Curs 3 ANALIZA CIFREI DE AFACERI

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Curs 3 ANALIZA CIFREI DE AFACERI"

Transcript

1 Curs 3 ANALIZA CIFREI DE AFACERI Obiective: aprofundarea conceptului cifră de afaceri; stabilirea evoluţiei în timp a cifrei de afaceri; analiza structurii cifrei de afaceri; stabilirea factorilor de influenţă asupra cifrei de afaceri; determinarea corelaţiilor dintre cifra de afaceri şi alţi indicatori financiari; determinarea valorii adăugate Conţinut:. Conceptul cifră de afaceri.2 Evoluţia în timp a cifrei de afaceri.3 Analiza structurii cifrei de afaceri.4 Analiza factorială a cifrei de afaceri.5 Corelaţiile cifrei de afaceri cu alţi indicatori economico-financiari.6 Analiza valorii adăugate 3.6. Conceptul de valoare adăugată Analiza factorială a valorii adăugate 3. Conceptul cifră de afaceri Cifra de afaceri ( reprezintă indicatorul fundamental al activităţii oricărei entităţi, întrucât în funcţie de ea se calculează performanţa, mărimea profitului şi ratele de rentabilitate. La întreprinderile productive cifra de afaceri este egală cu producţia vândută (Qv şi se calculează conform relaţiei: = q p q volumul fizic al vânzărilor; p - preţul de vânzare unitar.

2 La entităţile comerciale, cifra de afaceri se stabileşte astfel: A = D D volumul desfacerilor (vânzărilor de mărfuri; A - adaosul comercial. La entităţile cu activitate compleă, cifra de afaceri se calculează astfel: A = q p + D Producţia fabricată ( cuprinde valoarea bunurilor destinate livrării: produse finite (Pf, lucrări eecutate (Le, servicii prestate (Sp, chirii, locaţii de gestiune şi redevenţe încasate (CLR, conform relaţiei: = Pf + Le + Sp + CLR Gradul de valorificare al producţiei fabricate (Gv este dat de raportul: Gv = Un grad de valorificare mai mic de %, presupune creşterea nivelului stocurilor, semifabricatelor şi implicit dificultăţi în realizarea încasărilor şi continuarea procesului de producţie. Cifra de afaceri medie ( C A, arată venitul obţinut pe unitatea de produs sau serviciu, conform relaţiei: C A = Q Q = volumul fizic al vânzărilor Cifra de afaceri marginală (m, eprimă variaţia veniturilor unei întreprinderi generată de creşterea sau scăderea cu o unitate a cantităţii vândute. Relaţia de calcul este: Δ m = Δ Q Cifra de afaceri critică (min, reprezintă nivelul vânzărilor la care se asigură acoperirea integrală a cheltuielilor, pragul la care firma începe să fie profitabilă. MIN ChF = Rv ChF = cheltuieli fie totale; Rv = rata medie a cheltuielilor variabile,

3 CfV Rv = ChV = cheltuieli variabile totale. Cota de piaţă (Cp se stabileşte ca raport între cifra de afaceri proprie a entităţii (p şi cifra de afaceri totală a sectorului (t: p Cp = t 3.2 Evoluţia în timp a cifrei de afaceri Analiza evoluţiei în timp a cifrei de afaceri se realizează cu ajutorul mărimilor absolute, indicilor de dinamică şi a ritmurilor medii. Cifra de afaceri reală (r se determină conform relaţiei: n r = Ip r - cifra de afaceri reală; n - cifra de afaceri nominală, curentă; Ip = indicele mediu al preţurilor. Rata reală de creştere a cifrei de afaceri se determină pe baza relaţiei: Rreala + Rc = ( + Rp R reală - rata de creştere reală a cifrei de afaceri; Rc - rata de creştere a cifrei de afaceri curente; Rp = rata de creştere a preţurilor. 3.3 Analiza structurii cifrei de afaceri Analiza structurii cifrei de afaceri se realizează prin : a. coeficientul de concentrare Gini-Struck (G: 2 n gi G = n gi = ponderea produsului i în cifra de afaceri; n = numărul produselor. Coeficientul G poate lua valori în intervalul [, ], după cum urmează:

4 când G tinde către, rezultă că în structura activităţii câteva produse contribuie în cea mai mare proporţie la realizarea cifrei de afaceri; când G tinde către, rezultă că în structura activităţii, majoritatea produselor deţin ponderi aproimativ egale în cifra de afaceri. b. indicele Herfindhal (H, care se determină conform relaţiei: H = N I = gi 2 gi = ponderea produsului i în cifra de afaceri; n = numărul produselor. Interpretarea rezultatelor este următoarea: când H tinde către, rezultă că în structura activităţii câteva produse contribuie în cea mai mare proporţie la realizarea cifrei de afaceri; când H tinde către /n, rezultă că în structura activităţii, majoritatea produselor deţin ponderi aproimativ egale în cifra de afaceri. c. metoda ABC este utilizată în principal pentru analiza structurii cifrei de afaceri pe produse, clienţi, furnizori. 3.4 Analiza factorială a cifrei de afaceri Ca principale modele de analiză pot fi utilizate: = = Factorii de influenţă vor fi: a numărul de personal ( Δ : Δ = ( - b productivitatea muncii ( Δ : Δ = ( - c gradul de valorificare a producţiei fabricate ( Δ :

5 Δ = ( Δ = Δ 2 Mf Mfp = Mf Mfp 3 = Σ q p = = q p - q p Influenţa factorială va fi: a influenţa modificării volumului fizic al producţiei vândute: q = q p - q p q p reprezintă cifra de afaceri recalculată (REC, adică cantităţile vândute în anul curent (, eprimate în preţurile perioadei de bază (. b influenţa modificării preţului de vânzare: p = q p - qp q + p = 4 = Nz Nh Wh T = Nz Nh t = Nz Nh Wz = Nh Wh Wa = Nz Wz = - REC 3.6 Analiza valorii adăugate 3.6. Conceptul de valoare adăugată Valoarea adăugată (VA eprimă creşterea (plusul de bogăţie care se obţine prin activitatea tehnico-productivă. Eprimând aportul întreprinderii în cadrul producţiei de bunuri şi servicii, valoarea adăugată permite aprecierea structurii şi metodelor de

6 producţie ale întreprinderii, prin intermediul gradului de integrare, precum şi dezvoltarea sau regresul întreprinderii. Valoarea adăugată se poate determina prin două metode: A. Metoda sintetică (diferenţei, care presupune scăderea din producţia eerciţiului sau din cifra de afaceri a consumurilor intermediare provenite de la terţi, conform relaţiilor: a. VA = Qe Ct VA = valoarea adăugată; Qe = producţia eerciţiului; Ct = consumurile intermediare provenite de la terţi (conturile 6 la 628 mai puţin 67 şi 62. Această formulă este valabilă în cazul societăţilor care desfăşoară activitate de producţie. O situaţia favorabilă se întâlneşte atunci când indicele producţiei eerciţiului (I QE este mai mare decât indicele consumurilor de la terţi (I CT, adică I QE > I CT. Cu cât este mai mare ponderea valorii adăugate în producţia eerciţiului, cu atât se demonstrează creşterea mai rapidă a efortului creator al entităţii şi reducerea consumurilor de la terţi. Valoarea adăugată este un profit care se stabileşte ca diferenţă între producţia eerciţiului (veniturile grupei 7, 7 şi 72 şi o parte din cheltuielile entităţii (grupele 6, 6 şi 62. Rata valorii adăugate în producţia eerciţiului este cu atât mai mare cu cât consumurile intermediare deţin o pondere mai mică. b. VA = (Qe + MC Ct MC = marja comercială Ct = consumurile intermediare provenite de la terţi pentru activitatea de producţie şi comerţ. Marja comercială este un sold intermediar de gestiune calculat ca diferenţă între mărfurile vândute şi costul de cumpărare al mărfurilor vândute. B Metoda aditivă, presupune însumarea următoarelor componente: salarii; contribuţii pentru asigurări şi protecţie socială; amortizări; provizioane aferente eploatării; cheltuieli cu dobânzi, impozite şi tae (eclusiv impozitul pe profit; rezultatul eploatării recalculat (se scad dobânzile.

