Dinámica de los Errores de la Navegación Inercial
|
|
- Ζένα Παπάζογλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Diámica d los Errors d la Navgació Ircial Errors d rotació tr tras d rfrcia Ecuació dl Error d Posició tra NAV Rlació co rrors Lat. Log. y Alfa Ecuació dl Error d plataforma Rlació co rrors Yaw Pitch y Roll Ecuació dl Error d actitud ircial. Ecuació dl Error d la Vlocidad Ecuació dl Error dl craft-rat Ecuacios d Estado d la Diámica d los Errors. 1
2 Sa : a y : Dfiició d rror d rotació tr tras d rfrcia (MCD) dos tras d rfrcia co C ˆ, a a, = S a, ( ) xp ( ) ˆ : ua tra muy crcaa a y δ : l águlo (pquño) d rotació dsd a ˆ :. Dfiició dl oprador rror tr MCDs : C ( ) ( ) ( ) ( ) (1) ˆ ˆ T a a, = Cˆ( δ ) a a,ˆ Cˆ( δ ) = xp( S( δ )) = a a, a a, ˆ ˆ Cˆ = S δ I+ S δ C I S δ a ˆ a C 1 xp( ( )) ( ); ( ) (cuasi idtidad) ĈC oprador (1) = I S( δ ) S( δ ) I ˆ ( δ ) C C C C δ ˆ ˆ a(, a, ) Ca Ca = Ca Ca = ( Cˆ - ) Ca( a,ˆ ) = C Ca a, ˆ 1 Ca(, a,) ( ) ˆ δ δ S Ca( a,ˆ ) S( ) Ca( a, CC ˆ Dfiició dl rror difrcia tr MCDs : C ˆ a a a ( δ, ) δ δ I ( I ) ( ) δ δ δ ˆ δ C a, ) ˆ ˆ a 1 a 3 ˆ 3 a ˆ,
3 Sa : Dfiició d rror d rotació tr tras d rfrcia (Cuatrió) a y : dos tras d rfrcia y qa( a) ˆ : ua tra muy crcaa a y δ : l águlo (pquño) d rotació dsd a ˆ q a, ˆ Dfiició dl oprador rror tr cuatrios q ( δ ) ( ) = ( ) ( ) q ( ) ( ) (1) a oprador ˆ ˆ ˆ * ˆ( ˆ ) qa, a, ˆ = ˆ( δ ) qa a,ˆ ˆ ( δ ) a a qa a, ˆ q q q δ 1 1 qˆ( ˆ ) δ, ( q0 cuatrió cuasi idtidad) 1 1 δ 4 Dfiició dl rror difrcia tr cuatrios : δ q a a, ˆ * a ˆa = a a = ( q0 q ˆ ( δ ) a a, = q ˆ ( δ ) q0 ˆa a ˆ a ( δ, q q q q q q ( δ, ) - ) ( ) ( - ) δ δ q ˆq q 1 1 δ 1 δ a( δ, a,) a 0 0 δ q a, ) ˆ ˆ a 1 a 3 ˆ 3 a ˆ, 3
4 Gomtría dl rror d Posició la tra NAV [δ] y δλ δφ Φ Pˆ, ˆ c: δφ Posició y tra calculadas. P, : Posició y tra rals x δλ: Error Logitud. δφ: Error Latitud. δα: Error Aimut. y y c c δ = c λ δλ x c x (δλ, δφ, δα) δ δ E U = δφ; δ = δλ si Φ + δα; N δ = δλ cos Φ 4
5 Error agular d la posició: δ Dfiició dl rror agular δ tr las MCD calculada y ral: C ˆ ˆ C ˆ T ˆ, C ˆ C C S : tra d avgació calculada (posil. co rror) δ ( ) = xp( ( δ )) : oprador corrcció d la MCD computada ˆ δc C ( λφα,, ) C ( λ+δλφ+δφα+δα,, ) : rror la MCD d la tra d avgació Cˆ ( C xp( S( )) C C ( I xp( S( )) C T = Cˆ ) = δ δ = δ I C S I δ 1 xp( S( δ )) S( δ ) δc S( δ ) ( δ ) ĈC y x ˆ ( ) C ˆ I+ S ( ˆ ) C I S ( ˆ) δ ˆ, y c c x c y δφ P ˆ,ˆ c P, C ( λφα,, ) y C ˆ (,, ) λ +δλ Φ+δΦ α+δα λ Φ δλ x x 5
6 Diámica d los rrors: Ecuació dl rror agular d la posició: δ Ec. d la Posició agular C () t = S( ρ ) C () t λ(), t Φ(), t α() t Dfiició dl rror d la MCD (ral - calculada) : c δc C ( λ, Φ, α) C ( λ+δλ, Φ+δΦ, α+δα): c δ 1 S( δ ) I C C δc S( δ ) C (1) y δφ P ˆ,ˆ c δ Ecuació d prturació d la posició agular: δ C () t = S( δρ ) C () t S( ρ ) δc () t ; δρ ρ ρˆ () C, = S, ( ) xp( ( )) (1) δ C ( t) = S( δ ) C + S( δ ) C (3) () = (3) S( δρ ) C ( t) S( ρ ) S( δ ) C = S( δ ) C S( δ ) S( ρ ) C ( t) S( δ ) ( = S δ ρ ) + S( δ ) S( ρ ) S( ρ ) S( δ ) δ = δ ρ +δ ρ S( δ ρ ) λ Φ 6 δλ P, x
