea uei soluţii particlare se poate folosi metoda variaţiei costatelor. Teorema 5: Fie Cy + Cy Cy soluţia geeralã a ecuaţiei omogee ( ) ( ) y + a y a y' + a y= 0. Dacã C, C,..., C satisfac sistemul C ' y+ C' y C' y = 0 C ' y' + C' y' C' y' = ( ) ( ) ( ) C' y + C' y C' y = 0 ( ) ( ) ( ) C' y C' y... C' y = f + + +
6 atuci C y = y + C y + + C y este soluţie a ecuaţiei (7)... Eemplu : Sã se determie soluţia geeralâ a ecuaţiei y '' + y ' =, > 0 Se oteazã y' = z. Ecuaţia omogeã asociatã este z ' + z = 0.Rezultã z = C adicã y = Cl + C Se foloseşte met oda variaţiei costatelor petru y = l şi y =. Sistemul devie C' l + C' = 0 cu soluţiile C' + C' 0= C = + A. C = l + + B 9 C =. Rezultã C = l Soluţia geeralã a ecuaţiei este y = + Al + B. 9 Observaţie: Metoda variaţiei costatelor poate fi folositã si petru determiarea soluţiilor particulare ale ecuaţiilor omogee cu coeficieţi costaţi atuci câd f u se îcadreazã î situaţiile prezetate aterior. fucţia e Eemplu: Sã se determie soluţia geeralã a ecuaţiei y'' y' + y =, > 0. Soluţia geeralã a ecuaţiei omogee este y ( ) = Ce + Ce. Se aplicã variaţia costatelor petru Sistemul obţiut este = şi y e G y = e. ' C e + C ' e = 0 C' e + C' + ( e e ) e = cu soluţiile Soluţia geeralã a ecuaţiei este y ( A) e e ( l B) = C = + A. C = l + B 4.. Ecuaţii icomplete Ecuaţiile difereţiale icomplet e de o rdi sut ecuaţii (î geeral eliiare) î epresia cãrora u apar toate derivatele fucţiei ecuoscute pâã la ordiul -. Pertu rezolvarea lor se folosesc substitutii care le micşoreaza ordiul. 4.. Ecuaţii i care fucţia ecuoscutã apare doar pri derivatele sale ( k ) ( k + ) ( ) Ecuaţiile de forma F (, y, y,..., y ) = 0 se reduc la o ecuaţie de ordi -k pri ) substituţia z = y ( k.
7 y '' = Eemplu : substituţ ia z = y'. Ecuaţia + y' se trasforma îtr-o ecuaţie de ordiul I folosid z ' = + z este o ecuaţie cu variabile separabile şi are C soluţia geeralã z = e e. Rezultã deci cã C C y = z d = C e e. C 4... Ecuaţii î care variabila idepedetã u apare eplicit ( ) Aceste ecuaţii au forma F ( y, y',..., y ) = 0. Se oteazã y ' = p( y). Atuci y'' = ( y' )' = ( p( y) )' = p' ( y) y' = p p' ( y) ( y'' )' = p p'' + ( p ) ) p y''' = ( '... ( ) Si ecuaţia dev ie f ( y, p, p',... p ) = 0. Aceeaşi procedurã se poate aplica petru a micşora ordiul î cotiuare. Sut umeroase cazurile î care derivata apare î ecuaţie doar la puteri pare. Î acest caz se face ota ţia p = ( y '). y y' ' = + y'. Se oteazã p = ( y' ). Rezultã cã p ' = p' ( y ) y' = y' y' ' deci y '' = p' /. Di ecuaţia cu variabile separabile p' = + p rezultã p = Cy adicã Eemplu : y ' = ± Cy. Pri itegrare directǎ de obţie l C y ± C ( Ce ) Soluţia ecuaţiei este y = ± C C ( Ce ) Eerciţii propuse : y. C y + Cy = ± + A. Determiaţi soluţiile geerale ale urmãtoarelor ecuaţii :.. y'' 4 y' + 4 y = R : y = C ( 4 ) + C e y'' y' + y = + 6 R : / y e = Ccos + Csi
8 . '' ' = y + y + y e 4 y'' 8 y' 7 y 4 R : y = ( C + C ) e + e + = 7 R : y = Ce + C e + 5. y'' y' = e R : y = Ce + Ce + e 6. y'' + y' 6 y = e R : y = Ce + Ce + e y'' + y = cos R : y = Ccos + Csi + si 8. y'' + y= si R : y = Ccos + Csi + cos 6 9. y''' y'' + y = 0 R : y = C + C e + C e 0. y''' y = 0 / R : cos si y = Ce + e C + C IV. y + 4y= 0 R : y = e C cos + C si + e C cos + C si IV. y y''' + y'' = e e. y'' + y' + y =, > 0 4. y'' y' + y = + si 5. y'' + 4 y' + y= l ( + ) 9 R : 4 y C C C = C 4 + R : l y = C + C e + e e R : ec. omogeã are soluţia y = C+ C y = + C + C si / cos y R: ec omogeã are soluţia ( + ) A B = + C C y = + + l ( + ) 4
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
5..8 Ecuaţia difereţială Riccati Ecuaţia difereţială de ordiul îtâi de forma: d q( ) p( ) r( ) d + + (4) r sut fucţii cotiue pe u iterval, cuoscute, iar fucţia ude q( ), p ( ) şi ( ) este ecuoscuta se
Διαβάστε περισσότεραTEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
Διαβάστε περισσότεραa) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.
Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)
Διαβάστε περισσότερα7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE
7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραSisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Διαβάστε περισσότεραSEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
Διαβάστε περισσότεραMinisterul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
Διαβάστε περισσότεραCapitole fundamentale de algebra si analiza matematica 2012 Analiza matematica
Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport
Διαβάστε περισσότεραCurs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραLaborator 4 Interpolare numerica. Polinoame ortogonale
Laborator 4 Iterpolare umerica. Polioame ortogoale Resposabil: Aa Io ( aa.io4@gmail.com) Obiective: I urma parcurgerii acestui laborator studetul va fi capabil sa iteleaga si sa utilizeze diferite metode
Διαβάστε περισσότερα6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
Διαβάστε περισσότεραCOMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi
OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete
Διαβάστε περισσότεραFormula lui Taylor. 25 februarie 2017
Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότεραAnaliza matematica Specializarea Matematica vara 2010/ iarna 2011
Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila
Διαβάστε περισσότεραSUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare
SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότεραSEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραOlimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
Διαβάστε περισσότεραPolinoame Fibonacci, polinoame ciclotomice
Polioame Fiboacci, polioame ciclotomice Loredaa STRUGARIU, Cipria STRUGARIU 1 Deoarece şirul lui Fiboacci este cuoscut elevilor îcă dicl.aix-a,iarrădăciile de ordiul ale uităţii şi polioamele ciclotomice
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότεραPlanul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότεραsistemelor de algebrice liniarel
Uivesitatea Tehică a Moldovei Facultatea de Eergetică Catedra Electroeergetica Soluţioarea sistemelor de ecuaţii algebrice liiarel lect.uiv. Victor Gropa «Programarea si Utilizarea Calculatoarelor I» Cupris
Διαβάστε περισσότεραREZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII ALGEBRICE NELINIARE
REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII ALGEBRICE NELINIARE Forma geerală a ecuaţiei: cu : I R R Î particular poliom / adus la o ormă poliomială dar şi ecuaţiile trascedete Rezolvarea
Διαβάστε περισσότεραInegalitati. I. Monotonia functiilor
Iegalitati I acest compartimet vor fi prezetate diverse metode de demostrare a iegalitatilor, utilizad metodele propuse vor fi demostrate atat iegalitati clasice precum si iegalitati propuse la diferite
Διαβάστε περισσότεραPROBLEME CU PARTEA ÎNTREAGĂ ŞI
PROBLEME CU PARTEA ÎNTREAGĂ ŞI PARTEA FRACŢIONARĂ. Să se rezolve ecuaţia {x} {008 x} =.. Fie r R astfel ca r 9 ] 00 Determiaţi 00r]. r 0 ] r ]... r 9 ] = 546. 00 00 00 Cocurs AIME (SUA), 99. Câte ditre
Διαβάστε περισσότερα3. Serii de puteri. Serii Taylor. Aplicaţii.
