Curs 5 mine 1.18 AplicaŃii ale legii inducńiei electromagnetice
|
|
- Μαριάμ Λύκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Curs 5 ne.8 AplcaŃ ale leg nducńe electroagnetce Fg..37 Tensunea electrootoare ndusă prn transforare Presupune un transforator onofazat reprezentat în fg..37 funcńonând în gol (fără sarcnă conectată la bornele secundare - ). Înfăşurarea prară - ş secundară - sunt dspuse pe un ez confecńonat dn tole de ońel electrotehnc (slcos). Înfăşurarea prară având N spre este alentată de la reńea cu o tensune alternatvă snusodală În crcutul acestea apare un curent, de aseenea varabl în tp, care va produce prn crcutul agnetc un flux agnetc varabl în tp. Presupune o varańe snusodală a fluxulu agnetc prn secńunea ezulu: φ = φ ax sn ωt (.99) Înfăşurărle prară ş secundară fnd străbătute de un flux agnetc varabl în tp se vor nduce în acestea tensunle electrootoare: dψ u N d φ e dt dt N t = = = ωφ cos ω (.00) dψ u N d φ e = = = ωn cos ωt (.0) dt dt A negljat dspersa consderând acelaş flux jlocu prn fecare dn cele două înfăşurăr. Se observă că cele două tensun electrootoare nduse sunt defazate cu 90 0 în ura fluxulu agnetc nductor. Valorle efectve ale tensun electrootoare nduse în înfăşurărle transforatorulu sunt: πf πf e = Nφ, e = N φ (.0) Se observă că raportul dntre valorle efectve ale t.e.. este: e e N = (.03) N Tensunea electrootoare ndusă prn şcare de rotańe Presupune (fg..38) o spră - care se roteşte cu vteza unghulară constantă ω într-un câp agnetc unfor de nducńe B. Spra are o foră dreptunghulară ş are axa perpendculară pe lnle de câp agnetc. Dacă d A este vectorul noral la suprafańa plană S Γ ce se sprjnă pe conturul Γ al spre, atunc la un oent dat fluxul agnetc prn spră are valoarea: φ = B S cos α unde S este ara dreptunghulu ltat de spră. Cu spra se află în şcare de rotańe α = ωt fluxul agnetc este varabl în tp: φ = B S cos ωt Aplcând legea nducńe electro-agnetce în fora dată de relańa (.85), se deduce: Fg..38 u e d = = B S ω snωt (.04) dt
2 .9 RelaŃ între fluxur ş curenń. Inductvtatea propre ş utuală Să consderă o spră flforă parcursă de un curent de ntenstate ş fe fluxul agnetc produs de acest curent prn conturul C al spre. Se nueşte nductvtate propre a spre ărea fzcă dată de relańa: φ = > 0 (.4) Inductvtatea propre a spre depnde nua de densunle ş fora spre ş de pereabltatea agnetcă a edulu în care se află spra. Dacă edul agnetc este lnar atunc dependenńa între ş este lnară, ar nductvtatea este o ăre constantă. ntatea de ăsură a nductvtăń în ssteul de untăń S.I. este henry [H]. Pentru un crcut flfor oarecare, de exeplu pentru o bobnă forată dn N spre se defneşte nductvtatea propre ca raportul dntre fluxul agnetc total φ sc care străbate suprafańa ărgntă de curba C ş ntenstatea a curentulu ce străbate bobna: φ N sc Ψ φ = = = (.7) Fg..5 Să consderă acu două spre cuplate agnetc. Două spre sau în general două crcute se zc cuplate agnetc dacă o parte dn fluxul agnetc produs de unul dn crcute străbate conturul celulalt crcut. Să presupune în fgura.53,a, două spre ş, spra fnd parcursă de curentul de ntenstate, ar = 0. Dacă notă cu c) Fg..53 fluxul agnetc propru produs de curentul prn spra, atunc nductvtatea propre a spre este: φ = > 0 (.9) O parte dn fluxul agnetc propru notată cu ş nut flux utual străbate ş conturul spre, restul fluxulu agnetc notat cu d care nu străbate spra fnd nut flux de dsperse al spre în raport cu spra. Evdent că în cazul a două spre flfore ave îndeplntă relańa: = + d (.0)