7 Agulos d Eulr y Rotacios Sucsivas 3 rotacios lmtals sucsivas coduc d la tra a la tra, ajo la composició λ Φ α s y x y α + δα δφ P ˆ,ˆ c δ P, s ' C s '' C s ' C s '' s s s = y Φ@ s x ' α@ s '' Φ x λ δλ C = α s cosα sα cosλ 0 sλ s cos 0 α α 0 cosφ sφ sφ cos Φ sλ 0 cos λ C s' Φ@ s x ' λ@ y 7
8 Rlació tr δ y δλ, δφ, δα C ( ) ( ) ( ) ( ) ( ) ( ) c α s α c( Φ) s α s( Φ) cos λ 0 sλ s' = CC s' = s α c α c( Φ) c α s( Φ) s( Φ) c( Φ) sλ 0cosλ λ ( α ) Φ λ ( α) Φ ( α) λ ( α ) Φ λ ( α) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) c( α) c( ) c s( ) s( ) s c( ) s s( ) c s( ) c( ) s = s α c λ s Φ s λ c α c Φ c α s λ s α s Φ c λ c( Φ)() s λ s( Φ) c( Φ) c( λ) λ Φ α s' y α + δα δφ P ˆ,ˆ c δ P, δ =δα + ( δφ ) C +δλc s' s' x y =δα 0 + ( δφ ) Cs' 0+δλ C 1= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 c α c( Φ) s α =δα 0 + ( δφ) s α +δλ c( Φ) c α 1 0 s( Φ) c( Φ) s α c α 0 δλ δλ s α / c Φ c α / c Φ 0 = c( Φ) c α s α 0δΦ δφ = c( α) s( α) 0δ s( Φ) 0 1δα δα s( α) tg( Φ) c( α) tg( Φ) 1 ( ) ( ) ( ) ( ) Φ λ δλ x 8
9 Dfiició dl rror agular d la plataforma : φ ( tilt ) Llamamos: Cˆ C ; p, p "p": "Plataforma aalítica", "": Tra d avgació (dscoocida) Dfiimos al rror agular d la "plataforma": φ φ p = xp( S φ C C p ( )) ( C ) T ( corrcció d la MCD computada) Error la MCD : φ p C Cˆ ( C ) C ( S( )) C p T = p = xp φ p δc C C 1 C ( I S( φ )) C y x C p φ φp, ( φx, φy, φ) y p p x p δc S( φ ) C C ( ψϕ,, ) y p C x 9
10 Diámica d los rrors: Ecuació dl rror agular d plataforma: φ Ecuació d la Actitud C = C S( ω ) S( ω ) C i i D la dfiició dl rror d plataforma: δc C Cˆ S( ) C (1) φ Prturació d la cuació d actitud : δ C = δ C S( ω ) + CS( δω ) S( δω ) C S( ω ) δc () i, i, i, i, i, i, i, δω ω ωˆ = ε " driva" dl giro: i, ( ) ( ) Ω δω δ Ω + ρ = δ ρ +δ C Ω = δ ρ + S δ C Ω = δ ρ +δ C Ω (1) δ C = S( φ ) C + S( φ ) C (3) (1), () = (3) 10
11 Diámica d los rrors: Ecuació dl rror agular d plataforma: φ (1), () = (3) S( φ ) C S( φ ) C S( φ ) C S( ω ) CS( ) S( ω ) C S( ω ) S( φ ) C + = i, + ε δ i, i, S( φ ) C = S( φ )[ C S( ω ) S( ω ) C ] + S( φ ) C S( ω ) + CS( ε ) i i i, i, i, φ S( δω ) C S( ω ) S( ) C S( φ ) = S( φ ) S( ωi, ) S( ωi, ) S( φ ) + CS( ε ) C S( δ ωi, ) = S( φ ω ) S( ε ) i, y p p x p i, i, = S( φ ω ) + S( ε ) S( δω ) φ y φ = φ ω δ ω +ε = φ ω δ ρ + Ω δ +ε i, i, i, x 11
12 ( C ) El rror d plataforma fució d los águlos yaw ψ, pitch β y roll γ E fució d las rotacios sucsivas yaw, pitch y roll, d a s scri : T cos ψ sψ 0 cosβ 0 sβ = C = s cos cos s ψ ψ γ γ sβ 0 cosβ 0 sγ cos γ cos ψcosβ sψ cos ψsβ CψCβ CS γ ψ+ SS γ βcψ SS γ ψ+ CS γ βcψ = s cosβ cos s sβ ψ ψ ψ 0 cosγ s SψC CC SS S SC CS S γ = β γ ψ+ γ β ψ γ ψ+ γ β ψ sβ 0 cosβ 0 sγ cosγ Sβ SC γ β CγCβ C s' Pquñas variacios δγ, δβ y δψ produc ua variació corrspodit la plataforma: φ=δγ C +δβ C +δψ s' x s' y cos ψcosβ sψ 0 =δγ C 0+δβ Cs' 1+δψ 0=δγ sψ cosβ+δβ cos ψ +δψ sβ 0 1 cos ψcosβ sψ 0 δγ δγ cos ψ / cosβ sψ / cosβ 0 φ= sψcosβ cos ψ 0δβ δβ = s ψ cos ψ 0φ sβ 0 1 δψ δψ cos ψ taβ sψ ta β 1 1
13 Rlació tr rror d posició y rror d plataforma rror d actitud (ircial) ψ rror d plataforma φ - rror d posició δ ˆ ˆ i = i = δ i C C C xp( S( )) CC; p C = xp( S( φ )) C Cˆ C C C xp( S( ))xp( S( )) CC ˆ i = p i = φ δ i Cˆ = xp( S( φ δ )) C xp( S( ψ )) C i co: i i φ ˆ δ = C xp( S( φ δ )) CCC ψ ψ i ψ y ψ y x x 13
