CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora.
|
|
- Κλείτος Μάγκας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Cap PRIMITIVE 5 CAPITOLUL PRIMITIVE METODE GENERALE DE CALCUL ALE PRIMITIVELOR Î aces paragraf vom reamii oţiuea de primiivă, proprieăţile primiivelor şi meodele geerale de calcul ale acesora Defiiţia Fie f : I, ude I ese u ierval Fucţia F : I se umeşe primiivă a fucţiei f pe iervalul I, dacă F ese derivabilă pe I şi F f, I Observaţia Dacă F ese o primiivă a lui f pe I, auci oricare ar fi cosaa reală C, fucţia G : I defiiă pri G F + C, I, ese de asemeea o primiivă a lui f pe I Mai mul, orice ală primiivă a lui f pe I ese de aceasă formă Îr-adevăr, dacă G F + C, auci G F f, deci G ese o primiivă a lui f pe I Reciproc, fie G o ală primiivă a lui f pe I şi fie H G F Peru orice I avem H G F f f 0 Fie acum a I u puc ierior fia Di Teorema lui Lagrage rezulă că peru orice I, eisă ξ î iervalul deschis de capee a şi asfel îcâ: H H( a) H ξ a 0 Dacă oăm cu C H(a), auci G() F() C, I, deci G F + C pe I Defiiţia Fie f : I şi F : I o primiivă a sa Mulţimea uuror primiivelor fucţiei f pe I se oează cu f d sau f d şi se umeşe iegrala edefiiă a fucţiei f Di Observaţia rezulă că f ( )d F ( ) + C, I, ude cu C am oa mulţimea uuror fucţiilor cosae pe I Observaţia Î capiolul urmăor se va arăa că orice fucţie coiuă pe u ierval admie primiive pe aces ierval Î coiuare reamiim abloul primiivelor fucţiilor elemeare uzuale
2 6 α+ α d + C,, α α + d l + C, (0, ), d l ( ) + C, (,0) a a d,, a > 0, a, e d e + l a C, si d cos + C, cos d si + C, d g+ C, cos \ ( + ) π ; d cg+ C, si \{ π; } d arcg+ C, + d arcsi+ C, (,) sh d ch + C, { } ch d sh + C, d l ( + + a ) +C, + a ( + + a ) +C ( a ) +C l,, d a l a,, a, a > 0 Propoziţia Fie f, g : I şi fie α, β oarecare Dacă f şi g au primiive pe I, auci αf + βg admie primiive pe I şi ( α f + β g)()d α f()d + β g()d Demosraţie Afirmaţia rezulă di proprieaea de lieariae a operaţiei de derivare: αf+ βg αf + βg Propoziţia Fie F : J o primiivă a fucţiei f : J şi fie u : I J o fucţie derivabilă pe I Auci
3 Cap PRIMITIVE 7 [ ()] ()d [ ()] f u u F u + C, I Demosraţia rezulă imedia di regula de derivare a fucţiilor compuse: F u () F u () u () f u () u (), I ( [ ]) [ ] [ ] Observaţia Di Propoziţia rezulă că peru calculul primiivei f o uu se poae proceda asfel: fucţiei Facem schimbarea de variabilă u(), I Fucţia u ese difereţiabilă pe I şi avem d d() u u ()d Î coiuare rezulă: f u() u ()d f()d F() + F u() + [ ] C [ ] C, I Precizăm că egaliaea f [ u ()] u ()d f ()d ese o egaliae formală Îr-adevăr, fucţia di membrul sâg ese defiiă pe J iar fucţia di membrul drep pe I, deci cele două fucţii u su egale î sesul egaliăţii fucţiilor Eemplul Să se calculeze d + a Dacă oăm, auci d ad şi vom avea: a d d ad arcg arcg + C, + a a a + a a a + a Î mod aalog se araă că d arcsi + C, ( aa, ), a > 0 a a Propoziţia Fie u : I J o fucţie bijecivă de clasă C cu u'() 0, I şi f : J o fucţie coiuă Dacă G : J ese o primiivă a fucţiei f ( u ) : J auci f [ u ()d ] G [ u () ] + C, I Demosraţie Deoarece [ ] ( u ) [ ] u u(), I, rezulă u() u (), I Aşadar avem: f [ u ()d ] f[ u ()] ( u ) [ u ()] u ()d f ( u ) [ u ()] u ()d