7 3.6.2 Analiza factorială a valorii adăugate Scopul analizei factoriale a valorii adăugate este determinarea abaterilor de la baza de comparaţie, estimarea contribuţiei diferiţilor factori de influenţă la formarea şi modificarea indicatorului analizat precum şi identificarea soluţiilor de redresare a activităţii viitoare. Putem utiliza două modele de analiză factorială a valorii adăugate: Ct. VA = Qe C = Qe (- Qe = Qe V a Qe Qe VA 2. VA = = N swava Qe Ct = consumuri provenite de la terţi; Va = valoarea medie adăugată la leu producţie a eerciţiului; W a = productivitatea medie anuală; N p = numărul mediu de salariaţi; Qe = producţia eerciţiului. VA VA = VA Plecând de la primul model de analiză, influenţa factorilor este următoarea: Influenţa modificării valorii producţiei eerciţiului: Δ Qe = ( Qe Va Qe Din care datorită: A modificării fondului total de timp de muncă: Δ T = ( T T Wh Va Din care datorită: a modificării numărului mediu de salariaţi: Δ Ns = ( Ns Ns t Wh Va b modificării timpului mediu pe un salariat: Δ t = Ns ( t t Wh Va B Modificării productivităţii medii orare: Δ Wh = T ( Va Wh Wh 2 Influenţa variaţiei valorii medii adăugate la leu Qe: Δ Va = Qe ( Va V a

8 Din care datorită: A modificării structurii producţiei: Δ gi = Qe ( Va REC V a Va REC = IgiVa B modificării valorii adăugate la leu producţie pe tipuri de activităţi: Δ Vai = Qe ( Va Va REC Cuvinte şi epresii cheie Cifră de afaceri netă Cifră de afaceri marginală Cifră de afaceri critică Cifră de afaceri recalculată Coeficient de concentrare Gini-Struck Indice Herfindhal Analiza factorială a cifrei de afaceri Valoare adăugată Valoare adăugată recalculată

CUNOŞTINŢE DE SPECIALITATE PENTRU EXAMENUL DE LICENŢĂ PROGRAMUL DE STUDIU: MANAGEMENT SOLUŢII STUDII DE CAZ

CUNOŞTINŢE DE SPECIALITATE PENTRU EXAMENUL DE LICENŢĂ PROGRAMUL DE STUDIU: MANAGEMENT SOLUŢII STUDII DE CAZ UNIVERSITATEA DIN CRAIOVA FACULTATEA DE ECONOMIE ŞI ADMINISTRAREA AFACERILOR CUNOŞTINŢE DE SPECIALITATE PENTRU EXAMENUL DE LICENŢĂ PROGRAMUL DE STUDIU: MANAGEMENT SOLUŢII STUDII DE CAZ CRAIOVA 26 Volumul

Διαβάστε περισσότερα

Analiza economico-financiara a intreprinderii CUPRINS. Capitolul 1. Metodologia analizei economico-financiare...3

Analiza economico-financiara a intreprinderii CUPRINS. Capitolul 1. Metodologia analizei economico-financiare...3 CUPRINS Capitolul. Metodologia analizei economico-financiare...3.. Conţinutul aplicativ al analizei activităţii economico-financiare... 3.2. Funcţiile analizei economico-financiare... 6.3. Metode folosite

Διαβάστε περισσότερα

UNIVERSITATEA SPIRU HARET BUCUREŞTI FACULTATEA DE ȘTIINȚE JURIDICE ȘI ȘTIINȚE ECONOMICE CONSTANŢA NOTE DE CURS ANALIZA ECONOMICO-FINANCIARA

UNIVERSITATEA SPIRU HARET BUCUREŞTI FACULTATEA DE ȘTIINȚE JURIDICE ȘI ȘTIINȚE ECONOMICE CONSTANŢA NOTE DE CURS ANALIZA ECONOMICO-FINANCIARA UNIVERSITATEA SPIRU HARET BUCUREŞTI FACULTATEA DE ȘTIINȚE JURIDICE ȘI ȘTIINȚE ECONOMICE CONSTANŢA NOTE DE CURS ANALIZA ECONOMICO-FINANCIARA LECTOR UNIV. DR. LUCIANA SPINEANU-GEORGESCU AN UNIVERSITAR 26-27

Διαβάστε περισσότερα

Kap. 6. Produktionskosten-theorie. Irina Ban. Kap. 6. Die Produktionskostentheorie

Kap. 6. Produktionskosten-theorie. Irina Ban. Kap. 6. Die Produktionskostentheorie Kap. 6. Produktionskosten-theorie Irina Ban Pearson Studium 2014 2014 Kap. 6. Die Produktionskostentheorie Bibliografie: Cocioc, P. (coord.) (2015), Microeconomie, Ed. Risoprint, Cluj-Napoca, cap. 7. Pindyck,