14 Diámica dl rror d actitud rror agular d actitud ircial dl vhículo : ψ = φ δ Ecuació dl rror d actitud NAV: ψ = φ δ = = φ ω i, δρ δ Ω + ε + + δρ δ ρ ω i, ψ = φ ω, ( i δ ρ Ω ) + ε + ψ = ψ ω i, + ε y c C x δ c, p C φ = δ φ φ y c p, ψ y p c p p C c ψ x p x c 14
15 Diámica d los rrors: Ecuació dl rror d Vlocidad: ˆ ˆ ( ˆ ) ˆ = + + ˆ + ˆ ˆ Navgació d la Vlocidad V ρ Ω V g Cf + u u = k ( hˆ h ) dt k ( hˆ h ) = k ( ε δh) dt k ( ε δh) 3 md md 3 h h Ecuació d prturació d la vlocidad: δv V -Vˆ δ V = δ C f + C δf ( ρ + Ω ) δv ( δ ρ + δ Ω ) V +δg u (1) Dod: δc S( φ ) C ; δω = δc Ω S( δ ) C Ω = S( δ ) Ω () u = k ( δh ε ) dt + k ( δh ε ) δf 3 h (1), () " ssgo" dl aclrómtro. δ V = S( φ ) f ( ρ h + Ω ) δv ( δ ρ + S( δ ) Ω ) V +δ f +δg u = δ V = f φ ( ρ + Ω ) δv δ ρ V ( δ Ω ) V + +δg u 15
16 Diámica d los rrors: Ecuació dl rror d la rotació vhicular: δρ V V x y V V x y ρ = ( ) x + ( ) y + ( λsi Φ+ α) T R R T y Itroducido la aproximació 1 1 R( S) Rm( S)(1 + O( ε )) R + h R + h 1 CαSα CαSα O( ε ) 0 T R + h Rm + h Rm + h x C α S α S α C α + Rm + h R + h R h + Rm + h R + h 1 1 R y + V y Vx ρ x + y + ( λsi Φ+ α) R + h R + h ρ δv V δh ρ δ h+δv δρx + = R + + x y y x y h ( R + h) R h δv V δh ρδh δv δρy = R h ρ x x y + h ( R + h) R + y x m 1 R x 16
17 Diámica d los rrors: Ecuació dl rror d la rotació vhicular: δρ El térmio δρ dpd dl águlo d ruta lgido. 1.- Aimut lir: ρ= 0 δρ= 0.- Foucault: ρ= ΩsiΦ= Ω = C Ω = = ( S( ) ) = ( ) δρ δc Ω δ C Ω δ Ω δρ 3.- Aput. Nort: α =α=0 ρ = ta Φ VE ta Φ VE sc Φ = δve δ h+ δφ + + R h ( R + h) R h VE ta Φ R + h 17
18 γ g Diámica d los rrors Ecuació dl rror d gravdad: T [ ] [ 0 0 ( h, )] = γ γ γ = γ Φ E N U h h γ( h, Φ ) = γs ( Φ) 1 ( 1+ f + m f si ( Φ )) + 3 a a 1+ k si Φ γs( Φ ) = γ ; 1 si Φ γ p Ω a k = 1; m = aγ GM g g g ( )[ ] T δγ g = Aomalía d la gravdad (módulo); ξ = Dflxió mridiaa (N-S) η= Dflxió paralla (E-O) T = γ( h, Φ ) + g η ξ 1 ; h = hˆ +δh; Φ =Φ+δΦ ˆ ( h g) ˆ ˆ ( hˆ ˆ )[ ] δg δγ(, Φ ) + δ η ξ 1 + γ(, Φ) δη δξ 0 ; γ( hˆ, Φˆ) γ( hˆ, Φˆ) δγ( h, Φ ) = δ h+ δφ h Φ Fialmt dfiido: T [ ] δα 0 0 δα : δα α αˆ g g g g g g g g g δ g =δ C g + C δg S( δ α) Cgˆ + Cδ g =δ α gˆ + C δg T T g 18
19 φ Diámica d los rrors tra d avgació (rsum) ˆ = φ ωi, δρ δ Ω δ =δ ˆ + ˆ g α g C δg ˆ +ε ˆ ˆ ( ˆ ) ˆ ( ˆ ) ˆ δ V = f φ ρ + Ω δv δ ρ V δ Ω V + +δg u δ = δ ρ +δ ρˆ δ h =δv g g ρδ ˆ h+δv ρδ ˆ h δv δ ρ = x y +δρ x y y x R ˆ ˆ + h R + h δρ : 1.- Aimut lir:.- Foucault: U ρ= 0 δρ= 0 = = ( S( ) ) = ( ) ρ= ΩsiΦ= Ω = C Ω ta Φ ; R R + h; R R + h R + h U y m x ˆ ˆ ta Φ VE ta Φ VE sc Φ ta Φ Vˆ ˆ E ta Φ VE sc Φ = δv ˆ E δ h+ δφ = δv ˆ R + h ( R + h) ˆ ˆ E δh δ R + h R + h ( R + hˆ) R + hˆ δρ δc Ω δ C Ω δ Ω 3.- Aput. Nort: NAV=GEO; α=α=0 ρ = δρ V E E E U N U N δ = δφ; Admás, pusto qu δ = δλ si Φ y δ = δλ cos Φ δ = ta( Φ) δ 19