4 8 Cum G ese o primiivă a fucţiei f [ ] [ ] u u () u ()d Gu () +C f u, di Propoziţia rezulă că Observaţia 4 Di Propoziţia rezulă că peru calculul primiivei f u ()d, facem schimbarea de variabilă u() şi accepăm urmăorul calcul [ ] formal: [ ], u () Gu () +C C [ ] d u d, f u()d f() u ()d G() + părţi Eemplul Să se calculeze Noăm g, arcg, d d + g 4 d, (, ) 4 4 π π C g d d + d + arcg+ + + g g + + C Urmăorul rezula ese cuoscu sub umele de meoda de iegrare pri Propoziţia Dacă f şi g su de clasă C pe I, auci f () g ()d f()() g f ()()d g Demosraţie Coform regulii de derivare a produsului a două fucţii, avem: fg f g + fg Ţiâd seama de Propoziţia rezulă f () g ()d f()() g d f ()()d g f()() g f()()d g a d a d a d a arcsi d Eemplul Să se calculeze Dacă oăm cu f ( ) şi a a a g, auci a
5 Cap PRIMITIVE 9 f, g a şi d d a Aşadar a d a arcsi + a a a a d a + a arcsi + C, deci a a d a + a arcsi + C a Î mod asemăăor se araă că a a + d a + + l ( + + a ) + C, a + a d, de rezulă că PRIMITIVELE FUNCŢIILOR RAŢIONALE Pri fucţie raţioală se îţelege u rapor de două polioame (fucţii P poliomiale), adică o fucţie de forma: R, I ude P şi Q su Q polioame şi Q 0, I Dacă gradul lui P ese mai mare sau egal cu gradul lui Q, efecuăm împărţirea şi obţiem: P P ( C+ ), ude C ese u poliom şi grad P < gradq Q Q P De la cursul de algebră se şie că raporul admie urmăoarea descom- Q puere (uică) î fracţii simple: l A P Aj Aj j j + + K + + Q j j a j ( aj) ( aj) B + C B + C B + C b + c + b + c + b + c j j j j jmj jmj K m j j j j ( j j) ( j j) ude Aj i, aj, Bji, Cji, bj, c j su umere reale, b 4c < 0, j, şi Q() m l a al + b+ c + b + c K K (Descompuerea î facori ireducibili a poliomului Q) Aşadar, peru a calcula primiiva uei fucţii raţioale ese suficie să şim să calculăm primiive de forma j m j
6 0 avem ( a) d, respeciv B + C d, b ( + b+ c) 4c< 0, Calculul primului ip de primiivă ese imedia Îr-adevăr, peru ( a) ( a) + d C, iar a d + + d l a a + C Peru al doilea ip de primiivă procedăm asfel: B + C d B + C d ( ) 4 + b+ c b c b b 4c b Folosid oaţiile + şi a obţiem: 4 B + C B Bb d d d+ C + b+ c + a + a Evide avem: d ( )( + a ) ( + a ), peru l + a, peru Peru cealală primiivă sabilim, î cazul >, o relaţie de recureţă: d a + I d d I a a ( + a ) ( + a ) ( + a ) Dacă oăm cu f () şi g (), auci f () şi + a g () d şi + a ( + a ) d + I ( + a ) ( )( + a ) ( ) Î coiuare avem: I I + I a ( )( + a ) ( ) sau
7 Cap PRIMITIVE I + I a ( )( a ) ( () + ) d Î cazul avem I arcg + C + a a a Eemplul Să se calculeze primiiva fucţiei: f Ese uşor de observa că poliomul de la umior are rădăcia dublă şi admie descompuerea 4 ( ) Di eorema împărţirii rezulă: f +, deci f d + d ( ) ( + ) Fucţia de sub semul iegrală o descompuem î fracţii simple asfel: A B C+ D E+ F ( ) ( + ) Dacă amplificăm ambii membri ai acesei egaliăţi cu ( ) şi apoi dăm lui valoarea, rezulă B Î coiuare, recem î membrul sâg ermeul, aducem la acelaşi umior şi simplificăm cu Rezulă: A C+ D E+ F + + ( )( + + ) ( + ) Amplificâd ulima egaliae cu şi dâd apoi lui valoarea obţiem A Trecem î membrul sâg ermeul, aducem la acelaşi umior şi simplificăm cu Rezulă: + + C + D E + F sau ( + ) + + C + D + C+ E + D+F
