Οικονομετρία. Σταματίου Παύλος Διδάκτωρ Οικονομετρικών Εφαρμογών & Μακροοικονομικών Πολιτικών
|
|
- Φωτινή Δημητρακόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Οικονομετρία Σταματίου Παύλος Διδάκτωρ Οικονομετρικών Εφαρμογών & Μακροοικονομικών Πολιτικών Info:
2 Αυτοσυσχέτιση (Durbin - Watson) Έλεγχος αυτοσυσχέτισης πρώτης τάξης Η0: Δεν υπάρχει αυτοσυσχέτιση στους διαταρακτικούς όρους (ανεξάρτητοι μεταξύ τους) Η1: Υπάρχει αυτοσυσχέτιση στους διαταρακτικούς όρους Στατιστικό DW = d Δίνονται τα dl και du
3 Αυτοσυσχέτιση (Durbin - Watson)
4 Αυτοσυσχέτιση (Breusch - Godfrey) Έλεγχος αυτοσυσχέτισης ανωτέρας τάξης Η0: δεν υπάρχει αυτοσυσχέτιση Η1: υπάρχει αυτοσυσχέτιση Αφού τρέξουμε την παλινδρόμηση ακολουθούμε τα παρακάτω βήματα:
5 Αυτοσυσχέτιση (Breusch - Godfrey)
6 Αυτοσυσχέτιση (Breusch - Godfrey)
7 Αυτοσυσχέτιση (Breusch - Godfrey) Έλεγχος αυτοσυσχέτισης ανωτέρας τάξης Ο έλεγχος για αυτοσυσχέτιση γίνεται με τη στατιστική των Breusch and Godfrey η οποία ακολουθεί τη X 2 κατανομή. Αν το στατιστικό BG > X 2 (κρίσιμη τιμή) τότε απορρίπτουμε τη μηδενική υπόθεση. Επίσης, αν το prob. Του ελέγχου είναι < 0.05 τότε απορρίπτουμε τη μηδενική υπόθεση, ότι δεν υπάρχει αυτοσυσχέτιση (π.χ δεύτερης τάξης.
8 Αυτοσυσχέτιση (Ljung-Box) Έλεγχος αυτοσυσχέτισης ανωτέρας τάξης Η0: δεν υπάρχει αυτοσυσχέτιση Η1: υπάρχει αυτοσυσχέτιση Η μηδενική υπόθεση απορρίπτεται αν prob < 0.05 (ή στατιστικό Q > X 2 κρίσιμη τιμή) Βήματα: Εκτιμούμε το υπόδειγμα (παλινδρόμηση) και από το κεντρικό παράθυρο επιλέγουμε View Residual Diagnostics Correlogram Q Statistics (βλ. επόμενες σελίδες)
9 Αυτοσυσχέτιση (Ljung-Box)
10 Αυτοσυσχέτιση (Ljung-Box)
11 Αυτοσυσχέτιση (Ljung-Box)
12 Μορφές Αυτοσυσχέτισης Στα οικονομετρικά υποδείγματα χρονολογικών σειρών τρεις είναι οι βασικές μορφές: Τα αυτοπαλίνδρομα σχήματα AR(ρ) Τα σχήματα κινητού μέσου MA(q)
13 Εκτίμηση υποδείγματος όταν υπάρχει αυτοσυσχέτιση
14 Εκτίμηση υποδείγματος όταν υπάρχει αυτοσυσχέτιση
15 Άσκηση Στο παράδειγμα μας (εκτυπωμένο) να ελεγχθεί αν υπάρχει αυτοσυσχέτιση στα κατάλοιπα: 1. Με τον έλεγχο Durbin-Watson 2. Με την μέθοδο Breusch-Godfrey 3. Με τον έλεγχο Ljung-Box Να εκτιμηθεί η συνάρτηση της εθνικής ιδιωτικής κατανάλωσης και να βρεθεί το σχήμα (μορφή) αυτοσυσχέτισης.