20 Ecuacios d la Diámica d los rrors: Caso NAV=GEO E coordadas d Navgació T ; ta( ) E N U VE VN VU E N h φ φ φ δ δ δ δ δ δ δ U= ΦδN ; E lat. y log. δφ= δe; δλ = δn / cos ( Φ) T ε 000 E εn εu E+ δge N+ δgn U + δg U µ Ω + ρ x x =δ+ F x u = ( = 0 V ta 0 E Φ V E 0 1 V Ω U + ΩN 0 0 ΩU + ΩN taφ N R+ h R+ h Rm+ h ( ) Rm + h VE ta Φ V ) 0 N 1 V E ΩU + ΩU R+ h Rm+ h R+ h ( R ) + h V sc E VN ta V ta E Φ V 0 E Φ ΩN + Φ Ω ( R h) R h R h R h N + m+ + + ( R h) + V ta V V V sc V V V V ta 0 N Φ U ( V V ) N E Φ f 0 E U N E Φ U fn µ R h R h U µ N NΩ N+ UΩU + + ( R+ h) ( R h) ( R h) + + V ta ( ) sc ta fu 0 E Φ VU V E Φ V 0 E Φ V V f NU E µ U µ ) ( ) E VEΩ N+ R+ h Rm+ h ( R+ h) ( R ) ( ) + h Rm+ h V V V V V f 0 E N 0 V 0 N E E N fe µ N+ µ R h E R h EΩU + m+ ( R+ h)( Rm+ h) ( R h) V N ( Rm + h) ( R h) m+ 1 V ta V ta E Φ N Φ V E ( R+ h) ( R+ h) ( Rm+ h) ( R h)
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
Περισσότερα+για+τις+στροφές+
ΤεχνολογικόEκπαιδευτικόΊδρυμαKρήτης Ρομποτική «Τοπικήπαραμετροποίησηπινάκωνστροφής,γωνίεςEuler, πίνακαςστροφήςγύρωαπόισοδύναμοάξονα» Δρ.ΦασουλάςΓιάννης 1 Περισσότεραγιατιςστροφές ΗστροφήενόςΣΣμπορείνααντιστοιχηθείσεένα
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline
G q v v G q v H 4 q 4 q v v ˆ ˆ H 4 ] 4 ˆ ] W q K j q G q K v v W v v H 4 z ] q 4 K ˆ 8 q ˆ j ˆ O C W K j ˆ [ K v ˆ [ [; 8 ] q ˆ K O C v ˆ ˆ z q [ R ; ˆ 8 ] R [ q v O C ˆ ˆ v - - ˆ - ˆ - v - q - - v -
.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o
G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M
?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :
Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν
Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1
Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing
Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical
EE 570: Location and Navigation
EE 570: Locatio ad Navigatio INS Iitializatio Aly El-Osery Electrical Egieerig Departmet, New Mexico Tech Socorro, New Mexico, USA April 25, 2013 Aly El-Osery (NMT) EE 570: Locatio ad Navigatio April 25,
S ˆz. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α. 2αβ
Άσκηση 4. Έστω σωμάτιο με spin /. Να προσδιορίσετε την κατάστασή του αν είναι γνωστές οι S ˆ, S ˆ και μόνο το πρόσημο της S ˆ. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α ψ = α
ITU-R P ITU-R P (ITU-R 204/3 ( )
1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55
< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α
# & ( ) ) +,. /, 1 /. 23 / 4 (& 5 6 7 8 8 9, :;< = 6 > < 6? ;< Β Γ Η. Ι 8 &ϑ Ε ; < 1 Χ6 Β 3 / Κ ;Χ 6 = ; Λ 4 ϑ < 6 Χ ; < = = Χ = Μ < = Φ ; ϑ =
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ 2 0 1 6 Τ ε ύ χ ο ς Δ ι α κ ή ρ υ ξ η ς Α ν ο ι κ τ ο ύ Δ ι ε θ ν ο ύ ς Δ ι α γ ω ν ι σ μ ο ύ 0 1 / 2 0 1 6 μ ε κ ρ ι τ ή ρ ι ο κ α τ α κ ύ ρ ω σ η ς τ η ν π λ έ ο ν σ υ μ
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή 1. Κίνηση σε τρεις διαστάσεις Αποδεικνύεται (με τον ίδιο τρόπο όπως και
Inertial Navigation Mechanization and Error Equations
Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;
ΠΡΟΣΛΗΨΗ ΠΡΟΣΩΠΙΚΟΥ ΜΕ ΣΥΜΒΑΣΗ ΟΡΙΣΜΕΝΟΥ ΧΡΟΝΟΥ ΟΝΟΜΑΣΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΑΙΤΟΥΝΤΩΝ ΥΠΟΨΗΦΙΩΝ ΚΑΤΗΓΟΡΙΑΣ ΠΕ ή ΤΕ ΚΩΔΙΚΟΣ ΘΕΣΗΣ : 101
Φο : Δ οίσ : π' μ : 427 πσί : Δ Δ Έδ πσί : 3 Δι ύμβσ : 2 Ψ Β ΨΦ Δ Θ : Δ: οιιό ιουγό οιι γσί Δ 2 Θ 3 Ξ Β 4 Δ Θ Δ Δ - 6 Δ Β 7 ΒΒ 8 Β Δ 9 Δ 2 3 4 Δ 6 Δ 7 Δ ΒΪ Θ 8 Δ 9 Θ Δ 2 2 Δ 22 Β 23 Θ 24 2 26 Φ 27 ΘΔ 28
' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4 $!&$3% 2!% #!.1 & &!" //! &-!!
