Πιθανότητες & Στατιστική (ΜΥΥ 304) Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων
|
|
- Αμύντα Αποστόλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Πιθανότητες & Στατιστική (ΜΥΥ 304) Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Σεπτέμβριος 2017
2 Πιθανότητες & Στατιστική Διδάσκων: Κ. Μπλέκας Βοηθός διδασκαλίας: Χρήστος Σπαθάρης (μεταπτ. φοιτητής) Ώρες διδασκαλίας: Θεωρία Τρίτη 9-11 (Αμφιθέατρο 1) Πέμπτη 9-11 (Αμφιθέατρο 1) Φροντιστήριο Τρίτη (Αιθ. Ι2) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 2 )
3 Ιστοσελίδα του μαθήματος Ανανέωση ανά εβδομάδα Ημερολόγιο παραδόσεων του μαθήματος Σειρές ασκήσεων για παράδοση Ανακοινώσεις & πρόσθετο υλικό Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 3 )
4 Πιθανότητες & Στατιστική Τρόπος Βαθμολόγησης 4 ή 5 Σειρές Ασκήσεων (υποχρεωτικές) 15% Τελικό διαγώνισμα Ιανουαρίου 90% Εξετάσεις με κλειστά βιβλία & σημειώσεις Θα παρέχεται Τυπολόγιο Περιλαμβάνονται ασκήσεις θεωρίας και προβλήματα κατανόησης Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 4 )
5 Πιθανότητες & Στατιστική Τρόπος Βαθμολόγησης Σειρές Ασκήσεων (υποχρεωτικές) 15% Τελικό διαγώνισμα Ιανουαρίου 90% κλειστά βιβλία & σημειώσεις τυπολόγιο θα παρέχεται Ασκήσεις θεωρίας και προβλήματα κατανόησης Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 5 )
6 Προτεινόμενα συγγράμματα Βιβλίο [ ]: Πιθανότητες και Στατιστική για Μηχανικούς, Νίκος Μυλωνάς και Βασίλειος Παπαδόπουλος, Εκδόσεις Τζιόλα, 2016 Βιβλίο [ ]: Εισαγωγή στις πιθανότητες με στοιχεία στατιστικής, Δ. Μπερτσεκάς - Γ. Τσιτσικλής, Εκδόσεις Τζιόλα, 2010 Βιβλίο [35478]: Εισαγωγή στις Πιθανότητες και τη Στατιστική, Δαμιανού Χ., Χαραλαμπίδης Χ., Παπαδάτος Ν., Εκδόσεις Συμμετρία, 2010 Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 6 )
7 Βοηθητικά συγγράμματα Εισαγωγή στις Πιθανότητες & Στατιστική Δαμιανού, Παπαδάτου, Χαραλαμπίδη (Τμήμα Μαθηματικών Πανεπ. Αθηνών) (ελεύθερες διδακτικές σημειώσεις) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 7 )
8 Probability, Statistics, and Random Processes for Electrical Engineering Alberto Leon Garcia (University of Toronto) - 3d Edition, 2008 A Modern Introduction to Probabilities ans Statistics - F.M. Dekking. C. Kraaikamp, H.P. Lopuhaa and L.E. Meester (Delphi University) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 8 )
9 Probability & Statistics for Engineers & Scientists Walpole, Myers, Myers and Ye A First Course in Probability Sheldon Ross (University of South California) Fundamental of Probability and Statistics for Engineers. T.T. Soong Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 9 )