16 Ετεροσκεδαστικότητα Έλεγχος Breusch Pagan Godfrey Η0: δεν υπάρχει ετεροσκεδαστικότητα Η1: υπάρχει ετεροσκεδαστικότητα Η μηδενική υπόθεση απορρίπτεται αν prob < 0.05 (στατιστικό BPG > X 2 (k) κρίσιμη τιμή
17 Ετεροσκεδαστικότητα BPG
18 Ετεροσκεδαστικότητα BPG
19 Ετεροσκεδαστικότητα BPG
20 Ετεροσκεδαστικότητα Έλεγχος White Η0: δεν υπάρχει ετεροσκεδαστικότητα Η1: υπάρχει ετεροσκεδαστικότητα Η μηδενική υπόθεση απορρίπτεται αν prob < 0.05 (στατιστικό W > X 2 (k) κρίσιμη τιμή
21 Ετεροσκεδαστικότητα White
22 Ετεροσκεδαστικότητα White
23 Ετεροσκεδαστικότητα White
24 Άσκηση Στο παράδειγμα μας (εκτυπωμένο) να ελεγχθεί αν υπάρχει ετεροσκεδαστικότητα στα κατάλοιπα: 1. Με τον έλεγχο BPG 2. Με τον έλεγχο White Αν μετασχηματίσουμε το αρχικό υπόδειγμα σε λογαριθμική μορφή, θα μειωθεί η ετεροσκεδαστικότητα (με τον έλεγχο white); Στο μετασχηματισμένο υπόδειγμα να βρείτε το σχήμα (μορφή) αυτοσυσχέτισης που υπάρχει (θεωρείστε ότι το υπόδειγμα έχει 3 ης τάξης αυτόσυσχέτιση). Δίνονται: X 2 (1) = 3.841, X 2 (2) = 5.991, F(1,21) = 4.32, F(2,20) = 3.49
25 Εξειδίκευση Έλεγχος RESET (Ramsey) H0: σωστή εξειδίκευση υποδείγματος H1: λανθασμένη εξειδίκευση υποδείγματος Η μηδενική υπόθεση απορρίπτεται αν το στατιστικό του ελέγχου είναι F > F πινάκων. Εφόσον έχουμε τρέξει την παλινδρόμηση ακολουθούμε τα παρακάτω βήματα:
26 Εξειδίκευση
27 Εξειδίκευση
28 Εξειδίκευση
29 Εξειδίκευση Έλεγχος LR H0: σωστή εξειδίκευση υποδείγματος H1: λανθασμένη εξειδίκευση υποδείγματος Η μηδενική υπόθεση απορρίπτεται αν το στατιστικό του ελέγχου είναι LR > X 2.
30 Εξειδίκευση
31 Εξειδίκευση
32 Εξειδίκευση
33 Διόρθωση Εξειδίκευσης
34 Διόρθωση Εξειδίκευσης
35 Διόρθωση Εξειδίκευσης
36 Άσκηση Στο παράδειγμα μας (εκτυπωμένο) να ελεγχθεί αν το υπόδειγμα είναι σωστά εξειδικευμένο: 1. RESET (Ramsey) 2. LR Να ελεγχθεί αν η μεταβλητή TRADE^2 έπρεπε να έχει συμπεριληφθεί στο υπόδειγμα.