..!! "#$% #&" 535.34 ' ( )* *,,, ) - ". &!: 1.4.7 &/#&$&& &!&11 5.7.1 $#/&! 1!#&, #/&!#&3 &"&!3, #&- &!#&, "#4 $!&$3%!% #!.1 & &!" //! &-!!% 3 #&$&/!: /&!&# &-!!%, "#&&# 56$.., //! &-!!% ).. &$ 13 .
166618/3441/106 / /965/382/ /1708/561 / /1437/463 / /2956/855 / /16.12.
FENDT A/A ΤΥΠΟΣ ΙΣΧΥΣ ΑΡ. ΑΠΟΦΑΣΗΣ ΑΔΑ ΚΙΝΗΤΗΡΑΣ ΑΡ. ΑΠΟΦΑΣΗΣ 1 FARMER 2 40,5 E/266-1969 2 FAVORIT 4S 91,5 E/318-1969 3 FARMER 3S 46,6 E/319-1969 4 FARMER 4S 56,2 E/332-1969 5 FAVORIT 3S Δ 53,85 E/389-1969
W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4.
Άσκηση 4 Θεωρείστε και πάλι το σύστημα της άσκησης Τη χρονική στιγμή το σύστημα βρίσκεται στην κατάσταση a (η οποία δεν είναι ιδιοκατάσταση της amilonian) Ποιά είναι η πιθανότητα, μετά από χρόνο, να βρεθεί
XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA
XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA ό π ω ς ε γ κ ρ ί θ η κ ε α π ό τ ο δ ι ο ι κ η τ ι κ ό σ υ μ β ο ύ λ ι ο τ η ς ε τ α ι ρ ί α ς τ η ν 30 η Μ α ρ τ ί ο υ 2 0 1
19 ΙΑΦΟΡΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
SECTION 9 ΙΑΦΟΡΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 9. Υπεργεωµετρικές Συναρτήσεις ιαφορικές εξισώσεις Η υπεργεωµετρική διαφορική εξίσωση (Σ Ε του Gass) είναι ( )'' {c (a b )}' ab Αν οι c, a b, και c a b δεν είναι ακέραιοι,
! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4
! #!! # % % & ( ) + & # % #&,. /001 2 & 3 4 ! # % & (! ) & (! (! + & (!, % (! +.! / 0 1 0 2 3 4 1 0 5 6 % 7 8!, %! + 0! # % 0 1 9. 2! 1. 2 8 2 5 : ; 0 % &! & ( ) ; < =2 8 0 ; 0/ =2 8 0 8 2 8 & 8 2 0 8
1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson
1 La teoría de Jeans El caso ás siple de evolución de fluctuaciones es el de un fluído no relativista. las ecuaciones básicas son: a conservación del núero de partículas n t + (n v = 0 (1 b Navier-Stokes
ΥΤΙΚΕ ΔΙΕΡΓΑΙΕ ΜΕΣΑΥΟΡΑ ΜΑΖΑ. - Απορρόφηση - Απόσταξη - Εκχύλιση - Κρυστάλλωση - Ξήρανση
ΥΤΙΚΕ ΔΙΕΡΓΑΙΕ ΜΕΣΑΥΟΡΑ ΜΑΖΑ - Απορρόφηση - Απόσταξη - Εκχύλιση - Κρυστάλλωση - Ξήρανση Εκχύλιση : εκχύλιση υγρών εκχύλιση στερεών διαχωρισμός αναμίξιμων υγρών παραπλήσια σ.ζ. ή α ΑΒ =1 έκπλυση ή διαλυτοποίηση
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6
# % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν
Η άλγεβρα της στροφορμής
Η άλγεβρα της στροφορμής Στην κλασική μηχανική, η τροχιακή στροφορμή L ενός σωματιδίου είναι L r p (1) όπου r το διάνυσμα θέσης του σωματιδίου και p η ορμή του. Σε καρτεσιανές συντεταγμένες, η (1) γράφεται
f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr
- - - * k ˆ v ˆ k ˆ ˆ E x ˆ ˆ [ v ˆ ˆ ˆ ˆ ˆ E x ˆ ˆ ˆ ˆ v ˆ Ex U U ˆ ˆ ˆ ˆ ˆ ˆ v ˆ M v ˆ v M v ˆ ˆ I U ˆ I 9 70 k k ˆ ˆ - I I 9ˆ 70 ˆ [ ˆ - v - - v k k k ˆ - ˆ k ˆ k [ ˆ ˆ D M ˆ k k 0 D M k [ 0 M v M ˆ
P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1
Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò
(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy )
(product-operator) I I cos( t) + I sin( t) x x y z 2π (rad) y 1 y t x = 2πν x t (rad) sin t Iy# cos t t Ix# Ix# (t ) z Ix# Iy# Ix# (t ) z Ix cos (t ) + Iy sin (t ) -x -y t y I-y# I-y# (t ) z (t ) z x I-y#
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
EE 570: Location and Navigation
EE 570: Location and Navigation INS Initialization Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder Electrical
..,..,.. ! " # $ % #! & %
..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
Sur les articles de Henri Poincaré SUR LA DYNAMIQUE. Le texte fondateur de la Relativité en langage scientiþque moderne. par Anatoly A.