8 Se obţie asfel sisemul: C 0, D, C + E, D + F, care admie soluţia: C 0, D, E, F Aşadar, avem: d d + d + d + d d l + + arcg + d+ + + l + + arcg + I + Di () rezulă: d d I + arcg Î fial avem: fd + l arcg + C + ( ) R cos si d PRIMITIVE DE FORMA: (, ) Puv (, ) Fie R( u, v) o fucţie raţioală de două variabile, ude (, ) Quv (, ) m ij i j i 0 j 0 m l i P uv a u v şi Quv, buv su două polioame de două variabile ij 0 j 0 j Presupuem că I ( π, π) ese u ierval şi Q( si, cos ) 0, I Peru calculul primiivei de forma R( si, cos ) d facem schimbarea de variabilă: g, I Iversâd fucţia, obţiem arcg şi d d + Pe de ală pare avem: g g cos şi si + g + g
9 Cap PRIMITIVE Î urma acesei schimbări de variabilă rezulă: R( cos, si ) d R, d R ()d, ude R ese o fucţie raţioală î Observaţia Iervalul I se poae îlocui cu orice al ierval J pe care fucţia g ese sric moooă şi Q( si, cos ) 0, J Eemplul Să se calculeze d, ( π, π ) + si Facem schimbarea de variabilă g şi obţiem: d + si d d d g + arcg arcg +C Î coiuare, prezeăm rei cazuri pariculare, î care se po face ale schimbări de variabile, ce coduc la calculul uor primiive de fucţii raţioale mai simple decâ cele obţiue î urma schimbării de variabilă g R( cos, si ) R( cos, si ) sau R g, ude R (respeciv R ) su fucţii raţioale π π Presupuem î plus că I, şi Q ( cos, si ) 0, I Î aces caz, se face schimbarea de variabilă g Iversâd fucţia, obţiem arcg şi d d + De la rigoomerie se şie că: g cos şi si + g + g Aşadar, î urma acesei schimbări de variabile obţiem:
10 4 R cos, si d R, d + + +, respeciv R ( g ) d R d + Î ambele cazuri problema s-a redus la calculul uor primiive de fucţii raţioale î π π Eemplul Să se calculeze d,, + sicos Peru îcepu observăm că: g + d d d + sicos + gcos g + g+ π π Dacă facem schimbarea de variabilă: g,,, obţiem: + d d d d + sicos g + arcg arcg +C ) R( ) R ( ) cos, si cos, si cos, I, ude R ese de asemeea, o fucţie raţioală de două variabile Î aces caz facem schimbarea de variabilă si Rezulă d cos d şi R ( cos, si ) cos d R (, ) d R ( )d cos Eemplul Să se calculeze d 4, π Dacă facem schimbarea si de variabilă: si, auci d cos d şi obţiem: ( ) d cos cos cos d d d si si + + +C si si ) R( ) R ( ) cos,si cos,si si
11 Cap PRIMITIVE 5 Î aces caz se recomadă schimbarea de variabilă cos Eemplul 4 Să se calculeze de variabilă cos obţiem: cos si d Dacă facem schimbarea 4 cos si d cos si si d d d 5 5 cos cos +C PRIMITIVE DE FORMA + + d R a b c Peru îcepu observăm că prir-o schimbare de variabilă de forma α + β se obţie o primiivă de forma: (, ) + d, ( ) sau (, ) d Îr-adevăr, dacă a > 0 şi b 4ac < 0, auci avem: R, d b 4a b a + b + c a a 4a 4a a Dacă facem schimbarea de variabilă a b b +, auci,d d a a a b R, a + b+ c d R, d a + 4a a şi R, d ( + ) Celelale două forme se obţi î cazurile a > 0, > 0, respeciv a < 0, > 0 Peru primiivele de forma ( + ) urmăoarele schimbări de variabile: + u+ ; R, d se poae face ua di + u ; + u± d Eemplul 4 Să se calculeze Dacă facem schimbarea de variabilă +, rezulă