37 Σταθερότητα Συντελεστών Δεν μπορούμε να έχουμε ικανοποιητικές προβλέψεις σε ένα εκτιμημένο υπόδειγμα αν οι συντελεστές τους δεν παραμένουν διαχρονικά σταθεροί. Έλεγχος Brown Durbin Evans Εφόσον έχουμε τρέξει την παλινδρόμηση ακολουθούμε τα παρακάτω βήματα:
38 Σταθερότητα Συντελεστών
39 Σταθερότητα Συντελεστών
40 Σταθερότητα Συντελεστών
41 Σταθερότητα Συντελεστών
42 Σταθερότητα Συντελεστών
43 Ψευδομεταβλητές Παράδειγμα: Υποθέστε ότι οι εξαγωγές μιας χώρας σε μια άλλη προσδιορίζονται όχι μόνο από το ΑΕΠ της χώρας προορισμού αλλά και τον λόγο των τιμών Ρ στις δύο αυτές χώρες. Γνωρίζουμε ότι το 1995 εφαρμόστηκε μια πολιτική αύξησης των εξαγωγών που πιθανά επηρέασε τη σχέση αυτή. Να ελέγξετε αν μετά το 1995 άλλαξε η δομή του υποδείγματος. Στο αρχικό υπόδειγμα να ελεγχθεί αν υπάρχει σταθερότητα στους συντελεστές χρησιμοποιώντας τους ελέγχους των: 1.Brown Durbin - Evans
Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21
Περιεχόμενα Πρόλογος... 15 Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης... 19 1 Αντικείμενο της οικονομετρίας... 21 1.1 Τι είναι η οικονομετρία... 21 1.2 Σκοποί της οικονομετρίας... 24 1.3 Οικονομετρική
Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)
ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 11: Αυτοσυσχέτιση Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Περιεχόμενο ενότητας
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 5.1 Αυτοσυσχέτιση: Εισαγωγή Συχνά, η υπόθεση της μη αυτοσυσχέτισης ή σειριακής συσχέτισης
ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 10: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Β μέρος: Ετεροσκεδαστικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής Διαγνωστικοί Έλεγχοι Διαπίστωσης της Αυτοσυσχέτισης Οι περισσότεροι από τους διαγνωστικούς ελέγχους της αυτοσυσχέτισης αναφέρονται σε αυτοσυσχέτιση
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation
ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης
ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι
ΟΙΚΟΝΟΜΕΤΡΙΑ. Η μέθοδος των βοηθητικών μεταβλητών. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 12: Σφάλματα μέτρησης στις μεταβλητές Η μέθοδος των βοηθητικών μεταβλητών Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 6.1 Ετεροσκεδαστικότητα: Εισαγωγή Συχνά, η υπόθεση της σταθερής διακύμανσης των όρων σφάλματος,
Έλεγχος των Phillips Perron
ΜΑΘΗΜΑ 8ο Έλεγχος των Phillip Perron Είδαμε στον έλεγχο των Dickey Fuller ότι για το πρόβλημα της αυτοσυσχέτισης των καταλοίπων προτείνουν την επαύξηση της εξίσωσης με επιπλέον όρους τωνδιαφορώντηςεξαρτημένηςμεταβλητής.
ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Αυτοσυσχέτιση Αν τα σφάλµατα δεν συσχετίζονται µεταξύ τους, Corr(u t, u s ) = 0 για κάθε t s, t, s
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ Ερώτηση : Εξηγείστε τη διαφορά µεταξύ του συντελεστή προσδιορισµού και του προσαρµοσµένου συντελεστή προσδιορισµού. Πώς µπορεί να χρησιµοποιηθεί
Οικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 9: Αυτοσυσχέτιση Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΟΙΚΟΝΟΜΕΤΡΙΑ. Έλεγχοι σταθερότητας των συντελεστών. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 8: Η τεχνική των ψευδομεταβλητών - Έλεγχοι σταθερότητας των συντελεστών Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
ΜΑΘΗΜΑ 3ο. Βασικές έννοιες
ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΕΝΔΕΚΑΤΟ ΘΕΩΡΙΑΣ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ(AUTOCORELLATION) Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2008-2009 ΕΠΙΧ Οικονοµετρικά
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Οι παραβιάσεις των σημαντικότερων υποθέσεων των γραμμικών υποδειγμάτων
Οικονομετρία. Ψευδομεταβλητές Ψευδομεταβλητές που επιδρούν στην κλίση της συνάρτησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Ψευδομεταβλητές Ψευδομεταβλητές που επιδρούν στην κλίση της συνάρτησης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση του τρόπου
Επαυξημένος έλεγχος Dickey - Fuller (ADF)
ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
Ονοµατεπώνυµο : Σίσκου Σταµατίνα Ειρήνη. Υπεύθυνοςκαθηγητής: ΑναστάσιοςΒ. Κάτος. Θεσσαλονίκη, Ιανουάριος 2010
Π.Μ.Σ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ο προσδιορισµός του επιπέδου της ιδιωτικής κατανάλωσης, των επενδύσεων και των συνολικών εισαγωγών. Mία εµπειρική µελέτη για την Νορβηγία, την
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 8ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 8ο Επιλογή του αριθμού των χρονικών υστερήσεων Στις περισσότερες οικονομικές χρονικές σειρές υπάρχει υψηλή συσχέτιση μεταξύ της τρέχουσας
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (3 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Οικονομετρία Ι. Ενότητα 10: Διαγνωστικοί Έλεγχοι. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 10: Διαγνωστικοί Έλεγχοι Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα
ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση
Πίνακας Εικόνων Πίνακας Πινάκων Πρόλογος Ευχαριστίες ΜΕΡΟΣ ΠΡΩΤΟ. Στατιστικό υπόβαθρο και βασικός χειρισµός δεδοµένων
Περιεχόμενα Πίνακας Εικόνων... 21 Πίνακας Πινάκων... 23 Πρόλογος... 27 Ευχαριστίες... 30 ΜΕΡΟΣ ΠΡΩΤΟ. Στατιστικό υπόβαθρο και βασικός χειρισµός δεδοµένων ΚΕΦΑΛΑΙΟ 1. Βασικές έννοιες... 33 Εισαγωγή... 34
1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA);
Ερωτήσεις: 1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA); Στα αυτοπαλίνδρομα υποδείγματα η τρέχουσα τιμή της y είναι συνάρτηση p υστερήσεων της
Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος
ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή
Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2
Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2 Κεφάλαιο 8 1) Τι είναι ετεροσκεδαστικότητα και τι είδους προβλήµατα παρουσιάζονται; ( 2, 4, σελίδες 370-372). 2) Γράψτε τον τύπο της διακύµανσης της κλίσης όταν
Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 8: Κανονικότητα Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 5: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: ageliki.papaa@gmail.com, agpapaa@auth.gr Webpage: http://users.auth.gr/agpapaa
ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Πολυσυγγραµµικότητα Αν υπάρχει ακριβής γραµµική σχέση ανάµεσα σε κάποιες από τις ερµηνευτικές µεταβλητές
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 8.1 Η Φύση των Ψευδομεταβλητών Οι μεταβλητές που παίρνουν τιμές 0 και 1 ονομάζονται ψευδομεταβλητές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ENATO ΘΕΩΡΙΑΣ-ΕΤΕΡΟΣΚΕΔΑΣΤΙΚΟΤΗΤΑ (HETEROSCEDASTICITY) Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2010-2011
Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή
Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Η τελεία χρησιμοποιείται ως υποδιαστολή (π.χ 3 14 τρία κόμμα δεκατέσσερα) Παρακαλώ παραδώστε τα θέματα μαζί με το γραπτό σας ΟΝΟΜΑ: ΕΠΩΝΥΜΟ: ΑΜ:
Πανεπιστήμιο Πατρών, Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιανουαρίου 2014 (18-Φεβ-2014) 9:00-11:00 Μάθημα: «ΟΙΚΟΝΟΜΕΤΡΙΑ» ΟΙΚΟΝ 320 Διδάσκων: Επίκουρος Καθηγητής Ιωάννης Α. Βενέτης Διάρκεια
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή
ΟΙΚΟΝΟΜΕΤΡΙΑ. σε μη γραμμικές μορφές. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 7: Επεκτάσεις του γραμμικού υποδείγματος σε μη γραμμικές μορφές Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις)
ΜΑΘΗΜΑ 6ο Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) Είδαμε στους παραπάνω ελέγχους (DF και ADF) που κάναμε προηγουμένως ότι εξετάζουμε στη μηδενικήυπόθεσημόνοτοσυντελεστήδ 2. Δεν αναφερόμαστε
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Συνολοκλήρωση και VAR υποδείγματα
ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων
ΟΙΚΟΝΟΜΕΤΡΙΑ. Α μέρος: Πολυσυγγραμμικότητα. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 9: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Α μέρος: Πολυσυγγραμμικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr
ΚΕΦΑΛΑΙΟ 2 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΙΚΩΝ ΣΕΙΡΩΝ. 2.1 Σύντομη ανασκόπηση του κλασσικού υποδείγματος
ΚΕΦΑΛΑΙΟ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΙΚΩΝ ΣΕΙΡΩΝ.1 Σύντομη ανασκόπηση του κλασσικού υποδείγματος παλινδρόμησης συνήθων ελαχίστων τετραγώνων (Ordinary Leas Squares regression model).. Ένα παράδειγμα οικονομετρικού
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ SARIMA (sp,sd,qs) ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου
Ογενικός(πλήρης) έλεγχος των Dickey Fuller
ΜΑΘΗΜΑ 7ο Ογενικός(πλήρης) έλεγχος των Dickey Fuller Είδαμε προηγουμένως ότι οι τιμές της στατιστικής Τ 2δ0, Τ 3δ0 και Τ 3δ1 που χρησιμοποιήθηκαν στην παραπάνω παράγραφο εξαρτώνται από τη μορφή της εξίσωσης
Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν
ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην
ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2
013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΝΔΕΚΑΤΟ ΘΕΩΡΙΑΣ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORELLATION) Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2010-2011
Πολλαπλή παλινδρόμηση (Multivariate regression)
ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ
ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή
2013 [Πρόλογος] ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή Μάθημα Εαρινού Εξάμηνου 2012-2013 Μ.Επ. ΟΕ0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Μαρί-Νοέλ Ντυκέν, Επ. Καθηγητρία
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΟΓΔΟΟ-ΥΠΟΔΕΙΓΜΑΤΑ ARIMA & ΜΗ ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΤΥΧΑΙΑΔΙΑΔΡΟΜΗ (RANDOM WALK) Έστω η αυτοπαλίνδρομη
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 11ο Συνολοκλήρωσης και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100
Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς
Οικονομετρία. Αυτοσυσχέτιση Συνέπειες και ανίχνευση. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης
Οικονομετρία Αυτοσυσχέτιση Συνέπειες και ανίχνευση Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση του προβλήματος της αυτοσυσχέτισης και των
Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Εξειδίκευση του υποδείγματος Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου
Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ.
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΥΠΟΔΕΙΓΜΑΤΑ ΚΙΝΗΤΟΥ ΜΕΣΟΥ MA(q) ΚΑΙ ΜΙΚΤΑ ΥΠΟΔΕΙΓΜΑΤΑ ARMA (p,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΧΕΣΗ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ ΚΑΙ ΑΠΟΔΟΣΗΣ ΤΩΝ ΧΡΗΜΑΤΙΣΤΗΡΙΩΝ ΝΕΑΣ ΥΟΡΚΗΣ-ΤΟΚΥΟ-ΛΟΝΔΙΝΟ Διπλωματική Εργασία της Οικονομίδου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΑ» και «ΝΕΚΑ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΑ» και «ΝΕΚΑ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ Εισαγωγή: 3 η Άσκηση: 15/12/2016 Για την ανάλυση της σημασίας
Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο
Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 Μαρί-Νοέλ Ντυκέν Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο
Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Χρήσιμες Οδηγίες Με την βοήθεια του λογισμικού E-views να απαντήσετε στα ερωτήματα των επόμενων σελίδων, (οι απαντήσεις πρέπει να περαστούν
Απλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
Οικονομετρία. Ψευδομεταβλητές Μία ψευδομεταβλητή που επιδρά στην σταθερά της συνάρτησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Ψευδομεταβλητές Μία ψευδομεταβλητή που επιδρά στην σταθερά της συνάρτησης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση της έννοιας
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
ΠΡΟΒΛΗΜΑ ΑΥΤΟΣΥΣΧΕΤΙΣΤΩΝ ΣΦΑΛΜΑΤΩΝ
ΠΡΟΒΛΗΜΑ ΑΥΤΟΣΥΣΧΕΤΙΣΤΩΝ ΣΦΑΛΜΑΤΩΝ ΤΡΟΠΟΙ ΕΛΕΓΧΟΥ ΔΙΟΡΘΩΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΣΥΝΕΠΕΙΕΣ ΠΡΟΒΛΗΜΑΤΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ 1 ΤΡΟΠΟΙ ΕΛΕΓΧΟΥ Γραφική παράσταση των υπολοίπων (ή των μαθητικοποιημένων υπολοίπων) ως προς την
ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος.
:\Documens and Seings\kpig\Deskop\basikh askhsh aaaa.doc ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΕΞΕΙΔΙΚΕΥΣΗ-ΕΚΤΙΜΗΣΗ-ΑΝΑΛΥΣΗ- ΠΡΟΒΛΕΨΗ- ΣΕΝΑΡΙΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟ
ΚΕΦΑΛΑΙΟ 5 ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΠΑΛΑΙΟΤΕΡΩΝ ΕΤΩΝ
ΚΕΦΑΛΑΙΟ 5 ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΠΑΛΑΙΟΤΕΡΩΝ ΕΤΩΝ Εισαγωγή Στο κεφάλαιο αυτό διερευνούµε αν το να είναι κανείς υποψήφιος παλαιοτέρων ετών, που έχει δώσει τουλάχιστον µια φορά εξετάσεις, του προσδίδει
2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 10ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 10ο Έλεγχοι συνολοκλήρωσης Αφού διαπιστωθεί πως οι εξεταζόμενες μεταβλητές είναι ολοκληρωμένες της ίδιας τάξης, τότε εκτελείται ο έλεγχος
ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Οι παραβιάσεις των σημαντικότερων υποθέσεων των γραμμικών υποδειγμάτων
ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. C:\WINDOWS\Επιφάνεια εργασίας\kkkk\kef_2.doc
ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΚΑ ΣΧΗΜΑΤΑ ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ Στατικά Σχήματα Αλληλεξαρτήσεων Σε ένα Στατικό Οικονομετρικό Υπόδειγμα οι διαχρονικές αλληλεπιδράσεις μεταξύ των μεταβλητών του εξαντλούνται εντός μιας χρονικής
ΣΤΟΧΑΣΤΙΚΕΣ ΕΞΕΙΔΙΚΕΥΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΕΛΛΗΝΙΚΩΝ ΕΞΑΓΩΓΩΝ
ΣΤΟΧΑΣΤΙΚΕΣ ΕΞΕΙΔΙΚΕΥΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΕΛΛΗΝΙΚΩΝ ΕΞΑΓΩΓΩΝ 'Υπό ΙΩΑΝΝΟΥ Γ. ΧΑΛΙΚΙΑ (Ph. D.) 'Ανωτάτη Σχολή Οικονομικών και 'Εμπορικών 'Επιστημών Ι. ΕΙΣΑΓΩΓΗ Ή εκτίμηση οικονομετρικών υποδειγμάτων έχει συγκεντρώσει
ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας
ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΟΔΗΓΙΕΣ: Απαντήστε σε όλα τα θέματα. Απαντήστε με ακρίβεια
ΚΕΦΑΛΑΙΟ 7 ΓΕΝΙΚΕΥΜΕΝΑ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 7.1 ΕΙΣΑΓΩΓΗ
ΚΕΦΑΛΑΙΟ 7 ΓΕΝΙΚΕΥΜΕΝΑ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 7.1 ΕΙΣΑΓΩΓΗ Οι προϋποθέσεις που θέσαμε ώστε να εξασφαλίσουμε BLUE εκτιμητές με τη μέθοδο των συνήθων ελαχίστων τετραγώνων στο κλασσικό γραμμικό υπόδειγμα δεν
ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Μη γραµµικά υποδείγµατα παλινδρόµησης Έστω µία συνάρτηση f = f(x 1,..., X K ) των µεταβλητών X 1,...,
Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Οι παραβιάσεις των σημαντικότερων υποθέσεων των γραμμικών υποδειγμάτων
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών. ΔΠΜΣ Στην Οικονομική Επιστήμη. Διπλωματική Εργασία
Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών ΔΠΜΣ Στην Οικονομική Επιστήμη Διπλωματική Εργασία Θέμα : «Ζήτηση Προθεσμιακών Καταθέσεων» Όνομα : Ελένη Ζίττη Αριθμός Μητρώου : Μ 08/04 Επιβλέπων
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας και Ανάπτυξης. Σημειώσεις EViews. Παναγιώτης Λαζαρίδης Αναπληρωτής Καθηγητής. Y j.
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας και Ανάπτυξης Σημειώσεις EViews Παναγιώτης Λαζαρίδης Αναπληρωτής Καθηγητής Υ Y j u j û j ( Y X j ) = β + β X j E 1 ˆ ˆ ˆ Yj = β X j Χ j Χ Το EViews
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p))
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p)) ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p)) O όρος αυτοπαλίνδρομο