3 Fg..55 Fg..56 Se nueşte nductvtate utuală a spre fańă de spra raportul dntre fluxul utual ş curentul care produce acest flux: =, = 0 (.) Recproc dacă se consderă spra a doua parcursă de curentul ş curentul dn pra spră este nul = 0, se poate defn nductvtatea utuală a spre în raport cu spra : =, = 0 = (.3) Valoarea coună a celor două nductvtăń utuale se notează cu M = =. flux agnetc poztv înseană că sensul fluxulu este acelaş cu al fluxulu agnetc propru al spre produs de curentul. flux agnetc negatv înseană sens contrar al fluxulu utual fańă de sensul fluxulu agnetc propru. Corespunzător nductvtăńle utuale ş pot rezulta poztve sau negatve. Fe în fgura.54 două bobne cuplate agnetc având N respectv N spre. Presupune la început că nua bobna este parcursă de curentul ( =0). Corespunzător se defnesc urătoarele fluxur agnetce fascculare ed: - fluxul agnetc propru care străbate sprele bobne ; - fluxul agnetc utual sau utl care, este produs de bobna, dar străbate ş sprele bobne ; d - fluxul agnetc de dsperse al bobne fańă de, care se închde prn aer în jurul bobne ş nu străbate bobna. Acestor fluxur agnetce le corespund urătoarele nductvtăń: - nductvtatea propre a bobne : N Ψ = = Fg nductvtatea de dsperse d a bobne fańă de bobna : d dn Ψ = = d - nductvtatea utuală a bobne fańă de bobna : (.6) N Ψ = = (.5)
4 InductvtăŃle sunt paraetr fzc global a crcutelor electrce care pert exprarea fluxurlor agnetce în funcńe de curenń care produc aceste fluxur. În scheele electrce nductvtatea propre se reprezntă ca în fgura.55. Inductvtatea utuală M dntre două bobne cuplate agnetc se reprezntă ca în fgura.56. Preczarea senulu nductvtăń utuale M în scheele electrce se face, uzual, confor urătoare convenń: una dntre bornele fecăre bobne (nută uneor început al înfăşurăr) se archează cu un astersc sau altfel. Dacă curenń ş au acelaş sens fańă de bornele arcate (ab curenń ntră în bornele arcate sau ab curenń es dn bornele arcate) nductvtatea utuală se consderă poztvă ar cuplajul agnetc se nueşte adńonal. În caz contrar (în una dn bobne curentul ntră în borna arcată ar în cealaltă curentul ese dn borna arcată) cuplajul agnetc al celor două bobne este în opozńe, ar nductvtatea utuală este negatvă..0 Crcute agnetce Crcutul agnetc este un sste fzc consttut dn ed agnetce, frecvent feroagnetce, ş întreferur prn care se închd fluxur agnetce. PorŃunea de ez agnetc pe care se află stuată bobna se nueşte ez propru-zs sau coloană, ar porńunea fără înfăşurare se nueşte jug sau arătură. FeŃele ezulu agnetc care ărgnesc întreferul se nuesc pol agnetc. Dacă lnle de câp agnetc es dn pol, acesta poartă denurea de pol nord, ar în polul sud ntră lnle de câp agnetc (curbele tangente la vectorul nducńe agnetcă B.) De obce porńunea de crcut agnetc consttută dn ezul feroagnetc este porńunea utlă. Câpul agnetc ce nu se închde prn ezul agnetc ş prn întrefer se nueşte câp agnetc de dsperse sau de scăpăr. Crcutele agnetce forate dn aterale agnetce cu caracterstc lnare se nuesc crcute agnetce lnare. Astfel de crcute sunt cele consttute dn aterale neferoagnetce sau dn aterale feroagnetce o ş nesaturate. Crcutele agnetce nelnare conńn cel puńn o porńune dn aterale agnetce nelnare cu sunt ateralele feroagnetce saturate. În ajortatea cazurlor dn practcă ntervn crcute agnetce nelnare. Dn punct de vedere al surselor de câp agnetc se întâlnesc: - crcute agnetce de curent contnuu în care prn bobne trece curent contnuu - crcute agnetce de curent alternatv la care înfăşurărle sunt străbătute de curenń alternatv - crcute agnetce cu agneń peranenń unde fluxul agnetc este Fg..6 produs de agnetzańa pera-nentă a agneńlor peranenń - crcute agnetce xte. Să consderă pentru început un crcut agnetc lnar prevăzut cu o înfăşurare de curent contnuu (fg..6) având N spre parcurse de curentul. Aplcând legea crcutulu agnetc în lungul curbe C, care se închde prn ez, ave: Dar cu: B = µ µ 0 H, ş φ = B A, rezultă: r Hd s = N = u (.66) C H l = N B l l = N, respectv φ = N µ µ A În cazul unu crcut agnetc de lunge l, secńune A ş pereabltate agnetcă µ reluctanńa agnetcă are expresa: l R = µa (.7) ntatea de ăsură în SI a reluctanńe agnetce este aper pe weber A/Wb RelaŃa :