Fucţiile f ( ) cos t = sut de clasă C pe R cu α si derivatelor satisface codiţiile: α f ' ( ) si = şi seria ' ( ), α α f R cu = b α ' coverge petru α > f este (ormal covergetă) absolut şi uiform covergetă
Διαβάστε περισσότεραPENTRU CERCURILE DE ELEVI
122 Petru cercurile de elevi PENTRU CERCURILE DE ELEVI Petru N, otăm: POLINOAME CICLOTOMICE Marcel Ţea 1) U = x C x = 1} = cos 2kπ + i si 2kπ } k = 0, 1. Mulţimea U se umeşte mulţimea rădăciilor de ordi
Διαβάστε περισσότεραCurs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Διαβάστε περισσότεραCAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ
CAPITOLUL IV CALCULUL DIFEENŢIAL PENTU FUNCŢII EALE DE O VAIABILA EALĂ Fucţii derivabile Fucţii difereţiabile Derivata şi difereţiala sut duă ccepte fudametale ale matematicii, care reprezită siteză pe
Διαβάστε περισσότερα5.1. ŞIRURI DE FUNCŢII
Modulul 5 ŞIRURI ŞI SERII DE FUNCŢII Subiecte :. Şiruri de fucţii.. Serii de fucţii. 3. Serii de puteri. Evaluare :. Covergeţa puctuală şi covergeţa uiformă la şiruri şi serii de fucţii.. Teorema lui Abel.
Διαβάστε περισσότεραSunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.
86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că
Διαβάστε περισσότεραCAPITOLUL III FUNCŢII CONTINUE
CAPITOLUL III FUNCŢII CONTINUE. Fucţii de o variabilă reală Fucţiile defiite pe mulţimi abstracte X, Y cu f : X Y au î geeral puţie proprietăţi şi di acest motiv, puţie aplicaţii î rezolvarea uor probleme
Διαβάστε περισσότεραBAREM DE CORECTARE CLASA A IX A
ETAPA JUDEŢEANĂ - martie 0 Filiera tehologica : profil tehic BAREM DE CORECTARE CLASA A IX A a) Daţi exemplu de o ecuaţie de gradul al doilea avâd coeficieţi raţioali care admite ca rădăciă umărul x= +
Διαβάστε περισσότεραEcuatii trigonometrice
Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos
Διαβάστε περισσότεραSala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ
Sala: 203 Decembrie 204 Cof. uiv. dr.: Dragoş-Pătru Covei CURS 0: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs u a fost supus uui proces riguros de recezare petru a fi oficial publicat. distribuit
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότεραExamenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ].
Miisterul EducaŃiei, Cercetării, Tieretului şi Sportului Cetrul NaŃioal de Evaluare şi Eamiare Eameul de bacalaureat ańioal 0 Proba E c) Matematică M_mate-ifo Filiera teoretică, profilul real, specializarea
Διαβάστε περισσότεραTEMA 1: FUNCȚII LINIARE. Obiective:
TEMA : FUNCȚII LINIARE TEMA : FUNCȚII LINIARE Obiective: Defiirea pricipalelor proprietăţi matematice ale fucţiei, ecuaţiei şi iecuaţiei de gradul Cuoaşterea uor elemete de geometrie aalitică a dreptei
Διαβάστε περισσότεραIII. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Διαβάστε περισσότεραStatisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5
Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Διαβάστε περισσότεραCLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea
EDIŢIA A IV-A 4 6 MAI 004 CLASA a V-a I. Să se determie abcd cu proprietatea abcd - abc - ab -a = 004 Gheorghe Loboţ II Comparaţi umerele A B ude A = 00 00 004 004 şi B = 00 004 004 00. Vasile Şerdea III.
Διαβάστε περισσότερα1. ŞIRURI ŞI SERII DE NUMERE REALE
. ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este
Διαβάστε περισσότεραConcursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008
Cocursul Naţioal Al. Myller CLASA a VII-a Numerele reale disticte x, yz, au proprietatea că Să se arate că x+ y+ z = 0. 3 3 3 x x= y y= z z. a) Să se arate că, ditre cici umere aturale oarecare, se pot
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότερα6.1. DERIVATE ŞI DIFERENŢIALE PENTRU FUNCŢII REALE DE O VARIABILĂ REALĂ. APLICAŢII
7 7 Modulul 6 APLICAŢII DIFERENŢIABILE Subiecte : Derivate şi difereţiale petru fucţii reale de o variabilă reală Formula lui Taylor şi Mac-Lauri petru fucţii de o variabilă reală Serii Taylor 3 Derivate
Διαβάστε περισσότεραVarianta 1
Filiera vocaţioală, profilul militar, specializarea matematică-iformatică Toate subiectele sut obligatorii Timpul efectiv de lucru este de ore Se acordă pucte di oficiu La toate subiectele se cer rezolvări
Διαβάστε περισσότεραCURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică
Capitolul II: Serii de umere reale Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC CURS III, IV Capitolul
Διαβάστε περισσότερα1. ŞIRURI ŞI SERII DE NUMERE REALE
ŞIRURI ŞI SERII DE NUMERE REALE Noţiui teoretice şi rezultate fudametale Şiruri de umere reale Presupuem cuoscute oţiuile de bază despre mulţimea N a umerelor aturale, mulţimea Z a umerelor îtregi, mulţimea
Διαβάστε περισσότερα1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii...