10 Περιγραφή του μαθήματος [ Πιθανότητες ] Η θεωρία Πιθανοτήτων αναφέρεται στη μελέτη των μαθηματικών μοντέλων που περιγράφουν τυχαία φαινόμενα (Random Events). Τυχαιότητα ή αβεβαιότητα (Randomness): ένα φαινόμενο ονομάζεται τυχαίο αν δεν γνωρίζουμε το αποτέλεσμά του δίχως να το παρατηρήσουμε. Οι Πιθανότητες κάνουν υποθέσεις σχετικά με τα πιθανά αποτελέσματα των τυχαίων φαινομένων Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 10 )
11 [ Στατιστική ] Είναι η εφαρμογή των πιθανοτήτων για την περιγραφή και την ανάλυση δεδομένων ή παρατηρήσεων που προέρχονται από τυχαία φαινόμενα. Η Στατιστική είναι η επιστήμη των δεδομένων. Η Στατιστική χρησιμοποιείται για Σχεδιασμό πειραμάτων (δειγματοληψία / συλλογή) Περίληψη των δεδομένων (συνοπτική περιγραφή) Ανάλυση των δεδομένων Εξαγωγή συμπερασμάτων Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 11 )
12 Στόχοι του μαθήματος (I) Πολλά συστήματα είναι πολύπλοκα (π.χ. λειτουργικό σύστημα, δίκτυα υπολογιστών) και η μοντελοποίησή τους είναι αρκετά δύσκολη και επίπονη. Συχνά, η πρόβλεψη της συμπεριφοράς των χρηστών μέσα σε αυτά είναι μια δύσκολη υπόθεση. Οι Πιθανότητες και η Στατιστική προσφέρουν την τυχαιότητα ως ένα φυσικό νόμο για την μοντελοποίηση τυχαίων γεγονότων που μπορούν να συμβούν σε ένα σύστημα. Έτσι, μπορούμε να χρησιμοποιήσουμε στοχαστικά μοντέλα για να περιγράψουμε πως οι χρήστες (users/clients) αλληλεπιδρούν με το σύστημα (TCP/IP, queuing models) Πετυχαίνουμε την ανάλυση της αξιοπιστίας ενός συστήματος. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 12 )
13 Στόχοι του μαθήματος (II) Να μάθουμε όλα εκείνα τα μαθηματικά εργαλεία για να μπορούμε να κατασκευάζουμε στοχαστικά μοντέλα προσομοίωσης. Να μάθουμε στοιχειώδης πιθανοτικούς υπολογισμούς σε στοχαστικά μοντέλα Να κατανοήσουμε βασικές έννοιες και αρχές του κόσμου των πιθανοτήτων και της στατιστικής. Να μάθουμε βασικές αρχές στατιστικής ανάλυσης δεδομένων. Να μάθουμε να αναγνωρίζουμε περιπτώσεις και σενάρια στατιστικού ελέγχου, εκτίμησης και εξαγωγή συμπερασμάτων σε προβλήματα. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 13 )
14
15 Πληροφορία ως η κυρίαρχη έννοια (στοχαστική) Ύπαρξη στοχαστικών φαινομένων σε όλα τα στάδιά της Πληροφορίας: Πιθανότητες και Στατιστική στην επιστήμη του Μηχανικού Η/Υ & Πληροφορικής Συλλογή Μεταφορά Αποθήκευση Συμπίεση Επεξεργασία, Ανάλυση Λήψη αποφάσεων Συμπερασματολογία Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 15 )
16 Συναφή επιστημονικά πεδία του Μηχανικού Πληροφορικής Τεχνητή Νοημοσύνη (Artificial Intelligence) Μηχανική Μάθηση (Machine Learning) \ Αναγνώριση Προτύπων (Pattern Recognition) Υπολογιστική Νοημοσύνη (Computational Intelligence) Εξόρυξη δεδομένων (Data Mining) Ευφυή Συστήματα Πρακτόρων (Intelligent Agents ) Παιχνίδια (Computer Games) Μεγάλης κλίμακας δεδομένα (Big Data Analysis) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 16 )