5 φ R = N, sau φ R = poartă nuele de legea lu Oh pentru crcutul agnetc. De rearcat faptul că pentru o porńune de crcut agnetc ce cuprnde ş o înfăşurare cu tensunea agnetootoare legea lu Oh se poate scre în fora: + = R (.73) RelaŃle scrse anteror pentru o porńune de crcut agnetc sau pentru un crcut agnetc coplet relevă exstenńa une analog forale între un crcut agnetc ş un crcut electrc. CorespondenŃa dntre ărle agnetce ş cele electrce este urătoarea: ăr agnetce ăr electrce n - tensunea agnetcă - tensune electrcă,θ - tensunea agnetootoare, e tensune solenańe electrootoare - flux agnetc fasccular - curent electrc R - reluctanńă agnetcă R - rezstenńa electrcă Λ - pereanńă agnetcă G conductanńă Pe baza acestor corespondenńe calculul crcutelor agnetce lnare se poate efectua prn rezolvarea unor schee electrce echvalente cu etodele dn teora crcutelor electrce.. Teoreele lu Krchhoff pentru crcute agnetce Crcutele agnetce pot f dn punct de vedere geoetrc crcute nerafcate ş crcute rafcate. În crcutele agnetce nerafcate fluxul agnetc fasccular aparńne unu sngur tub de câp închs. Fg..63 În fgura.63, a este reprezentat un crcut agnetc nerafcat ce cuprnde coloana pe care este dspusă înfăşurarea 5, jugurle, arătura 3 ş întreferurle 4. În fgura.63, b este reprezentat crcutul electrc echvalent. nle de câp agnetc se închd în ajortate în lungul crcutulu agnetc.
6 În fgura.64 este reprezentat un crcut agnetc rafcat ş crcutul electrc echvalent. PorŃunle de crcut nerafcate se nuesc latur. Confor leg fluxulu agnetc, consderând o suprafańă închsă Σ ave: Σ = 0 (.74) Aplcând această relańe crcutulu agnetc nerafcat dn fgura.63 ş negljând dspersa rezultă că fluxul agnetc fasccular are aceeaş valoare în orce secńune a crcutulu agnetc. Dacă se aplcă relańa (.74) pentru o suprafańă Σ închsă ce înconjoară un nod al crcutulu (punct de rafcańe) rezultă teorea I a lu Krchhoff pentru crcute agnetce: n fk = k = 0 (.75) adcă: sua algebrcă a fluxurlor agnetce fascculare dn raurle unu crcut agnetc ce se întâlnesc într-un nod este nulă. Pentru screrea relańe (75) se va consdera convenńonal că fluxurle agnetce care es dn nod (dn suprafańa închsă Σ) au un sen ar cele care ntră sen contrar. Să consderă acu porńunea închsă de crcut (fg..64) forată dn coloana, întreferul 5, arătura 3, întreferul 4 ş jugul. Scrnd legea crcutulu agnetc în lungul aceste porńun de crcut rezultă: = N unde N este nuărul de spre al înfăşurăr parcurse de curentul. Exprând tensunle agnetce în funcńe de fluxur ş reluctanńe relańa anteroară devne: R + R + ( R + R + R ) = θ = N Pentru un och de crcut oarecare relańa corespunzătoare teoree a II-a a lu Krchhoff este: n n R k k = θ k k = k = Fg..64 (.76) adcă: sua algebrcă a solenańlor de-a lungul unu och de crcut agnetc (fără dsperse) este egală cu sua algebrcă a căderlor de tensune agnetcă a screrea relańlor (.76) se alege un sens de parcurgere al crcutulu. În aceste relań teren pentru care fluxurle agnetce fascculare k au aceeaş valoare cu sensul de refernńă sunt poztv ar celalń sunt negatv. a fel solenańle al căror sens concde cu sensul de refernńă se au cu senul plus ar celelalte cu senul nus.