Sur les articles de Henri Poincaré SUR LA DYNAMIQUE DE L ÉLECTRON Le texte fondateur de la Relativité en langage scientiþque moderne par Anatoly A. LOGUNOV Directeur de l'institut de Physique des Hautes
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 0 ΘΕΜΑ α) Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα x Ox για την απωστική δύναµη F x, > 0 και για ενέργεια Ε. β) Υλικό σηµείο µάζας m µπορεί να κινείται
L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28
L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)
Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil.
Mecánica e Meios Continos. Gao en Ingenieía Ciil. Fomlaio Básico Tema. Descipción el moimiento χ (,) t χ (,) t (,) t χ (,) t t t Tema. Defomación s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Métodos Estadísticos en la Ingeniería
Métodos Estadísticos e la Igeiería INTERVALOS DE CONFIANZA Itervalo de cofiaza para la media µ de ua distribució ormal co variaza coocida: X ± z α/ µ = X = X i N µ X... X m.a.s. de X Nµ Itervalo de cofiaza
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,
Περιεχόμενα. A(x 1, x 2 )
Περιεχόμενα A(x 1, x 2 7 Ολοκληρώματα της Μαγνητοϋδροδυναμικής και Μαγνητοϋδροδυναμικά Κύματα Σχήμα 7.1: Οι τριδιάστατες ελικοειδείς μαγνητικές γραμμές στις οποίες εφάπτεται το διάνυσμα του μαγνητικού
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής
Εφαρμογές της κβαντομηχανικής ΠΙΑΣ Ελεύθερο σωματίδιο σε μια διάσταση Σωματίδιο κινούμενο ελεύθερα στον άξονα σε σταθερό δυναμικό ανεξάρτητο του : V ˆ( () V ξίσωση Schrödinger: d d H ˆ H ˆ ˆ() () () d
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
ϕ n n n n = 1,..., N n n {X I, Y I } {X r, Y r } (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ 0 0 0 1 Ẋ I = R(θ)Ẋr y r ẏa r
Ιδιοσυναρτήσεις του αρμονικού ταλαντωτή Πολυώνυμα Hermite
Ιδιοσυναρτήσεις του αρμονικού ταλαντωτή Πολυώνυμα Hermite i) Δείξτε ότι δύο τυχαίες διαδοχικές ιδιοσυναρτήσεις του αρμονικού ταλαντωτή έχουν αντίθετη ομοτιμία. ii) Δείξτε ότι y n 0 ) ¹ 0, για n = 0,,...
Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ
Α Ρ Η Θ Μ Ο : 6.984 ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ ΔΙΑΓΩΝΙΜΟΤ η ε λ Π ά η ξ α ζ ή κ ε ξ α ζ η η ο ε ί θ ν ζ η κ ί α ( 2 1 ) η ν π κ ή λ α Μ α ξ η ί ν π, ε κ έ ξ α Γ ε π η έ ξ α, η ν π έ η ν π ο δ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Mάθηµα: "ΘΕΩΡΙΑ ΙΚΤΥΩΝ" (5 ο εξάµηνο) Ακαδ. Έτος: 3 ιδάσκοντες: Τ. Κουσιουρής, Ν. Μαράτος, Κ. Τζαφέστας Λύσεις Θεµάτων Εξέτασης
# % % % % % # % % & %
! ! # % % % % % % % # % % & % # ( ) +,+.+ /0)1.2(3 40,563 +(073 063 + 70,+ 0 (0 8 0 /0.5606 6+ 0.+/+6+.+, +95,.+.+, + (0 5 +//5: 6+ 56 ;2(5/0 < + (0 27,+/ +.0 10 6+ 7 0, =7(5/0,> 06+?;, 6+ (0 +9)+ 5+ /50
ψ ( 1,2,...N ) = Aϕ ˆ σ j σ i χ j ψ ( 1,2,!N ) ψ ( 1,2,!N ) = 1 General Equations
General Equations Our goal is to construct the best single determinant wave function for a system of electrons. By best we mean the determinant having the lowest energy. We write our trial function as
u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0
u = (u, v, w) ω ω = u = 0 ϕ u u = ϕ u = 0 ϕ 2 ϕ = 0 u t = u ω 1 ρ Π + ν 2 u Π = p + (1/2)ρ u 2 + ρgz ω = 0 ( ϕ t + Π) = 0 ϕ t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt C(t) ϕ ϕ 1 ϕ = ϕ 1 p ρ
f O(U) (f n ) O(Ω) f f n ; L (K) 0(n )