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

NOTE DE CURS ANALIZA ECONOMICO-FINANCIARA

NOTE DE CURS ANALIZA ECONOMICO-FINANCIARA UNIVERSITATEA SPIRU HARET BUCUREŞTI FACULTATEA DE ȘTIINȚE JURIDICE ȘI ȘTIINȚE ECONOMICE CONSTANŢA MANAGEMENT NOTE DE CURS ANALIZA ECONOMICO-FINANCIARA LECT.UNIV.DR. LUCIANA SPINEANU-GEORGESCU CAPITOLUL

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

SITUATII FINANCIARE AGREGATE PENTRU CUMULAT 3 LUNI LA 31 MARTIE 2016

SITUATII FINANCIARE AGREGATE PENTRU CUMULAT 3 LUNI LA 31 MARTIE 2016 SITUATII FINANCIARE AGREGATE PENTRU CUMULAT 3 LUNI LA 31 MARTIE ÎNTOCMITE ÎN CONFORMITATE CU STANDARDELE INTERNAŢIONALE DE RAPORTARE FINANCIARĂ ADOPTATE DE UNIUNEA EUROPEANA (IFRS) 1 CUPRINS PAGINA SITUATIA

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

CAPITOLUL 3 MODELE PRIVIND STABILIREA PREŢULUI PRODUSELOR/SERVICIILOR FIRMEI. 3.1 Obiectivele deciziei de preţ

CAPITOLUL 3 MODELE PRIVIND STABILIREA PREŢULUI PRODUSELOR/SERVICIILOR FIRMEI. 3.1 Obiectivele deciziei de preţ CAPITOLUL 3 MODELE PRIVIND STABILIREA PREŢULUI PRODUSELOR/SERVICIILOR FIRMEI În analiza modelelor prezentate în acest capitol vom utiliza categoria de preţ ca pe o variabilă a cărei valoare va fi stabilită

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

ANUL III ZI&FR. Lect.univ.drd. Carmen Judith GRIGORESCU

ANUL III ZI&FR. Lect.univ.drd. Carmen Judith GRIGORESCU ANUL III ZI&FR Lect.uni.drd. Carmen Judith GRIGORESCU CUPRINS CAPITOLUL I. OBIECTUL ŞI METODA ANALIZEI ECONOMICO- FINANCIARE...5 1.1. Obiectul analizei economico-financiare...5 1.2. Tipologia analizei

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

MANAGEMENTUL PERFORMANÞELOR FINANCIARE CONCEPTE. MODELE. INSTRUMENTE.

MANAGEMENTUL PERFORMANÞELOR FINANCIARE CONCEPTE. MODELE. INSTRUMENTE. MANAGEMENTUL PERFORMANÞELOR FINANCIARE CONCEPTE. MODELE. INSTRUMENTE. 2 ROXANA ARABELA DUMITRAªCU VADIM DUMITRAªCU MANAGEMENTUL PERFORMANÞELOR FINANCIARE CONCEPTE. MODELE. INSTRUMENTE. EDITURA UNIVERSITARÃ

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Conturile de activitate ale subiectilor economici

Conturile de activitate ale subiectilor economici SCN-Sistemul Conturilor Nationale Conturile de activitate ale subiectilor economici lectia 6 CSIE + Fin. Curs- pag. 78-91 al.isaic-maniu www.amaniu.ase.ro Sistemul European de Conturi - SEC SEC-ul înregistrează

Διαβάστε περισσότερα

04. PRODUCĂTORUL, PRODUCŢIA ŞI SISTEMUL FACTORILOR DE PRODUCŢIE

04. PRODUCĂTORUL, PRODUCŢIA ŞI SISTEMUL FACTORILOR DE PRODUCŢIE 4. PRODUCĂTORUL, PRODUCŢIA ŞI SISTEMUL FAORILOR DE PRODUCŢIE PRODUCĂTORUL este persoana care utilizează resurse (naturale, de muncă şi capital) pentru a produce bunuri şi servicii. Satisfacerea nevoilor

Διαβάστε περισσότερα

Modul de calcul al prețului polițelor RCA

Modul de calcul al prețului polițelor RCA Modul de calcul al prețului polițelor RCA Componentele primei comerciale pentru o poliță RCA sunt: Prima pură Cheltuieli specifice poliței Alte cheltuieli Marja de profit Denumită și primă de risc Cheltuieli