12 6 d d d ( ) + + Facem acum o ouă schimbare de variabilă: + u Ridicâd la păra şi efecuâd calculele obţiem: u u + u +, d du şi + u u u Aşadar, avem: ( u + ) d du + + u u + u u ( u ) + u u du du l d + u + u u u u u u u u + du l u l u + +C ude u u R, d se poae face ua di Peru primiive de forma urmăoarele schimbări de variabile: u( ) ; u( ) u, iar peru primiive de forma (, ) R d u + ; u± + ;, u( ) ; a + b, m,,q Q 5 PRIMITIVE DE FORMA: d m Aces ip de primiive ese cuoscu sub umele de iegrale biome Maemaiciaul rus PL Cebâşev a arăa că acese primiive se po calcula umai î urmăoarele cazuri: Cazul : p Dacă oăm cu r umiorul comu al umerelor m şi şi facem schimbarea de variabilă r obţiem: p p ( + ) d ( + ) m mr r r a b a b r d Deoarece mr şi r rezulă că fucţia de sub semul iegrală ese raţioală p
13 Cap PRIMITIVE 7 Eemplul 5 Să se calculeze d 4 ( + ) 0 4 d 0 + Aşadar avem: m ; d, (0, ) şi p 0 4 Cum r 4 facem schimbarea de variabilă d şi obţiem: 4 d d d 4 d ( + ) ( + ) ( + ) ( + ) C Cazul : ( + ) 9 ( + ) ( + ) ( + ) m +, p Dacă oăm u, > 0, auci u, d u du şi m m+ p m p p d ( + ) d ( + ) d ( + ) a b u au b u u u au b u Î coiuare facem schimbarea de variabilă umiorul lui p Rezulă u ( r ) b şi a m+ m+ p r rp r r d r au + b, ude r ese u au+ b u b d R a a d m + Cum şi rp, rezulă că fucţia de sub semul iegralei ese raţioală î Eemplul 5 Să se calculeze d, (,) m Avem m,, deci + Cum p, vom face schimbarea de variabilă Rezulă, d d şi
14 8 ( ) d d ( ) d ( ) ( ) + C m Cazul : + m + + p ; ; p Se poae arăa, aşa cum s-a proceda şi î cazul, că dacă facem schimbarea a + b r de variabilă, 0, ude r ese umiorul lui p, problema se reduce la calculul primiivei uei fucţii raţioale Eemplul 5 Să se calculeze d, > 0 ( + ) m Avem m ; şi p Evide + + p Facem schimbarea de variabilă +, > 0 şi obţiem, d ( ) d, d ( + ) ( ) d + d + C + Î îcheierea acesui capiol, prezeăm o lisă de primiive care u se po eprima pri fucţii elemeare e si cos sh Ei d; Si d ; Ci d ; Sh i d ; ch Ch i d ; S sid; ; C cos d φ() e d; d Li l
SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
Διαβάστε περισσότεραPENTRU CERCURILE DE ELEVI
122 Petru cercurile de elevi PENTRU CERCURILE DE ELEVI Petru N, otăm: POLINOAME CICLOTOMICE Marcel Ţea 1) U = x C x = 1} = cos 2kπ + i si 2kπ } k = 0, 1. Mulţimea U se umeşte mulţimea rădăciilor de ordi
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότεραCurs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραCurs 9. Teorema limită centrală. 9.1 Teorema limită centrală. Enunţ
Curs 9 Teorema limiă cerală 9 Teorema limiă cerală Euţ Teorema Limiă Cerală TLC) ese ua dire cele mai imporae eoreme di eoria probabiliăţilor Iuiiv, orema afirmă că suma uui umăr mare de v a idepedee,
Διαβάστε περισσότερα7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE
7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală
Διαβάστε περισσότερα6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
Διαβάστε περισσότεραa) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.
Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότεραInegalitati. I. Monotonia functiilor
Iegalitati I acest compartimet vor fi prezetate diverse metode de demostrare a iegalitatilor, utilizad metodele propuse vor fi demostrate atat iegalitati clasice precum si iegalitati propuse la diferite
Διαβάστε περισσότεραLaborator 4 Interpolare numerica. Polinoame ortogonale
Laborator 4 Iterpolare umerica. Polioame ortogoale Resposabil: Aa Io ( aa.io4@gmail.com) Obiective: I urma parcurgerii acestui laborator studetul va fi capabil sa iteleaga si sa utilizeze diferite metode
Διαβάστε περισσότεραTEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
Διαβάστε περισσότεραCAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE
CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă
Διαβάστε περισσότεραAnaliza matematica Specializarea Matematica vara 2010/ iarna 2011
Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila
Διαβάστε περισσότεραCurs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Διαβάστε περισσότεραSEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6)
SEMINAR TRANSFORMAREA LAPLACE. Probleme. Foloind proprieaea de liniariae, ă e demonreze urmăoarele: in σ(, Re > ; ( + penru orice C. co σ( h σ( ch σ(, Re > ; ( +, Re > ; (3, Re > ; (4. Să e arae că penru
Διαβάστε περισσότεραFormula lui Taylor. 25 februarie 2017
Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =
Διαβάστε περισσότεραCapitole fundamentale de algebra si analiza matematica 2012 Analiza matematica
Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότερα4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire
4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru
Διαβάστε περισσότεραSEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Διαβάστε περισσότεραPolinoame Fibonacci, polinoame ciclotomice
Polioame Fiboacci, polioame ciclotomice Loredaa STRUGARIU, Cipria STRUGARIU 1 Deoarece şirul lui Fiboacci este cuoscut elevilor îcă dicl.aix-a,iarrădăciile de ordiul ale uităţii şi polioamele ciclotomice
Διαβάστε περισσότεραMinisterul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
Διαβάστε περισσότεραDefiniţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Διαβάστε περισσότεραOlimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
Διαβάστε περισσότερα4. Ecuaţii diferenţiale de ordin superior
4.. Ecuaţii liiare 4. Ecuaţii difereţiale de ordi superior O problemã iportatã este rezolvarea ecuaţiilor difereţiale de ordi mai mare ca. Sut puţie ecuaţiile petru care se poate preciza forma aaliticã
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότεραCOLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ
COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ LUCRARE CONCEPUTĂ ȘI REALIZATĂ DE COLECTIVUL CLASEI a XI-a A, PROFIL REAL, SPECIALIZAREA MATEMATICĂ-INFORMATICĂ.
Διαβάστε περισσότερα3. Serii de puteri. Serii Taylor. Aplicaţii.
Fucţiile f ( ) cos t = sut de clasă C pe R cu α si derivatelor satisface codiţiile: α f ' ( ) si = şi seria ' ( ), α α f R cu = b α ' coverge petru α > f este (ormal covergetă) absolut şi uiform covergetă
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραV.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Διαβάστε περισσότεραPlanul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότεραCOMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi
OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete
Διαβάστε περισσότεραSisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Διαβάστε περισσότεραTema: şiruri de funcţii
Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..
Διαβάστε περισσότεραCURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică
Capitolul II: Serii de umere reale Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC CURS III, IV Capitolul
Διαβάστε περισσότεραT R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :
Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet
Διαβάστε περισσότεραSeminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.
Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu
Διαβάστε περισσότερα6.1. DERIVATE ŞI DIFERENŢIALE PENTRU FUNCŢII REALE DE O VARIABILĂ REALĂ. APLICAŢII
7 7 Modulul 6 APLICAŢII DIFERENŢIABILE Subiecte : Derivate şi difereţiale petru fucţii reale de o variabilă reală Formula lui Taylor şi Mac-Lauri petru fucţii de o variabilă reală Serii Taylor 3 Derivate
Διαβάστε περισσότερα3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1
3.4 Iegrre fucţiilor rigoomerice ) R( si,cos ) d Susiuţi recomdă ese: uei fucţii rţiole. g =, (, ) şi iegrl dă se reduce l iegrre si cos si cos g si + cos + g = = = + cos si g cos + si + g = = = + = rcg
Διαβάστε περισσότεραVarianta 1 - rezolvari mate MT1
Variata - rezolvari mate MT Soluţii a + a + a + ; + 5 + 9 + + a + ; ; a + a ; a,, ;, y >, y + ; f :,,, f submulţimi cu trei elemete C 5 m + + m 6 cos ; m ± 6+ cos cos a Calcul direct b Se demostrează pri
Διαβάστε περισσότεραCursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate
Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs
Διαβάστε περισσότεραSUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare
SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.
Διαβάστε περισσότεραProfesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Διαβάστε περισσότεραTransformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.
Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότερα1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii...
Cupris 1. Operaţii cu umere reale... 1 1.1. Radicali, puteri... 1 1.1.1. Puteri... 1 1.1.. Radicali... 1 1.. Idetităţi... 1.3. Iegalităţi... 3. Fucţii... 6.1. Noţiuea de fucţii... 6.. Fucţii ijective,
Διαβάστε περισσότεραlim = dacă se aplică teorema lui 3. Derivate de ordin superior. Aplicaţii.
5 Petru limita determiată: 2 + lim = dacă se aplică terema lui LHspital: 2 + 2 lim = lim = rezultatul este icrect. 3. Derivate de rdi superir. Aplicaţii. Fie A R mulţime care îşi cţie puctele de acumulare
Διαβάστε περισσότεραIII. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Διαβάστε περισσότεραMetode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Διαβάστε περισσότερα5.1. ŞIRURI DE FUNCŢII
Modulul 5 ŞIRURI ŞI SERII DE FUNCŢII Subiecte :. Şiruri de fucţii.. Serii de fucţii. 3. Serii de puteri. Evaluare :. Covergeţa puctuală şi covergeţa uiformă la şiruri şi serii de fucţii.. Teorema lui Abel.
Διαβάστε περισσότεραCapitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
Διαβάστε περισσότεραSisteme de ordinul I şi II
Siseme de ordiul I şi II. Scopul lucrării Se sudiază comporarea î domeiul imp şi frecveţă a sisemelor de ordiul II. Siseme de ordiul I. Comporarea î domeiul imp a sisemelor de ordiul I U sisem de ordiul
Διαβάστε περισσότεραEcuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Διαβάστε περισσότεραAsupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Διαβάστε περισσότεραCAPITOLUL III FUNCŢII CONTINUE
CAPITOLUL III FUNCŢII CONTINUE. Fucţii de o variabilă reală Fucţiile defiite pe mulţimi abstracte X, Y cu f : X Y au î geeral puţie proprietăţi şi di acest motiv, puţie aplicaţii î rezolvarea uor probleme
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
5..8 Ecuaţia difereţială Riccati Ecuaţia difereţială de ordiul îtâi de forma: d q( ) p( ) r( ) d + + (4) r sut fucţii cotiue pe u iterval, cuoscute, iar fucţia ude q( ), p ( ) şi ( ) este ecuoscuta se
Διαβάστε περισσότεραCAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ
CAPITOLUL IV CALCULUL DIFEENŢIAL PENTU FUNCŢII EALE DE O VAIABILA EALĂ Fucţii derivabile Fucţii difereţiabile Derivata şi difereţiala sut duă ccepte fudametale ale matematicii, care reprezită siteză pe
Διαβάστε περισσότεραCOLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Διαβάστε περισσότεραSeminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Διαβάστε περισσότεραSERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Διαβάστε περισσότεραSunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.