17 Επεξεργασία Σήματος / Εικόνας (Signal/Image Processing) Στατιστική Επεξεργασία Σήματος Υπολογιστική Όραση (Computer Vision) Γραφικά με υπολογιστές (Computer Graphics) Εφαρμογές Πληροφορικής Ρομποτική (Robotics) Ιατρική Πληροφορική Βιοπληροφορική (Medical Informatics - Bioinformatics) Προσομοίωση / Μοντελοποίηση Στοχαστική Βελτιστοποίηση Έλεγχος λογισμικού (Software testing) Δίκτυα υπολογιστών / Συστήματα επικοινωνίας Επεξεργασία φυσικής γλώσσας (Natural Language Processing) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 17 )
18 Μαθήματα επιλογής του τμήματος στο τρέχον έτος που εμπεριέχουν στοιχεία Πιθανοτήτων και Στατιστικής MYE Αλληλεπίδραση Ανθρώπου Υπολογιστή MYE Ανάκτηση Πληροφορίας MYE Ασφάλεια Υπολογιστικών και Επικοινωνιακών Συστημάτων MYE Εξελικτικός Υπολογισμός MYE Εξόρυξη Δεδομένων MYE Θεωρία Πληροφορίας & Κωδίκων MYE Ιατρική Πληροφορική MYE Πολυμέσα MYE Ρομποτική MYE Υπολογιστική Νοημοσύνη MYE Ψηφιακή Επεξεργασία Εικόνας MYE Αυτόνομοι Πράκτορες MYE Αλγόριθμοι Απόκρυψης Πληροφορίας ΜΥΕ Υπολογιστική Όραση Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 18 )
19 Ύλη του μαθήματος I. Εισαγωγή - Βασικές έννοιες Διακριτή Πιθανότητα II. III. IV. Τυχαίες μεταβλητές και γνωστές κατανομές Χαρακτηριστικά τυχαίων μεταβλητών και συναρτήσεις μιας μεταβλητής Πολυδιάστατες τυχαίες μεταβλητές V. Οριακά θεωρήματα VI. Περιγραφική Στατιστική VII. Διαστήματα εμπιστοσύνης VIII. Έλεγχοι υποθέσεων IX. Γραμμική Παλινδρόμησης Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 19 )
20 Ύλη του μαθήματος Ι. Εισαγωγή - Βασικές έννοιες Διακριτή Πιθανότητα Πρωταρχικές έννοιες: Τυχαίο πείραμα Δειγματικός χώρος - Ενδεχόμενα Ορισμός της Πιθανότητας Δεσμευμένη πιθανότητα, Ολική πιθανότητα, Ανεξαρτησία ενδεχομένων Ο κανόνας του Bayes και η ερμηνεία του Στοιχεία συνδυαστικής ανάλυσης Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 20 )
21 ΙΙ. Τυχαίες μεταβλητές Ορισμός - Τύποι τυχαίων μεταβλητών (διακριτή/συνεχής) Συνάρτηση κατανομής πιθανότητας (σ.κ.π.), συνάρτηση πυκνότητας πιθανότητας (σ.π.π.) Ειδικές κατανομές: Διακριτές (Bernoulli, Διωνυμική, Γεωμετρική, Poisson) Συνεχείς (Ομοιόμορφη, Εκθετική, Κανονική ή Γκαουσιανή, Γάμμα) ΙΙΙ. Χαρακτηριστικά Τυχαίων μεταβλητών Βασικά χαρακτηριστικά: Μέση Τιμή & Διακύμανση Ροπές, Ροπογεννήτρια / Χαρακτηριστική συνάρτηση Συνάρτηση τυχαίας μεταβλητής, Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 21 )
22 ΙV. Πολυδιάστατες τυχαίες μεταβλητές Διάνυσμα n τυχαίων μεταβλητών Χ=(Χ1, Χ2,,Χn) Από-κοινού & περιθώριες κατανομές, ανεξαρτησία τ.μ. Δύο ειδικές κατανομές πολυδιάστατων μεταβλητών: Πολυωνυμική (Multinomial) & Πολυδιάστατη Κανονική Συναρτήσεις πολλών μεταβλητών Y=g(Χ1, Χ2,,Χn) V. Οριακά Θεωρήματα Δειγματικός μέσος Άθροισμα πολλών μεταβλητών Νόμοι των μεγάλων αριθμών (ασθενής & ισχυρός) Κεντρικό Οριακό Θεώρημα (Κ.Ο.Θ.) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 22 )