Διαβάστε περισσότερα

CURS 1. BAZELE TEORETICO - METODOLOGICE ALE ANALIZEI ACTIVITĂŢII ECONOMICO - FINANCIARE ALE ÎNTREPRINDERILOR

CURS 1. BAZELE TEORETICO - METODOLOGICE ALE ANALIZEI ACTIVITĂŢII ECONOMICO - FINANCIARE ALE ÎNTREPRINDERILOR CURS 1. BAZELE TEORETICO - METODOLOGICE ALE ANALIZEI ACTIVITĂŢII ECONOMICO - FINANCIARE ALE ÎNTREPRINDERILOR 1.1.Obiectul analizei activităţii economice-financiare Ca disciplină ştiinţifică ANALIZA ACTIVITĂŢII

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

6. Risipa de resurse survine, în principal, atunci când: a) se produce ce nu se cere; b) se produce ce se cere; c) se produce cât se cere; d) consumul

6. Risipa de resurse survine, în principal, atunci când: a) se produce ce nu se cere; b) se produce ce se cere; c) se produce cât se cere; d) consumul Ce este economia? 1. Activitatea economică reprezintă: a) totalitatea activităţilor prin care oamenii îşi asigură bunurile pentru a-şi satisface nevoile; b) activităţile prin care oamenii îşi asigură doar

Διαβάστε περισσότερα

Unitatea de măsură. VNAe. UADi. VNADi. Rentabilitatea activelor RA mii lei ,9 11, ,0 10,96

Unitatea de măsură. VNAe. UADi. VNADi. Rentabilitatea activelor RA mii lei ,9 11, ,0 10,96 Calculul tarifului mediu anual pentru serviciul de distribuție a energiei electrice prestat de Î.C.S.,,RED Union Fenosa S.A. în anul, fără aplicarea suplimentului tarifar Energia electrică distribuită

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

ANALIZĂ ECONOMICO-FINANCIARĂ CURS 1. BAZELE TEORETICO - METODOLOGICE ALE ANALIZEI ACTIVITĂŢII ECONOMICO - FINANCIARE ALE ÎNTREPRINDERILOR

ANALIZĂ ECONOMICO-FINANCIARĂ CURS 1. BAZELE TEORETICO - METODOLOGICE ALE ANALIZEI ACTIVITĂŢII ECONOMICO - FINANCIARE ALE ÎNTREPRINDERILOR ANALIZĂ ECONOMICO-FINANCIARĂ CURS 1. BAZELE TEORETICO - METODOLOGICE ALE ANALIZEI ACTIVITĂŢII ECONOMICO - FINANCIARE ALE ÎNTREPRINDERILOR 1.1.Obiectul analizei activităţii economice-financiare Ca disciplină

Διαβάστε περισσότερα

METODOLOGIA formării și aplicării prețurilor la produsele petroliere

METODOLOGIA formării și aplicării prețurilor la produsele petroliere PROIECT METODOLOGIA formării și aplicării prețurilor la produsele petroliere I. DISPOZIŢII GENERALE 1. Metodologia formării și aplicării prețurilor la produsele petroliere (în continuare Metodologie) are

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

SCN. Conturile macroeconomice (1)

SCN. Conturile macroeconomice (1) SCN Conturile macroeconomice (1) I- Principii,generalitati,reguli de baza sursa 1,pag.92-97 II.CONTURILE FIRMEI sursa 2,pag.78-90 www.amaniu.ase.ro Studentii CSIE,An II, Seria A Sapt.VIII 16.11.2012 1

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

CAPITOLUL 2 FLUCTUAŢIILE AGREGATELOR MACROECONOMICE ŞI CAUZELE ACESTORA

CAPITOLUL 2 FLUCTUAŢIILE AGREGATELOR MACROECONOMICE ŞI CAUZELE ACESTORA Fluctuaţiile agregatelor macroeconomice şi cauzele acestora CAPITOLUL 2 FLUCTUAŢIILE AGREGATELOR MACROECONOMICE ŞI CAUZELE ACESTORA 2.2. Static şi dinamic Creşterea economică reprezintă dezvoltarea capacităţii

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

SINTEZE CONTABILITATEA DE GESTIUNE

SINTEZE CONTABILITATEA DE GESTIUNE UNIVERSITATEA SPIRU HARET Facultatea de Științe Juridice, Economice și Administrative Craiova Departamentul de Științe Economice Domeniul de studii - Contabilitate Ciclul de studii - Licență Programul