86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că
Διαβάστε περισσότεραCurs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Διαβάστε περισσότεραriptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Διαβάστε περισσότεραBAREM DE CORECTARE CLASA A IX A
ETAPA JUDEŢEANĂ - martie 0 Filiera tehologica : profil tehic BAREM DE CORECTARE CLASA A IX A a) Daţi exemplu de o ecuaţie de gradul al doilea avâd coeficieţi raţioali care admite ca rădăciă umărul x= +
Διαβάστε περισσότεραR R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότεραPROBLEME CU PARTEA ÎNTREAGĂ ŞI
PROBLEME CU PARTEA ÎNTREAGĂ ŞI PARTEA FRACŢIONARĂ. Să se rezolve ecuaţia {x} {008 x} =.. Fie r R astfel ca r 9 ] 00 Determiaţi 00r]. r 0 ] r ]... r 9 ] = 546. 00 00 00 Cocurs AIME (SUA), 99. Câte ditre
Διαβάστε περισσότεραCAPITOLUL 4 SPAŢII VECTORIALE EUCLIDIENE/UNITARE Produs scalar. Spaţii euclidiene şi spaţii unitare-definiţie
Spaţii vectoriale euclidiee/uitare CAPITOLUL 4 SPAŢII VECTORIALE EUCLIDIENE/UNITARE 4.. Produs scalar. Spaţii euclidiee şi spaţii uitare-defiiţie Defiiţia 4... Fie V u spaţiu vectorial peste corpul K (K=R
Διαβάστε περισσότεραPENTRU CERCURILE DE ELEVI
G.-F. Şerba, Aplicaţii la teorema lui Frobeius despre matrice 7 PENTRU CERCURILE DE ELEVI APLICAŢII LA TEOREMA LUI FROBENIUS DESPRE MATRICE George-Flori Şerba 1) Î această lecţie vom prezeta rezolvarea
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότεραMatematici Speciale. Conf.Dr. Dana Constantinescu Departamentul de Matematici Aplicate Universitatea din Craiova
Maemaici Seciale CofDr Daa Cosaiescu Dearameul de Maemaici Alicae Uiversiaea di Craiova Curis Ecuaţii difereţiale Cosideraţii geerale 3 Ecuaţii difereţiale de ordiul I 5 Ecuaţii cu variabile searabile
Διαβάστε περισσότεραCLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea
EDIŢIA A IV-A 4 6 MAI 004 CLASA a V-a I. Să se determie abcd cu proprietatea abcd - abc - ab -a = 004 Gheorghe Loboţ II Comparaţi umerele A B ude A = 00 00 004 004 şi B = 00 004 004 00. Vasile Şerdea III.
Διαβάστε περισσότερα1. ŞIRURI ŞI SERII DE NUMERE REALE
ŞIRURI ŞI SERII DE NUMERE REALE Noţiui teoretice şi rezultate fudametale Şiruri de umere reale Presupuem cuoscute oţiuile de bază despre mulţimea N a umerelor aturale, mulţimea Z a umerelor îtregi, mulţimea
Διαβάστε περισσότεραSeminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Διαβάστε περισσότεραDemodularea (Detectia) semnalelor MA, Detectia de anvelopa
Deodularea (Deecia) senalelor MA, Deecia de anveloa Deodularea ese recuerarea senalului odulaor din senalul MA. Aceasa se oae face erfec nuai daca s( ) ese de banda liiaa iar Deodularea senalelor MA se
Διαβάστε περισσότερα3.1. DEFINIŢII. PROPRIETĂŢI
Modulul 3 SERII NUMERICE Subiecte :. Criterii de covergeţă petşru serii cu termei oarecare. Serii alterate 3. Criterii de covergeţă petru serii cu termei poziţivi Evaluare. Criterii de covergeţă petru
Διαβάστε περισσότεραCurs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Διαβάστε περισσότεραLaborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Διαβάστε περισσότεραVarianta 1
Filiera vocaţioală, profilul militar, specializarea matematică-iformatică Toate subiectele sut obligatorii Timpul efectiv de lucru este de ore Se acordă pucte di oficiu La toate subiectele se cer rezolvări
Διαβάστε περισσότεραŞIRURI ŞI SERII DE FUNCŢII
Capitolul 8 ŞIRURI ŞI SERII DE FUNCŢII 8. Şiruri de fucţii Fie D R, D = şi fie f 0, f, f 2,... fucţii reale defiite pe mulţimea D. Şirul f 0, f, f 2,... se umeşte şir de fucţii şi se otează cu ( f ) 0.