Curs 4 mine Starea de magnetizare. Câmpul magnetic în vid
Curs 4 mne 1.12 tarea de magnetzare. Câmpul magnetc în vd Expermental se constată că exstă în natură substanńe, ca de exemplu magnettul (Fe 3 O 4 ), care au propretatea că între ele sau între ele ş corpur
MAŞINI ELECTRICE. Curs 2: NoŃiuni introductive (Continuare) Prof.dr.ing. Claudia MARłIŞ Catedra de Maşini Electrice, Marketing şi Management
MAŞINI ELECTRICE Curs 2: NoŃun ntroductve (Contnuare) Prof.dr.ng. Clauda MARłIŞ Catedra de Maşn Electrce, Marketng ş Management Facultatea de Ingnere Electrcă 2010-2011 Masn electrce 1 - Curs 2 1 MĂRIMI
Notiuni de electrotehnicã si de matematicã
- - Notun de electrotehncã s de ateatcã În acest artcol sunt tratate o parte dn fenoenele s paraetr care prezntã un grad de dfcultate a rdcat. Deaseenea, în acest artcol s-au utlzat ltere c (de exeplu
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Numere complexe. a numerelor complexe z b b arg z.
Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Pentru această problemă se consideră funcţia Lagrange asociată:
etoda ultplcatorlor lu arae ceastă etodă de optzare elară elă restrcţle de tp ealtate cluzâdu-le îtr-o ouă fucţe oectv ş ărd sulta uărul de varale al prolee de optzare. e urătoarea proleă: < (7. Petru
Lucrarea Nr. 6 Reacţia negativă paralel-paralel
Lucrre Nr. 6 ecţ netă prlel-prlel Crcutul electrc pentru studul AN pp: Schem de semnl mc AN pp: Fur. Schem electrcă pentru studul AN pp Fur 2. Schem de semnl mc crcutulu pentru studul AN pp Intern cudrpl:
SISTEME DE ACTIONARE II. Prof. dr. ing. Valer DOLGA,
SISTEME DE ACTIONARE II Prof. dr. ng. Valer DOLGA, Cuprns_3. Caracterstc statce. Stabltatea functonar ssteulu 3. Moent de nerte redus, asa redusa. 4. Forta redusa s oent redus Prof. dr. ng. Valer DOLGA
Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate
Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs
Curs 10 TRANZISTOARE. TRANZISTOARE BIPOLARE
Curs 10 TRANZISTOARE. TRANZISTOARE IPOLARE CUPRINS Tranzstoare Clasfcare Prncpu de funcțonare ș regun de funcțonare Utlzarea tranzstorulu de tp n. Caracterstc de transfer Utlzarea tranzstorulu de tp p.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Capitolul 4 Amplificatoare elementare
Captolul 4 mplfcatoare elementare 4.. Etaje de amplfcare cu un tranzstor 4... Etajul sursa comuna L g m ( GS GS L // r ds ) m ( r ) g // L ds // r o L ds 4... Etajul drena comuna g g s m s m s m o g //
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
ELECTROTEHNICĂ. partea a II-a. - Lucrări de laborator -
Prof. dr. ng. Vasle Mrcea Popa ELECTOTEHNICĂ partea a II-a - Lucrăr de laborator - Sbu 007 CAP. 6 LCĂI DE LABOATO Lucrarea nr. 7 - Conexunea consumatorlor trfazaţ în stea I. Partea teoretcă n sstem de
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Amplificatoare. A v. Simbolul unui amplificator cu terminale distincte pentru porturile de intrare si de iesire
mplfcatare Smblul unu amplfcatr cu termnale dstncte pentru prturle de ntrare s de esre mplfcatr cu un termnal cmun (masa) pentru prturle de ntrare s de esre (CZU UZU) Cnectarea unu amplfcatr ntre sursa
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
DETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE PRIN METODA PENDULULUI FIZIC
UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ BN - 1 B DETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE PRIN METODA PENDULULUI FIZIC 004-005 DETERMINAREA ACCELERAŢIEI
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
5.1 Realizarea filtrelor cu răspuns finit la impuls (RFI) Filtrul caracterizat prin: 5. STRUCTURI DE FILTRE NUMERICE. 5.1.