23 VΙ. Περιγραφική Στατιστική Οργάνωση & Γραφική Παράσταση στατιστικών δεδομένων Πίνακες συχνοτήτων Ραβδογράμματα, κυκλικά διαγράμματα, κλπ. Ιστογράμματα Αριθμητικά Περιγραφικά μέτρα Μέτρα κεντρικής τάσης (μέσο, κορυφή, διάμεσος, ποσοστημόρια) Μέτρα διασποράς ή μεταβλητότητας (εύρος, ενδοτεταρτημόρια, θηκογράμματα - box plots) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 23 )
24 VII. Διαστήματα εμπιστοσύνης Κατανομές δειγματοληψίας (χ2, t-student, F) Εκτίμηση διαστήματος Κατασκευή διαστημάτων εμπιστοσύνης για 1 μεταβλητή (για το μέσο μ και την διασπορά σ2 ) Κατασκευή διαστημάτων εμπιστοσύνης για 2 μεταβλητές (για διαφορά των μέσων και τον λόγο διασπορών δύο ανεξ. πληθυσμών) VIII. Έλεγχος Υποθέσεων Σφάλματα τύπου Ι και ΙΙ, μέτρα απόρριψης υπόθεσης (P-τιμή) Στατιστικός έλεγχος αποφάσεων για το μέσο (z-test, t-test), το ποσοστό και την διασπορά. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 24 )
25 ΙX. Γραμμική Παλινδρόμηση Εκτίμηση της γραμμικής παλινδρόμησης Η μέθοδος των ελαχίστων τετραγώνων Η ευθεία παλινδρόμησης Μέσο τετραγωνικό σφάλμα Μέτρα παλινδρόμησης Ο συντελεστής προσδιορισμούς ως μέτρο προσαρμογής του γραμμικού μοντέλου στο νέφος των σημείων. Σχέση συντελεστή συσχέτισης και παλινδρόμησης. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 ( 25 )
Πιθανότητες & Στατιστική (ΜΥΥ 304)
Πιθανότητες & Στατιστική (ΜΥΥ 304) Διδάσκων Κ. Μπλέκας, Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Σεπτέμβριος 2016 Πιθανότητες & Στατιστική Ώρες διδασκαλίας: Θεωρία Τρίτη 9-11 (Αμφιθέατρο
iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος
iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13
ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...
Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
Π E Ρ IEXOMENA Πρόλογος... xiii ΜΕΡΟΣ ΠΡΩΤΟ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΤΑΤΙΣΤΙΚΩΝ Ε ΟΜΕΝΩΝ 1.1 Εισαγωγή... 3 1.2 Ορισµός και αντικείµενο της στατιστικής... 3
Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό
4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς
Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν
Είδη Μεταβλητών. κλίµακα µέτρησης
ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΣΥΝΔΥΑΣΤΙΚΗ 1.1 ΒΑΣΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 13 1.2 ΠΡΟΣΘΕΤΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 15 1.3 ΔΙΑΤΑΞΕΙΣ..... 16 1.4 ΜΕΤΑΘΕΣΕΙΣ... 18 1.5 ΣΥΝΔΥΑΣΜΟΙ... 20 1.6 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΤΑΘΕΣΕΙΣ......
Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1
Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές
Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17
Περιεχόμενα Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 1 Εισαγωγή 21 1.1 Γιατί χρησιμοποιούμε τη στατιστική; 21 1.2 Τι είναι η στατιστική; 22 1.3 Περισσότερα για την επαγωγική στατιστική 23 1.4 Τρεις
ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (ΜΑΥ331) ΜΑY331 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 3 ο
ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (ΜΑΥ331) ΓΕΝΙΚΑ ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΜΑY331 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 3 ο Εισαγωγή
Εισαγωγή στην Μακροοικονοµική Ανάλυση. Εισαγωγή στην Οικονοµική Ανάλυση. Εισαγωγή στην Οικονοµική Ιστορία
ηµόσια Οικονοµική Κεφάλαια 1-6, 8, 11, 13-15 Βιβλίο «Δημόσια Οικονομική: Σύγχρονη Θεωρία και Ελληνική Πραγματικότητα» των Harvey Rosen,Ted Gayer, Βασίλη Θ. Ράπανου και Γεωργίας Καπλάνογλου, εκδόσεις Κριτική
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών Βασικά χαρακτηριστικά τυχαίας μεταβλητής: Μέση Τιμή (Me Vlue) Διακύμανση (Vrice) Γενικά χαρακτηριστικά: Ροπές μεταβλητών / Ροπογεννήτριες Χαρακτηριστικές συναρτήσεις
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ... 25
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 19 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ 1.1 ΕΙΣΑΓΩΓΗ... 25 1.2 Η ΕΝΝΟΙΑ ΚΑΙ ΤΟ ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ... 25 1.3 Ο ΡΟΛΟΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ
Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή
Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Συνάρτηση Γάμμα: Ιδιότητες o d Γ(α+)=αΓ(α) - αναδρομική συνάρτηση Γ(α+) = α! αν α ακέραιος. Πιθανότητες & Στατιστική 5 Τμήμα Μηχανικών Η/Υ
ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o
ΓΕΝΙΚΑ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ
ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2
ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική
ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ Πειραιάς, 19-04-2016 Θέμα: Κατατάξεις Πτυχιούχων για το Ακαδημαϊκό Έτος 2016-2017
Περιεχόμενα. Πρόλογος... 15
Περιεχόμενα Πρόλογος... 15 Κεφάλαιο 1 ΘΕΩΡΗΤΙΚΑ ΚΑΙ ΦΙΛΟΣΟΦΙΚΑ ΟΝΤΟΛΟΓΙΚΑ ΚΑΙ ΕΠΙΣΤΗΜΟΛΟΓΙΚΑ ΖΗΤΗΜΑΤΑ ΤΗΣ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ ΤΟΥ ΠΡΑΓΜΑΤΙΚΟΥ ΚΟΣΜΟΥ... 17 Το θεμελιώδες πρόβλημα των κοινωνικών επιστημών...
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ
Ι. ΠΑΝΑΡΕΤΟΥ & Ε. ΞΕΚΑΛΑΚΗ Καθηγητών του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ (Εισαγωγή στις Πιθανότητες και την Στατιστική Συμπερασματολογία)
Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.
7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου
Συνοπτικά περιεχόμενα
b Συνοπτικά περιεχόμενα 1 Τι είναι η στατιστική;... 25 2 Περιγραφικές τεχνικές... 37 3 Επιστήμη και τέχνη των διαγραμματικών παρουσιάσεων... 119 4 Αριθμητικές μέθοδοι της περιγραφικής στατιστικής... 141
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ
ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ Πειραιάς, 2/10/2014 ΑΝΑΚΟΙΝΩΣΗ ΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Η κατάταξη των υποψηφίων στο Τμήμα για το ακαδημαϊκό έτος 2014-15, θα
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014
Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )
Μέρος IV Πολυδιάστατες τυχαίες μεταβλητές Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων Δ5 ( ) Πολυδιάστατες μεταβλητές Πολλά ποσοτικά χαρακτηριστικά που σχετίζονται με
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ
ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ Σ.Τ.ΕΦ ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ 2201301 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Γ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο
Λήψη αποφάσεων κατά Bayes
Λήψη αποφάσεων κατά Bayes Σημειώσεις μαθήματος Thomas Bayes (1701 1761) Στυλιανός Χατζηδάκης ECE 662 Άνοιξη 2014 1. Εισαγωγή Οι σημειώσεις αυτές βασίζονται στο μάθημα ECE662 του Πανεπιστημίου Purdue και
Μέρος V. Στατιστική. Εισαγωγή: Βασικές έννοιες και ορισμοί. Περιγραφική Στατιστική (Descriptive Statistics)
Μέρος V. Στατιστική Εισαγωγή: Βασικές έννοιες και ορισμοί Περιγραφική Στατιστική (Descriptive Statistics) Σημαντικές κατανομές δειγματοληψίας (Sampling distributions) Διαστήματα Εμπιστοσύνης (Confidence
ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
- - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ
ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ
ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ (1) ΓΕΝΙΚΑ ΣΧΟΛΗ Πολυτεχνική Σχολή ΤΜΗΜΑ Τμήμα Μηχανικών Οικονομίας και Διοίκησης ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΓΕ0125 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 7 ο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Προσομοίωση
Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii
Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...
Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.
Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο
Συνεχείς Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Συνεχείς Κατανομές. τεχνικές. 30 ασκήσεις.
Συνεχείς Κατανομές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Συνεχείς Κατανομές τεχνικές 0 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglos.gr / 0 / 0 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Πανεπιστήμιο Πελοποννήσου
Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο
Τηλ./Fax: ,
Ποσοτικές Μέθοδοι στη Χρηματοοικονομική Π.Μ.Σ. Λογιστικής & Χρηματοοικονομικής Ανδριανός Ε. Τσεκρέκος Οκτώβριος Νοέμβριος, 2015 Περίληψη Το παρόν κείμενο παρέχει πληροφορίες για την διεξαγωγή του μαθήματος
Στατιστική. Εκτιμητική
Στατιστική Εκτιμητική Χατζόπουλος Σταύρος 28/2/2018 και 01 /03/2018 Εισαγωγή Το αντικείμενο της Στατιστικής είναι η εξαγωγή συμπερασμάτων που αφορούν τον πληθυσμό ή το φαινόμενο που μελετάμε, με τη βοήθεια
ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 1o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας
215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας Το Τμήμα ασχολείται με τη διδασκαλία και την έρευνα στην επιστήμη και τεχνολογία των υπολογιστών και τη μελέτη των εφαρμογών τους. Το Τμήμα ιδρύθηκε το 1980 (ως
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα
Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής
Κύρια σημεία Ερευνητική Μεθοδολογία και Μαθηματική Στατιστική Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Αναζήτηση ερευνητικού θέματος Εισαγωγή στην έρευνα Ολοκλήρωση ερευνητικής εργασίας Ο ρόλος των
ΜΑΘΗΜΑ: Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ. 1 η ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ
ΜΑΘΗΜΑ: Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ 1 η ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στόχος Θεματικής Ενότητας Οι μαθητές να περιγράφουν τους βασικούς τομείς της Επιστήμης των Υπολογιστών και να μπορούν
Περιεχόμενα. Γιατί Ένας Manager Πρέπει να Ξέρει Στατιστική. Περιεχόμενα. Η Ανάπτυξη και Εξέλιξη της Σύγχρονης Στατιστικής
Chapter 1 Student Lecture Notes 1-1 Ανάλυση Δεδομένων και Στατιστική για Διοικήση Επιχειρήσεων [Basic Business Statistics (8 th Edition)] Κεφάλαιο 1 Εισαγωγή και Συλλογή Δεδομένων Περιεχόμενα Γιατί ένας
Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής
Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,
Συνεχείς Τυχαίες Μεταβλητές
Συνεχείς Τυχαίες Μεταβλητές Η σ.κ.π. F() είναι παντού συνεχής F PX t dt H σ.π.π. df d Ισχύει ότι d F Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 () Πιθανότητες & Στατιστική
ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Εργαστήριο Ψηφιακών Συστημάτων Ηλ. Εργ.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Ιουνίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ
ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Ιουνίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ
Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β
ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ
Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγή. Εαρινό Εξάμηνο, 2018