Διαβάστε περισσότεραPrincipiul Inductiei Matematice.
Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei
Διαβάστε περισσότεραVarianta 1. SUBIECTUL I (30p) Varianta 001 5p 1. Să se determine numărul natural x din egalitatea x = p
Filiera vocaţioală, profilul militar, specializarea matematică-iformatică Toate subiectele sut obligatorii Timpul efectiv de lucru este de ore Se acordă pucte di oficiu La toate subiectele se cer rezolvări
Διαβάστε περισσότερα( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)
Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul
Διαβάστε περισσότεραCursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15
MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()
Διαβάστε περισσότερα5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Διαβάστε περισσότεραTransformata Laplace
Tranformaa Laplace GOM mai 8 Tranformaa Laplace În cele ce urmează vom udia ranformaa Laplace, care din punc de vedere maemaic nu ee decâ o inegrală improrie şi cu parameru (vezi formula ()), dar are numeroae
Διαβάστε περισσότεραCAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora.
Cp PRIMITIVE 5 CAPITOLUL PRIMITIVE METOE GENERALE E CALCUL ALE PRIMITIVELOR Î cest prgrf vom remiti oţiue de primitivă, proprietăţile primitivelor şi metodele geerle de clcul le cestor efiiţi Fie f : I,
Διαβάστε περισσότεραSala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ
Sala: 203 Decembrie 204 Cof. uiv. dr.: Dragoş-Pătru Covei CURS 0: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs u a fost supus uui proces riguros de recezare petru a fi oficial publicat. distribuit
Διαβάστε περισσότεραConice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Διαβάστε περισσότερα3.3. Ecuaţia propagării căldurii
3 ECUAŢII γ k + k iar din (34 rezuă că a 4Aω δ k (k + + a + (k+ (k+ ω deci 4Aω δ k + a a (k + (k+ ω Conform (9 souţia probemei considerae va fi 4Aω a w ( sin( sin( k+ k+ + a k a (k+ (k+ ω 4Asinω + sin(k+
Διαβάστε περισσότεραEXAMENE ŞI CONCURSURI
8 Examee şi Cocursuri EXAMENE ŞI CONCURSURI A IV-A EDIŢIE A CONCURSULUI FACULTĂŢII DE MATEMATICĂ ŞI INFORMATICĂ A UNIVERSITĂŢII,,OVIDIUS DIN CONSTANŢA prezetare de Laureţiu Hometcovshi ) şi Diaa Savi )
Διαβάστε περισσότεραSeminariile Capitolul IX. Integrale curbilinii
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 7 8 Capitolul IX. Integrale curbilinii. Să se calculee Im ) d, unde este segmentul
Διαβάστε περισσότεραDETERMINAREA PUTERILOR MATRICELOR
DETERMINAREA PUTERILOR MATRICELOR IOANA MONICA MAŞCA Prezetăm mai multe procedee de calcul al puterilor matricelor ilustrate pri probleme cu soluţii cometate. Putem realiza selecţii de metode şi/sau exemple
Διαβάστε περισσότεραSubiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Διαβάστε περισσότεραELEMENTE DE STABILITATE A SISTEMELOR LINIARE
6 ELEMENTE DE STABILITATE A SISTEMELOR LINIARE In sudiul sabiliăţii sisemelor se uilizează două concepe: concepul de sabiliae inernă (a sării) şi concepul de sabiliae exernă (a ieşirii) 6 STABILITATEA
Διαβάστε περισσότεραSeria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul diferenţial
Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul difereţial MATHEMATICAL ANALYSIS Differetial calculus The preset book is the first part of the cours of Mathematical Aalysis give by the author for may years
Διαβάστε περισσότεραPartea întreagă, partea fracţionară a unui număr real
Cocursul Gazeta Matematică și ViitoriOlimpiciro Ediția a IV-a 0-0 Partea îtreagă, partea fracţioară a uui umăr real ABSTRACT: Materialul coţie câteva proprietăţi şi rezultate legate de partea îtreagă şi
Διαβάστε περισσότερα