30 11 http://www.ozawa.phys.waseda.ac.jp/index2.html Ω C OΩ M Ω f M Ω Polf C PC RC 1 Ω C K C K Ω 1 K U Ω U f OU f n OΩ f f n ; L K 0n 2 K U Ω U f OU f n OΩ f f n ; L K 0n 3 z Ω \ K f OΩ f; L K < fz 4 K
Στατιστική περιγραφή τουπεδίουβαρύτητας
Στατιστική περιγραφή τουπεδίουβαρύτητας ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΕ ΙΟΥ ΒΑΡΥΤΗΤΑΣ Οι ανωµαλίες της βαρύτητας σε παγκόσµια κλίµακα θεωρούνται στατιστικά µεγέθη µε µέση τιµή µηδέν Τα στατιστικά χαρακτηριστικά
Τα θεμέλια της κβαντομηχανικής. Τα θεμέλια της κβαντομηχανικής
Τα θεμέλια της κβαντομηχανικής 1 ΠΙΑΣ Η κυματοσυνάρτηση Κβάντωση της ενέργειας + Κυματοσωματιδιακός δυϊσμός του φωτός και της ύλης Η δυναμική του μικρόκοσμου Τα σωματίδια δεν έχουν καθορισμένες τροχιές
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)
? 9 Ξ : Α : 4 < ; : ; 4 ϑ Α Λ Χ< : Χ 9 : Α Α Χ : ;: Ψ 8< ;: 9 : > Α ϑ < > = 8 Α;< 4 <9 Ξ : 9 : > Α 4 Α < >
# % & ( ) ) +,. / 0, 1 / )., / 2 (& 3 5 % 6 6 7 8 : ; < : / : ; = 5 >
Ο Απ λλων αλαμαρι αν ρ εται στην εθνικ κατηυ ρ α γυναικι ν
Ω α μ Ξ Π ΦΑ ΡΚΩ Ν Ξ Π Γ Τ κνκ Γ μ Ν ψ ο Ω Ω κ ρ Θ Κ ΓΩ Γ Μ ΡΥ χ κ φ Θ Γ Α Ν Ω Γ Π Βθ Ω Π Ν Ω Ν Κ γρ Π Ρ Ρ γ γ Γ Ρ Π Π Φ ΠΡ Φ Γ ΠΕΡ ν ν α Ε μο αν ρ ετα σ ν Γ εθνκ κατγορ α νρ ν ΔΡΩ ΡΔ Τ Μ Γ ΥΡ Χ Ρ Τθ Ρ
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
Υπεραγωγιμότητα. Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία :
Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία : Υπεραγωγιμότητα Μηδενική Αντίσταση Missn, Κρίσιμο Πεδίο, Θερμοδυναμική Κρίσιμο Ρεύμα Εξισώσεις London,
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
Εισαγωγή στο Πεδίο Βαρύτητας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 9: Προσδιορισμός Γεωειδούς με Ολοκληρωματικές, Στοχαστικές και Φασματικές Μεθόδους Η.Ν. Τζιαβός -
( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain
Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)
Μάθηµα 19 ο, 25 Νοεµβρίου 2008 (9:00-11:00) & Συµπλήρωµα 7 εκεµβρίου 2010 (9:00-11:00).
Μάθηµα 9 ο, 5 Νοεµβρίου 008 (9:00-:00) & Συµπλήρωµα 7 εκεµβρίου 00 (9:00-:00). ΑΣΚΗΣΗ 9- Θεωρούµε φυσικά µεγέθη που περιγραφονται από τους τελεστές A, B, C και H (Χαµιλτονιανή). Γνωρίζουµε για τους τελεστές
ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ
ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ) Στο απειρόβαθο πηγάδι με τοιχώματα στα σημεία x, θα υπολογίσουμε τη διασπορά της ενέργειας,, για τη μικτή κατάσταση με 5 x x x 8 μέσα στο πηγάδι
HUMAN ABSTRACT NATURE ΛΑΒΥΡΙΝΘΟΙ LANDSCAPE KINGS & QUEENS HUNGRY TRASH ART KΟΡΜΟΙ URBAN STORIES
ΛΑΒΥΡΙΝΘΟΙ HUMAN KΟΡΜΟΙ Oάζ Ά Κό χύ γό έχ ω φό έ. Σέ, θ δί δά γέ έγ ό έχ ή δγί. H έ ύψ ί δέ ί έχ ά φέ ό ξωγί άγ ά ό ωέ έψ ωέ χί δγύ χέ έχ, δί ό ίγ δγί. O άθω, δωέ χέ, θή, φύ, βά, ύγχ ό ζωή, ί ά ό ό θέ
Γ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ Γ Τ Α Ξ Η Β. Ρ.
Γ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ 6 Γ Τ Α Ξ Η Β. Ρ. Θ Ε Μ Α ο Α. Έστω μια συνάρτηση f ορισμένη στο Δ. Αν η f είναι συνεχής στο Δ και f (χ)= για κάθε εσωτερικό σημείο του
6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ
6.1 ΚΙΝΗΜΑΤΙΚΗ ΡΟΪΚΟΥ ΣΤΟΙΧΕΙΟΥ 6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ -Λεπτοµέρειες της ροής Απειροστός όγκος ελέγχου - ιαφορική Ανάλυση Περιγραφή πεδίων ταχύτητας και επιτάχυνσης Euleian, Lagangian U U(x,y,,t)
Μάθηµα 13 ο, 30 Οκτωβρίου 2008 (9:00-11:00).