5. STRUCTURI D FILTR UMRIC 5. Realzarea ltrelor cu răspuns nt la mpuls (RFI) Fltrul caracterzat prn: ( z ) = - a z = 5.. Forma drectă - - yn= axn ( ) = Un ltru cu o asemenea structură este uneor numt ltru
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
2. Metoda celor mai mici pătrate
Metode Nuerce Curs. Metoda celor a c pătrate Fe f : [a, b] R o fucţe. Fe x, x,, x + pucte dstcte d tervalul [a, b] petru care se cuosc valorle fucţe y = f(x ) petru orce =,,. Aproxarea fucţe f prtr-u polo
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Lucrarea Nr. 5 Comportarea cascodei EC-BC în domeniul frecvenţelor înalte
Lucaea N. 5 opoaea cascode E-B în doenul fecenţelo înale Scopul lucă - edenţeea cauzelo ce deenă copoaea la HF a cascode E-B; - efcaea coespondenţe dne ezulaele obţnue expeenal penu la supeoaă a benz acesu
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
CÂMPUL ELECTRIC STAŢIONAR
B 3 CÂMPUL ELECTRIC STAŢIONAR Conform celor prezentate în captolul, câmpul electrostatc este nul în conductoare omogene moble ş este neînsoţt de transformăr de energe. Spre deosebre de câmpul electrostatc,
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
CARACTERISTICILE STATICE ALE TRANZISTORULUI BIPOLAR
aracterstcle statce ale tranzstorulu bpolar P a g n a 19 LURARA nr. 3 ARATRISTIIL STATI AL TRANZISTORULUI IPOLAR Scopul lucrăr - Rdcarea caracterstclor statce ale tranzstorulu bpolar în conexunle emtorcomun
3. MAŞINA ELECTRICĂ SINCRONĂ Noţiuni introductive
Maşna electrcă sncronă 8D 18 3. MAŞNA ELECTRCĂ NCRONĂ 3. 1. Noţun ntroductve 3.1.1. Generaltăţ Maşna sncronă este o maşnă electrcă rotatvă, de curent alternatv polfazată, de obce trfazată, cu câmp magnetc
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
ELECTRICITATE şi MAGNETISM, Partea a II-a: Examen SCRIS Sesiunea Ianuarie, 2017 PROBLEME PROPUSE
Probleme de lectrctate Petrca rstea 017 nverstatea dn ucureşt Facultatea de Fzcă TIITT ş MGNTISM, Partea a II-a: xamen SIS Sesunea Ianuare, 017 POM POPS 1. n fzcan estmează că prntr-o secţune a unu conductor
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
N 1 U 2. Fig. 3.1 Transformatorul
SRSE ŞI CIRCITE DE ALIMETARE 3. TRASFORMATORL 3. Principiul transformatorului Transformatorul este un aparat electrotehnic static, bazat pe fenomenul inducţiei electromagnetice, construit pentru a primi
TEORIA CIRCUITELOR ELECTRICE
a 33 b C B c Prof. dr. ng. Petru Todos nverstatea Tehncă a Moldove, Chșnău, Facultatea de Energetcă ș ngnere Electrcă ucrarea este un vertabl suport ddactc pentru noţun fundamentale de teora crcutelor
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
5. Circuite trifazate în regim permanent sinusoidal
5. Crcute trfzte în reg pernent snusol 5. Trnss energe. Crcterzre ssteulu trfzt e trnstere energe. Proprettle ssteelor trfzte. Energ electrc prous în centrlele electrce prn trnsforre ltor fore e energe
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :
Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet
CONEXIUNILE FUNDAMENTALE ALE TRANZISTORULUI BIPOLAR
LCAEA N.4 CONEXINILE FNDAMENTALE ALE TANISTOLI BIPOLA Scpul lucrăr măurarea perrmanțelr amplcatarelr elementare realzate cu tranztare bplare în cele tre cnexun undamentale (bază la maă, emtr la maă, clectr
a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
LUCRAREA 1 AMPLIFICATORUL DIFERENȚIAL MODULUL MCM5/EV
LUCRAREA 1 AMPLIFICATORUL DIFERENȚIAL MODULUL MCM5/EV 1.1 INTRODUCERE Amplfcatorul dferențal (AD) este întâlnt ca bloc de ntrare într-o mare aretate de crcute analogce: amplfcatoare operațonale, comparatoare,
7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL
7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in
Mădălina Roxana Buneci. Optimizări
Mădălna Roxana Bunec Optmzăr Edtura Academca Brâncuş Târgu-Ju, 8 Mădălna Roxana Bunec ISBN 978-973-44-87- Optmzăr CUPRINS Prefaţă...5 I. Modelul matematc al problemelor de optmzare...7 II. Optmzăr pe mulţm
Titlul: Modulaţia în amplitudine
LABORATOR S.C.S. LUCRAREA NR. 1-II Titlul: Modulaţia în aplitudine Scopul lucrării: Generarea senalelor MA cu diferiţi indici de odulaţie în aplitudine, ăsurarea indicelui de odulaţie în aplitudine, ăsurarea
z a + c 0 + c 1 (z a)
1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei
3. TRANZISTORUL BIPOLAR
3.. NOŢIUNI INTRODUCTIV 3. TRANZISTORUL BIPOLAR 3... Defnţe Tranzstorul bpolar este un dspozt electronc act cu tre termnale: emtorul (), baza (B) ş colectorul (C). Aceste tre termnale sunt plasate pe tre
1.6 TRANZISTORUL BIPOLAR DE PUTERE.
1.6 TRANZISTORUL IPOLAR DE PUTERE. Tranzstorul bpolar de putere dervă dn tranzstorul obşnut de semnal, prn mărrea capactăţ în curent ş tensune. El este abrevat prn nţalele JT, provennd de la denumrea anglo-saxonă
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor
4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda
Ακαδημαϊκός Λόγος Κύριο Μέρος
- Επίδειξη Συμφωνίας În linii mari sunt de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου Cineva este de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου D'une façon générale,
Algebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
LEC IA 1: INTRODUCERE
LE Lec\a.. Defnrea dscplne LE LEC IA : INRODUCERE Abrever: LE eora Lnear` a Elastct`\ NE eora Nelnear` a Elastct`\ MSD Mecanca Soldulu Deformabl RM Resten\a Materalelor MDF Metoda Dferen\elor Fnte MEF
页面
订单 - 配售 Εξετάζουμε την αγορά...luăm în considerare posibi 正式, 试探性 Είμαστε στην ευχάριστη Suntem θέση να încântați δώσουμε την să plasăm παραγγελία μας στην εταιρεία comandă σας pentru... για... Θα θέλαμε
CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1
CURS 5 REDUCEREA SISTEMELOR DE FORŢE (CONTINUARE) CUPRINS 5. Reducerea sistemelor de forţe (continuare)...... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 5.1. Teorema lui Varignon pentru sisteme
Examen AG. Student:... Grupa: ianuarie 2016
16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex
2. ANALIZA ÎN FRECVENŢĂ A SISTEMELOR ELECTRICE ŞI ELECTRONICE
. ANALIZA ÎN FRECVENŢĂ A SISTEMELOR ELECTRICE ŞI ELECTRONICE În paragrafele anterare s-au prezentat metde de analză a cmprtăr SAI în (dmenul tmp. Punctul cmun al metdelr prezentate este determnarea funcţe
Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon
ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
IV. CONTROLUL VECTORIAL AL VITEZEI MOTOARELOR ASINCRONE
IV. CONTROLUL VECTORIAL AL VITEZEI MOTOARELOR ASINCRONE Dacă în cazul reglăr scalare a vteze varablele e coană (tensun curenţ fluur agnetce) sunt controlate nua în apltune în cazul reglăr vectorale varablele
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Durata medie de studiu individual pentru această prezentare este de circa 120 de minute.
Semnar 6 5. Caracterstc geometrce la suprafeţe plane I 5. Introducere Presupunând cunoscute mecansmele de evaluare a stăr de efortur la nvelul une structur studate (calcul reacţun, trasare dagrame de efortur),
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
CARACTERISTICI GEOMETRICE ALE SUPRAFEŢELOR PLANE
CRCTERSTC GEOMETRCE LE SUPRFEŢELOR PLNE 1 Defnţ Pentru a defn o secţune, complet, cunoaşterea are ş a centrulu de greutate nu sunt sufcente. Determnarea eforturlor, tensunlor ş deformaţlor mpune cunoaşterea