Cupris 1. Operaţii cu umere reale... 1 1.1. Radicali, puteri... 1 1.1.1. Puteri... 1 1.1.. Radicali... 1 1.. Idetităţi... 1.3. Iegalităţi... 3. Fucţii... 6.1. Noţiuea de fucţii... 6.. Fucţii ijective,
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότεραDefiniţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότεραCursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate
Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs
Διαβάστε περισσότεραVarianta 1. SUBIECTUL I (30p) Varianta 001 5p 1. Să se determine numărul natural x din egalitatea x = p
Filiera vocaţioală, profilul militar, specializarea matematică-iformatică Toate subiectele sut obligatorii Timpul efectiv de lucru este de ore Se acordă pucte di oficiu La toate subiectele se cer rezolvări
Διαβάστε περισσότεραREZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII DIFERENŢIALE ORDINARE
REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII DIFERENŢIALE ORDINARE. Aspecte itroductive Studiul comportametului diamic al sistemelor fizice modele matematice sub forma ecuaţiilor sau sistemelor
Διαβάστε περισσότεραŞIRURI ŞI SERII DE FUNCŢII
Capitolul 8 ŞIRURI ŞI SERII DE FUNCŢII 8. Şiruri de fucţii Fie D R, D = şi fie f 0, f, f 2,... fucţii reale defiite pe mulţimea D. Şirul f 0, f, f 2,... se umeşte şir de fucţii şi se otează cu ( f ) 0.
Διαβάστε περισσότεραAsupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Διαβάστε περισσότεραSeminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Διαβάστε περισσότεραConice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Διαβάστε περισσότεραVarianta 1 - rezolvari mate MT1
Variata - rezolvari mate MT Soluţii a + a + a + ; + 5 + 9 + + a + ; ; a + a ; a,, ;, y >, y + ; f :,,, f submulţimi cu trei elemete C 5 m + + m 6 cos ; m ± 6+ cos cos a Calcul direct b Se demostrează pri
Διαβάστε περισσότεραEcuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)
Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.
Διαβάστε περισσότεραSeminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.
Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu
Διαβάστε περισσότεραR R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότεραDETERMINAREA PUTERILOR MATRICELOR
DETERMINAREA PUTERILOR MATRICELOR IOANA MONICA MAŞCA Prezetăm mai multe procedee de calcul al puterilor matricelor ilustrate pri probleme cu soluţii cometate. Putem realiza selecţii de metode şi/sau exemple
Διαβάστε περισσότεραClasa a IX-a. 1. Rezolvaţi în R ecuaţiile: (3p) b) x x x Se consideră mulţimile A = { }, (2p) a) Determinaţi elementele mulţimii A
1 Rezolvaţi î R ecuaţiile: (4p) a) x 1 5 = 8 (3p) b) Clasa a IX-a x 1 x x 1 + + + =, N x x x Se cosideră mulţimile A = { }, A = { 3,5}, A { 7, 9,11}, 1 1 3 = (p) a) Determiaţi elemetele mulţimii A 6 (3p)
Διαβάστε περισσότεραVII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Διαβάστε περισσότεραV.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Διαβάστε περισσότεραSERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Διαβάστε περισσότεραSubiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Διαβάστε περισσότεραCAPITOLUL 4 SPAŢII VECTORIALE EUCLIDIENE/UNITARE Produs scalar. Spaţii euclidiene şi spaţii unitare-definiţie
Spaţii vectoriale euclidiee/uitare CAPITOLUL 4 SPAŢII VECTORIALE EUCLIDIENE/UNITARE 4.. Produs scalar. Spaţii euclidiee şi spaţii uitare-defiiţie Defiiţia 4... Fie V u spaţiu vectorial peste corpul K (K=R
Διαβάστε περισσότεραCurs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Διαβάστε περισσότεραMODELAREA MATEMATICĂ A SISTEMELOR CONTINUE
MODELAREA MATEMATICĂ A SISTEMELOR CONTINUE OBIECTIVE Aaliza sistemelor de ordiul doi folosid modele matematice Calculul polilor şi zerourilor fucţiei de trasfer Reducerea schemelor bloc 41 Itroducere Aaliza
Διαβάστε περισσότεραPartea întreagă, partea fracţionară a unui număr real
Cocursul Gazeta Matematică și ViitoriOlimpiciro Ediția a IV-a 0-0 Partea îtreagă, partea fracţioară a uui umăr real ABSTRACT: Materialul coţie câteva proprietăţi şi rezultate legate de partea îtreagă şi
Διαβάστε περισσότεραEcuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Διαβάστε περισσότεραTema: şiruri de funcţii
Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..