Μάθηµα ο 0 Οκτωβρίου 008 (9:00-:00) ΑΣΚΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΘΕΜΕΛΙΩ ΕΙΣ ΑΡΧΕΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Άσκηση 9 Έστω ένα κβαντικό σύστηµα το οποίο περιγράφεται από τρεις ενεργειακές καταστάσεις (ιδιοτιµές ενέργειας
Θεωρία μετασχηματισμών
Μήτρα Μετασχηματισμού Η γεωμετρία ενός αντικειμένου μπορεί να παρουσιαστεί από ένα σύνολο σημείων κατανεμημένων σε διάφορα επίπεδα. Έτσι λοιπόν ένα πλήθος δεδομένων για κάποιο αντικείμενο μπορεί να αναπαρασταθεί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε
apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJ"AL hp_a*a
n n 1/2 n (n 1) 0/1 l 2 E x X X x X E x X g(x) := 1 g(x). X f : X C L p f p := (E x X f(x) p ) 1/p f,g := E x X f(x)g(x) x X X X X := {f : X [0, ) : f 1 =1}. X µ A A X x X µ A (x) :=α 1 1 A (x) 1 A A α
Β Χ! Χ ( # %! Δ % ) %
! # % & ( ) #! % +,. /!, 0. 1 2 (( / 4 5 / 6 5 78 8 / #. 9. : ;. ( 1.< < =. 9 > :? 9 : Α Β Χ! Χ ( # %! Δ % ) % )! & %! Χ! Δ! Ε Χ % Ε &! Β & =! ) Χ Δ!! Δ ) % # # ( ) Δ Β Φ Α :? ) 9:? Γ Η Φ Α :? Ι 9: ϑ,.
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (16): θερμοδυναμική Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Θεωρία δίσκου ορμής στοιχεία πτερύγωσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Θεωρία δίσκου ορμής στοιχεία πτερύγωσης Άδεια
Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής"
Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Τοπική παραμετροποίηση πινάκων στροφής, γωνίες
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Εφαρμογές Παγκοσμίου
ΦΙΛΤΡΑ KALMAN. Με έμφαση στη σχέση τους με τη Μέθοδο των Ελαχίστων Τετραγώνων. Δημήτρης Δεληκαράογλου. Βασίλης Μασσίνας (Ασκήσεις)
ΦΙΛΤΡΑ KALMAN Με έμφαση στη σχέση τους με τη Μέθοδο των Ελαχίστων Τετραγώνων Δημήτρης Δεληκαράογλου Βασίλης Μασσίνας (Ασκήσεις Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει μια διαδικασία απομάκρυνσης
μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase
ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά
ΕΒ ΟΜΗ ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑ Α JBMO ( ΓΙΑ ΜΑΘΗΤΕΣ ΚΑΤΩ ΤΩΝ 15,5 ΕΤΩΝ ) - ΣΜΥΡΝΗ
ΕΟΜΗ ΛΚΝΙΚΗ ΜΘΗΜΤΙΚΗ ΟΛΥΜΠΙ JBMO ( Ι ΜΘΗΤΕΣ ΚΤΩ ΤΩΝ 15,5 ΕΤΩΝ ) - ΣΜΥΡΝΗ Ιούνιος 003 Επιµέλεια: Ευθύβουλος Λιασίδης νδρέας Σαββίδης Να λυθούν όλα τα προβλήµατα Χρόνος: 4 ½ Ώρες Πρόβληµα 1. Ένας n θετικός
Για αραιά διαλύματα : x 1 0 : μ i = μ i 0 RTlnx i χ. όπου μ i φ =μ i 0 χ
Για ιδανικά διαλύματα : μ i = μ i lnx i x= γ=1 Για αραιά διαλύματα : x 1 : μ i = μ i lnx i χ μ i = μ i φ lnx i όπου μ i φ =μ i χ Χημική Ισορροπία λ Από σελ. 7 Χημική Ισορροπία όταν ν i μ i = (T,P σταθερό)
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
ΟΡΘΟΔΙΑΓΩΝΙΑ ΤΕΤΡΑΠΛΕΥΡΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Πτυχιακή Εργασία Μαρίας Γιαννακάκη ΟΡΘΟΔΙΑΓΩΝΙΑ ΤΕΤΡΑΠΛΕΥΡΑ J P S U V Q M N K R L ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2005 2006 Πτυχιακή Εργασία
Αεροδυναμική του δρομέα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ Διδάσκων: Δρ. Ριζιώτης Βασίλης Αεροδυναμική του δρομέα Άδεια Χρήσης Το
TeSys contactors a.c. coils for 3-pole contactors LC1-D
References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and
! # %& # () & +( (!,+!,. / #! (!
! # %& # () & +( (!,+!,. / #! (! 0 1 12!, ( #& 34!5 6( )+(, 7889 / # 4 & #! # %& , & ( () & :;( 4#! /! # # +! % # #!& ( &6& +!, ( %4,!! ( 4!!! #& /