Βιομαθηματικά BIO-156 Εισαγωγή Ντίνα Λύκα Εαρινό Εξάμηνο, 2018 lika@uoc.gr Μαθηματικά Μοντέλα στη Βιολογία Ένα μαθηματικό μοντέλο είναι ένα σύνολο υποθέσεων για κάποιο βιολογικό σύστημα, εκφρασμένες με
ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ (MAE532) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΜΑΕ532 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o
ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ (MAE532) ΓΕΝΙΚΑ ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΜΑΕ532 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΣΤΟΧΑΣΤΙΚΕΣ
ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ
ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ Θ = ΘΕΩΡΙΑ Ε = ΕΡΓΑΣΤΗΡΙΟ Σ = ΣΥΝΟΛΟ ΔΜ = ΔΙΔΑΚΤΙΚΕΣ ΜΟΝΑΔΕΣ ECTS = ΠΙΣΤΩΤΙΚΕΣ ΜΟΝΑΔΕΣ 1 ο ΕΞΑΜΗΝΟ Α ΕΤΟΣ 1ΚΠ01 Μαθηματική Ανάλυση Ι 4 1 5 5 5 1ΚΠ02 Γραμμική Άλγεβρα 4 5
Χρησιμότητα ανισοτήτων - οριακών θεωρημάτων
Πιθανότητες και Στατιστική Ενότητα 6: Οριακά θεωρήματα στη Θεωρία Πιθανοτήτων Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Χρησιμότητα ανισοτήτων - οριακών θεωρημάτων Χρησιμότητα
P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)
Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα
Στατιστική Συμπερασματολογία
4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε
Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγικές έννοιες. Εαρινό Εξάμηνο, 2016
Βιομαθηματικά BIO-156 Εισαγωγικές έννοιες Ντίνα Λύκα Εαρινό Εξάμηνο, 2016 lika@biology.uoc.gr Μαθηματικά Μοντέλα στη Βιολογία Ένα μαθηματικό μοντέλο είναι ένα σύνολο υποθέσεων για κάποιο βιολογικό σύστημα
ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Ακαδημαϊκό Έτος 2018-2019 Περίοδος Σεπεμβρίου 2019 Έκδοση 17/07/2019 26/08/2019 27/08/2019
Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας
Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2019 2020 Τίτλος μαθήματος ΩΡΕΣ Υ/Ε/Ξ.Γ. Κατεύθυνση ECTS 1ο εξάμηνο ΑΝΑΛΥΣΗ Ι // ANALYSIS I ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ // INTRODUCTION TO PROGRAMMING ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ
ΣΤΑΤΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ
ΣΤΑΤΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΑΘΛΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΜΕ ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΟ SPSS 6 η Έκδοση Γιώργος Βαγενάς Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών ΕΚ ΟΣΕΙΣ ΤΖΙΟΛΑ Αποκλειστικότητα για την ελληνική γλώσσα: ΕΚ
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη
Έντυπο Καταγραφής Πληροφοριών και Συγκέντρωσης Εκπαιδευτικού Υλικού για τα Ανοικτά Μαθήματα
Έντυπο Καταγραφής Πληροφοριών και Συγκέντρωσης Εκπαιδευτικού Υλικού για τα Ανοικτά Μαθήματα Έκδοση: 1.02, Απρίλιος 2014 Πράξη «Κεντρικό Μητρώο Ελληνικών Ανοικτών Μαθημάτων» Σύνδεσμος: http://ocw-project.gunet.gr
ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2016-2017 Περίοδος Σεπεμβρίου 2017 ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Έκδοση 05.07.2017 ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 3-4ο
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ Ακαδημαϊκό Έτος 2017-2018 Περίοδος Σεπτεμβρίου 2018 Έκδοση 17/07/2018 ΗΜΕΡΟΜΗΝΙΑ
ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ. 1, 2 Ηλ. Αιθ. 001, 002. Γλώσσες Προγραμματισμού Ι Ηλ. Αμφ.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2015-2016 Περίοδος Ιουνίου 2016 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ
ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2015-2016 Περίοδος Σεπτεμβρίου 2016 ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1-2o ΕΞΑΜΗΝΟ 3-4ο ΕΞΑΜΗΝΟ
Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη
Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από
329 Στατιστικής Οικονομικού Παν. Αθήνας
329 Στατιστικής Οικονομικού Παν. Αθήνας Σκοπός Το Τμήμα σκοπό έχει να αναδείξει επιστήμονες ικανούς να σχεδιάζουν, να αναλύουν και να επεξεργάζονται στατιστικές καθώς επίσης και να δημιουργούν προγράμματα
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού
Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 3 ο Εξάμηνο του Ακαδημαϊκού Έτους 2013-2014 ΟΔ 034 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Δευτέρα 10:00-13:00 Ώρες διδασκαλίας (3)
ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εργαστηριακή και Βιομηχανική Ηλεκτρονική Ηλ. Αμφ. 2, 3. Γλώσσες Προγραμματισμού Ι. Ηλ. Αμφ. 1, 2, 3, 4, 5
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ Ακαδημαϊκό Έτος 2016-2017 Περίοδος Ιουνίου 2017 Έκδοση 08.06.2017 ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο
ΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ
στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί Lorentz 3. Δυναμική ενός σωματιδίου (Νόμοι της δυναμικής-ορμή-στροφορμήσυστήματα
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Μ.Δ.Ε. ''ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ''
ΑΡΧΕΣ & ΜΕΘΟΔΟΙ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗΣ (16:00-19:00) 17/10/2005 Εισαγωγή (Ι) 24/10/2005 Εισαγωγή (ΙΙ) 31/10/2005 Βάσεις Δεδομένων Ζωή Λίτου 7/11/2005 14/11/2005 21/11/2005 28/11/2005 5/12/2005 12/12/2005 19/12/2005
Αντιστοίχιση μαθημάτων Παλιού Νέου Προγράμματος Σπουδών για τους Φοιτητές του Τμήματος Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών, ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. TECHNOLOGICAL EDUCATIONAL INSTITUTE OF EPIRUS SCHOOL OF APPLIED TECHNOLOGY DEPARTMENT OF COMPUTER
ΥΠΟ 1 Ο 9 ΥΠΟ 2 Ο 5 ΥΠΟ 2 Ο 4 ΥΠΟ 3 Ο 4 ΥΠΟ 3 Ο 6 ΕΠΙ 3 Ο 3 ΥΠΟ 4 Ο 5 ΕΠΙ 4 Ο 3 ΥΠΟ 5 Ο 4
ΚΩΔ. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Κατηγορία μαθήματος Εξάμηνο Πιστωτικές Μονάδες (ECTS) CEID_NY101 Μαθηματικά Ι ΥΠΟ 1 Ο Βαθμός Εξεταστική περίοδος Αντιστοίχιση βαθμού σε ECTS CEID_NY109 Διακριτά Μαθηματικά ΥΠΟ 1 Ο
ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ
5η Εργασία ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ Ακαδημαϊκό Έτος : 2013-2014 ΞΑΝΘΗ 15/3/2014 Ασκήσεις: 1. Να δείξετε ότι η μέση τιμή Τ.Μ. που υπακούει στη διωνυμική κατανομή, είναι ίση np. Επειδή η Τ.Μ. που
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%
Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων
Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ
Τυχαίες Μεταβλητές. Ορισμός
Τυχαίες Μεταβλητές Ορισμός Μία τυχαία μεταβλητή (τ.μ.) είναι μία συνάρτηση (ή μία μεταβλητή) η οποία καθορίζει αριθμητικές τιμές σε μία ποσότητα που σχετίζεται με το αποτέλεσμα ενός πειράματος, όπου μία