Διαβάστε περισσότεραMETODE NUMERICE. Note de curs
MARILENA POPA ROMULUS MILITARU METODE NUMERICE Note de curs . REZOLVAREA NUMERICĂ A SISTEMELOR DE ECUAŢII LINIARE Itroducere. Rezolvarea sistemelor algebrice liiare şi operaţiile de calcul matriceal (evaluarea
Διαβάστε περισσότεραAnaliza bivariata a datelor
Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele
Διαβάστε περισσότεραCurs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Διαβάστε περισσότερα2.1. DEFINIŢIE. EXEMPLE
Modulul SPAŢII METRICE Subiecte :. Spaţii metrice. Defiiţii, exemple.. Mulţimi deschise, mulţimi îchise î spaţii metrice. Mulţimi compacte. 3. Spaţii metrice complete. Pricipiul cotracţiei. Evaluare:.Răspusuri
Διαβάστε περισσότεραLaborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Διαβάστε περισσότεραlim = dacă se aplică teorema lui 3. Derivate de ordin superior. Aplicaţii.
5 Petru limita determiată: 2 + lim = dacă se aplică terema lui LHspital: 2 + 2 lim = lim = rezultatul este icrect. 3. Derivate de rdi superir. Aplicaţii. Fie A R mulţime care îşi cţie puctele de acumulare
Διαβάστε περισσότερα2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Διαβάστε περισσότεραMARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Διαβάστε περισσότεραCULEGERE DE PROBLEME
Colecţia "LICEU CULEGERE DE PROBLEME petru eameul de admitere la Facultatea de Automatică şi Calculatoare, Facultatea de Electroică şi Telecomuicaţii, Facultatea de Arhitectură Descrierea CIP a Bibliotecii
Διαβάστε περισσότεραFie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y).
Ecuaţii diferenţiale Ecuaţii diferenţiale ordinare Ecuaţii cu derivate parţiale Ordinul unei ecuaţii Soluţia unei ecuaţii diferenţiale ordinare Fie I R un interval deschis, G R n, n 1, un domeniu şi f
Διαβάστε περισσότεραIV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
Διαβάστε περισσότεραCONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar
Διαβάστε περισσότεραMetode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Διαβάστε περισσότεραIon CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM
Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM IAŞI 2007 2 Cuprins 1 Ecuaţii diferenţiale liniare de ordin superior 7 1.1 Ecuaţii diferenţiale liniare de ordinul n cu coeficienţi variabili 7 1.2
Διαβάστε περισσότεραT R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
Διαβάστε περισσότεραCurs 12. Intervale de încredere Intervale de încredere pentru medie în cazul σ cunoscut
Curs Itervale de îcredere Am văzut cum poate fi estimat u parametru folosid datele furizate de u eşatio Parametrul di populaţie u este, î geeral, egal cu statistica calculată cu ajutorul eşatioului Ne
Διαβάστε περισσότεραConcurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
Διαβάστε περισσότερα8. Introducere în metoda elementului finit
Itroducere î metoda elemetului fiit 45 8 Itroducere î metoda elemetului fiit Formularea variaţioală a diferitelor probleme la limită împreuă cu ceriţele mai slabe de regularitate coduc î mod atural la
Διαβάστε περισσότερα5. Sisteme cu mai multe grade de libertate dinamică
Diamica Structurilor şi Igierie Seismică. [v.04] http://www.ct.upt.ro/users/aurelstrata/ 5. Sisteme cu mai multe grade de libertate diamică 5.. Ecuaţii de mişcare, formularea problemei, metode de rezolvare
Διαβάστε περισσότερα1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...
1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale
Διαβάστε περισσότερα