Διαβάστε περισσότερα

LUCRAREA NR. 1 STUDIUL SURSELOR DE CURENT

LUCRAREA NR. 1 STUDIUL SURSELOR DE CURENT LUCAEA N STUDUL SUSELO DE CUENT Scopul lucrării În această lucrare se studiază prin simulare o serie de surse de curent utilizate în cadrul circuitelor integrate analogice: sursa de curent standard, sursa

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Analiza și previziunea serviciilor de sănătate în România

Analiza și previziunea serviciilor de sănătate în România Prof.ec. Tănase Mihai Expert contabil Analiza și previziunea serviciilor de sănătate în România Analiză statistică Braşov, 2015 Analiza si previziunea serviciilor de sanatate (spitale) in Romania in perioada

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

SINTEZE LA DISCIPLINA CONTABILITATE DE GESTIUNE CUPRINS

SINTEZE LA DISCIPLINA CONTABILITATE DE GESTIUNE CUPRINS Universitatea Spiru Haret Facultatea de Ştiinţe economice Bucureşti Specializarea Contabilitate şi Informatică de Gestiune Disciplina Contabilitate de gestiune SINTEZE LA DISCIPLINA CONTABILITATE DE GESTIUNE

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

I. Noţiuni introductive

I. Noţiuni introductive Metode Numerice Curs 1 I. Noţiuni introductive Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate astfel încât să fie rezolvate numai prin operaţii aritmetice. Prin trecerea

Διαβάστε περισσότερα

2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE

2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE 2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE CONDENSATOARELOR 2.2. MARCAREA CONDENSATOARELOR MARCARE

Διαβάστε περισσότερα

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui - Introducere Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatar de sex

Διαβάστε περισσότερα

a. 0,1; 0,1; 0,1; b. 1, ; 5, ; 8, ; c. 4,87; 6,15; 8,04; d. 7; 7; 7; e. 9,74; 12,30;1 6,08.

a. 0,1; 0,1; 0,1; b. 1, ; 5, ; 8, ; c. 4,87; 6,15; 8,04; d. 7; 7; 7; e. 9,74; 12,30;1 6,08. 1. În argentometrie, metoda Mohr: a. foloseşte ca indicator cromatul de potasiu, care formeazǎ la punctul de echivalenţă un precipitat colorat roşu-cărămiziu; b. foloseşte ca indicator fluoresceina, care

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

Anexa 2a: Introducerea politicii agricole comune a UE în România metodologia de modelare

Anexa 2a: Introducerea politicii agricole comune a UE în România metodologia de modelare Anexa 2a: Introducerea politicii agricole comune a UE în România metodologia de modelare Această secţiune schiţează câteva aspecte de ordin metodologic ale modelării utilizate în Capitolul 3 al acestui

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

2CP Electropompe centrifugale cu turbina dubla

2CP Electropompe centrifugale cu turbina dubla 2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică

Διαβάστε περισσότερα

Studiu privind soluţii de climatizare eficiente energetic

Studiu privind soluţii de climatizare eficiente energetic Studiu privind soluţii de climatizare eficiente energetic Varianta iniţială O schemă constructivă posibilă, a unei centrale de tratare a aerului, este prezentată în figura alăturată. Baterie încălzire/răcire

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Electronică STUDIUL FENOMENULUI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE

Electronică STUDIUL FENOMENULUI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE STDIL FENOMENLI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE Energia electrică este transportată şi distribuită la consumatori sub formă de tensiune alternativă. În multe aplicaţii este însă necesară utilizarea

Διαβάστε περισσότερα

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g. II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Indicatorii de măsurare a rezultatelor la nivel macroeconomic

Indicatorii de măsurare a rezultatelor la nivel macroeconomic Indicatorii de măsurare a rezultatelor la nivel macroeconomic al.isaic-maniu / www.amaniu.ase.ro Curs SCN Stud.CSIE.seriile C+D 19-20 XI 2008 1.Terminologie, concepte, definiţii Indicatorii evidenţiază

Διαβάστε περισσότερα

Ecuatii trigonometrice

Ecuatii trigonometrice Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos

Διαβάστε περισσότερα

Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 5 16 martie 2 011

Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 5 16 martie 2 011 1.0.011 STATISTICA Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 16 martie 011 al.isaic-maniu www.amaniu.ase.ro http://www.ase.ro/ase/studenti/inde.asp?itemfisiere&id Observati doua

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα