Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ"

Transcript

1 Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΘΗΝΑ, 2001

2 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ iii ix ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗΝ ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Μη Παραμετρικές Μέθοδοι με το Minitab Μη Παραμετρικές Μέθοδοι με το SPSS Μη Παραμετρικές Μέθοδοι με το SΑS 23 ΚΕΦΑΛΑΙΟ 2: ΜΕΡΙΚΟΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΒΑΣΙΣΜΕΝΟΙ ΣΤΗΝ ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Ο ΔΙΩΝΥΜΙΚΟΣ ΕΛΕΓΧΟΣ Ο ΠΡΟΣΗΜΙΚOΣ EΛΕΓΧΟΣ Ή ΕΛΕΓΧΟΣ ΠΡΟΣHΜΩΝ ΠΑΡΑΛΛΑΓΈΣ ΤΟΥ ΠΡΟΣΗΜΙΚΟΥ ΕΛΕΓΧΟΥ Ο Ελεγχος McNemar για την Σημαντικότητα της Αλλαγής μιας Κατάστασης Ο Ελεγχος των Cox και Stuart για την Υπαρξη Τάσης σε μια Ακολουθία Παρατηρήσεων 97 iii

3 2.3.3 Ο Προσημικός Ελεγχος για τον Ελεγχο Υπαρξης Συσχέτισης ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Εκτίμηση Ποσοστιαίων Σημείων Μιας Κατανομής ΟΡΙΑ ΑΝΟΧΗΣ 169 ΑΣΚΗΣΕΙΣ 181 ΚΕΦΑΛΑΙΟ 3: ΜΗ ΠΑΡΑΜΕΤΡΙΚΕΣ ΜΕΘΟΔΟΙ ΒΑΣΙΣΜΕΝΕΣ ΣΤΙΣ ΤΑΞΕΙΣ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ ΕΝΟΣ Ή ΔΥΟ ΔΕΙΓΜΑΤΩΝ Ο ΕΛΕΓΧΟΣ WILCOXON ΓΙΑ ΕΝΑ ΔΕΙΓΜΑ ΠΑΡΑΤΗΡΗΣΕΩΝ Ή ΖΕΥΓΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Ο Ελεγχος των Προσημασμένων Τάξεων Μεγέθους του Wilcoxon για την διάμεσο ενός πληθυσμού Ο Ελεγχος των προσημασμένων Τάξεων Μεγέθους του Wilcoxon για Δείγμα Ζευγών Παρατηρήσεων Διάστημα Εμπιστοσύνης για την Παράμετρο Θέσης (Μέση τιμή ή Διάμεσο) Ενός Πληθυσμού ή την Διαφορά των Παραμέτρων Θέσης Δύο Πληθυσμών με Βάση Δείγμα Ζευγών Παρατηρήσεων Γραφική Μέθοδος Κατασκευής Διαστήματος Εμπιστοσύνης 258 iv

4 3.2 ΠΕΡΙΠΤΩΣΗ ΑΝΕΞΑΡΤΗΤΩΝ ΔΕΙΓΜΑΤΩΝ - Ο ΕΛΕΓΧΟΣ ΤΩΝ MANN - WHITNEY Ή ΤΟΥ WILCOXON Διάστημα Εμπιστοσύνης για την Διαφορά των Παραμέτρων Θέσης (Μέσων Τιμών ή Διαμέσων) Δύο Πληθυσμών Ο Ελεγχος Kruskal-Wallis ΕΛΕΓΧΟΙ ΙΣΟΤΗΤΑΣ ΔΙΑΣΠΟΡΩΝ Ελεγχος Ισότητας Διασπορών των Siegel-Tukey Ελεγχος των Τετραγωνικών Τάξεων Μεγέθους για Ισότητα Διασπορών ΜΕΤΡΑ ΣΥΣΧΕΤΙΣΗΣ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ Ο Συντελεστής ρ του Spearman Ο Συντελεστής Συσχέτισης τ του Kendall Συντελεστής Μερικής Συσχέτισης του Kendall 355 ΑΣΚΗΣΕΙΣ 373 ΚΕΦΑΛΑΙΟ 4: ΕΛΕΓΧΟΙ ΚΑΤΑΝΟΜΩΝ Ο χ 2 ΕΛΕΓΧΟΣ ΚΑΛΗΣ ΠΡΟΣΑΡΜΟΓΗΣ Ο ΕΛΕΓΧΟΣ ΚΟLMOGOROV Ζώνη Εμπιστοσύνης για την Συνάρτηση Κατανομής του Πληθυσμού ΕΛΕΓΧΟΙ ΚΑΛΗΣ ΠΡΟΣΑΡΜΟΓΗΣ ΓΙΑ ΟΙΚΟΓΕΝΕΙΕΣ ΚΑΤΑΝΟΜΩΝ Ο Ελεγχος Κανονικότητας του Lilliefors Ο Ελεγχος Lilliefors για την Εκθετική Κατανομή 491 v

5 4.3.3 Ο Ελεγχος των Shapiro-Wilk για την Κανονική Κατανομή ΕΛΕΓΧΟΙ ΤΥΧΑΙΟΤΗΤΑΣ Ελεγχος Σημείων Πρώτων Διαφορών των Moore και Wallis Ο Ελεγχος των Ροών 520 ΑΣΚΗΣΕΙΣ 528 ΚΕΦΑΛΑΙO 5: ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ Ο ΕΛΕΓΧΟΣ SMIRNOV Ο EΛΕΓΧΟΣ ΤΩΝ CRAMÉR-VON MISES 565 ΑΣΚΗΣΕΙΣ 573 ΚΕΦΑΛΑΙΟ 6: ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΚΑΤΑΝΟΜΩΝ ΒΑΣΙΖΟΜΕΝΟΙ ΣΕ ΠΕΡΙΣΣΟΤΕΡΑ ΑΠΟ ΔΥΟ ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Ο ΕΛΕΓΧΟΣ BIRNBAUM-HALL Ο ΜΟΝΟΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 592 ΑΣΚΗΣΕΙΣ 603 vi

6 ΚΕΦΑΛΑΙΟ 7: ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΗ ΠΑΡΑΜΕΤΡΙΚΕΣ ΜΕΘΟΔΟΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Η Μέθοδος των Ελαχίστων Τετραγώνων Η Μέθοδος Παλινδρόμησης του Theil ΜΕΘΟΔΟΙ ΜΟΝΟΤΟΝΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ Πάνω στη Μεταβλητή Χ 647 ΑΣΚΗΣΕΙΣ 658 ΚΕΦΑΛΑΙΟ 8: ΑΠΑΡΙΘΜΗΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΠΙΝΑΚΕΣ ΣΥΝΑΦΕΙΑΣ Ο χ 2 Ελεγχος για Υπαρξη Διαφορών σε Πιθανότητες ή στις Αναλογίες Εκπροσώπησης r Πληθυσμών σε c Κατηγορίες Ο χ 2 Ελεγχος Ανεξαρτησίας Ο χ 2 Ελεγχος με Γνωστά Αθροίσματα Γραμμών και Στηλών ΠΙΝΑΚΕΣ ΣΥΝΑΦΕΙΑΣ ΜΙΑ ΕΝΔΙΑΦΕΡΟΥΣΑ ΕΙΔΙΚΗ ΠΕΡΙΠΤΩΣΗ Ελεγχος χ 2 για Διαφορές σε Πιθανότητες ή σε Αναλογίες (Περίπτωση Ανεξαρτήτων Δειγμάτων) Ο χ 2 Ελεγχος Ανεξαρτησίας (Περίπτωση Ενός και Μοναδικού Δείγματος) 710 vii

7 8.2.3 Ο χ 2 Ελεγχος Ανεξαρτησίας - Ο Ελεγχος McNemar (Περίπτωση Δύο Συσχετισμένων Δειγμάτων) ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΔΙΑΜΕΣΟ c ΠΛΗΘΥΣΜΩΝ 733 ΑΣΚΗΣΕΙΣ 744 ΒΙΒΛΙΟΓΡΑΦΙΑ 755 ΠΑΡΑΡΤΗΜΑ 761 Πίνακες ΕΥΡΕΤΗΡΙΟ ΕΛΛΗΝΙΚΩΝ ΟΡΩΝ 806 ΕΥΡΕΤΗΡΙΟ ΑΓΓΛΙΚΩΝ ΟΡΩΝ 809 ΠΙΝΑΚΑΣ ΤΑΞΙΝΟΜΗΣΗΣ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΤΕΧΝΙΚΩΝ 812 viii

8 ΠΡΟΛΟΓΟΣ Στόχος του βιβλίου αυτού είναι να καλλιεργήσει στον αναγνώστη την ελεύθερη κατανομών ή μη παραμετρική στατιστική σκέψη στην μεθοδολογική αντιμετώπιση στατιστικών προβλημάτων με την παρουσίαση σε αρκετή λεπτομέρεια και έκταση μιας σταχυολόγησης τεχνικών βασισμένων στην αξιοποίηση των διαφόρων πλευρών των δεδομένων. Η επιλογή των τεχνικών που παρουσιάζονται έχει γίνει με σκοπό να προσανατολίσει τον αναγνώστη στους τρόπους με τους οποίους μπορεί να σκεφθεί προκειμένου να αντιμετωπίσει κατηγορίες προβλημάτων παρουσιάζοντας ενδεικτικά τεχνικές τυπικές των περιπτώσεων αυτών και όχι να δώσει μία διεξοδική παρουσίαση της υπάρχουσας μη παραμετρικής μεθοδολογίας. Οι μη παραμετρικές τεχνικές αποτελούν μοναδικά κατάλληλο εργαλείο τόσο για τους στατιστικούς όσο και τους μη στατιστικούς χρήστες της στατιστικής γιατί επιτρέπουν την ανάλυση στοιχείων με απλή αλλά και ταυτόχρονα πληροφοριακή ανάλυση των στοιχείων. Τα εργαλεία της μαθηματικής στατιστικής που είναι θεμελιώδους σημασίας για την ανάπτυξη της μη παραμετρικής στατιστικής είναι γνωστά στην βιβλιογραφία ως τεχνικές ελεύθερες κατανομών ή ως μη παραμετρικές τεχνικές. Ο πρώτος όρος συνδέεται με το γεγονός ότι το κυριότερο πλεονέκτημα των τεχνικών αυτών είναι ότι δεν προϋποθέτουν γνώση της μορφής της κατανομής του πληθυσμού από τον οποίο έχουν προέλθει τα υπό μελέτη στοιχεία (για παράδειγμα, από έναν κανονικό πληθυσμό). Η δεύτερη ονομασία συνδέεται με το άλλο από τα κυριότερα πλεονεκτήματα των τεχνικών αυτών που αναφέρεται στο γεγονός ότι εφαρμόζονται όχι σ αυτές καθ εαυτές τις τιμές των ix

9 μεταβλητών, αλλά στις τάξεις μεγέθους τους. Ένα άλλο πλεονέκτημα, πέρα από την απλότητα των υπολογισμών που απαιτούν, αποτελεί η χρησιμότητά τους στην περίπτωση μικρών δειγμάτων, πράγμα που προσφέρεται στον ερευνητή που επιλέγει δεδομένα για πιλοτική μελέτη αλλά και στον ερευνητή του οποίου τα δείγματα είναι κατ ανάγκη μικρά λόγω ακριβώς της φύσης των δεδομένων που συλλέγει (όπως, για παράδειγμα, στην περίπτωση δειγμάτων ατόμων που πάσχουν από μία σπάνια μορφή πνευματικής ασθένειας ή δειγμάτων βιολογικών καλλιεργειών). Το βιβλίο αυτό έχει σχεδιασθεί για να αποτελέσει διδακτικό εγχειρίδιο τόσο για φοιτητές των οποίων το αντικείμενο σπουδών είναι η Στατιστική όσο και για φοιτητές που σπουδάζουν άλλες επιστήμες και χρησιμοποιούν την Στατιστική. Μπορεί επίσης να χρησιμοποιηθεί ως βοήθημα ενός εισαγωγικού μαθήματος μεταπτυχιακού επιπέδου για φοιτητές, οι οποίοι έχουν τις βασικές γνώσεις στατιστικής συμπερασματολογίας (Εκτιμητική, Ελέγχους Υποθέσεων, Εισαγωγή στην Γραμμική Παλινδρόμηση). Ελπίζεται, ότι πέρα από την χρησιμότητα του βιβλίου αυτού ως εγχειριδίου, αυτό θα αποτελέσει ένα χρήσιμο εργαλείο για τον εφαρμοσμένο ερευνητή σε διάφορες περιοχές εφαρμογής της Στατιστικής, περιλαμβανομένης της Διοίκησης των Επιχειρήσεων, των Οικονομικών Επιστημών, των Κοινωνικών Επιστημών γενικότερα, αλλά και στις επιστήμες της Ιατρικής, της Ψυχολογίας και της Βιολογίας. Ο λόγος στον οποίο αυτό οφείλεται είναι ότι οι διάφορες τεχνικές παρουσιάζονται σύμφωνα με τον ερευνητικό σχεδιασμό για τον οποίο είναι κατάλληλες. Κατά την παρουσίαση μίας τεχνικής, περιγράφεται το είδος των δεδομένων στα οποία είναι εφαρμόσιμη, αναπτύσσεται η λογική πάνω στην οποία στηρίζεται ο σχεδιασμός της τεχνικής, δίνονται αποδείξεις της σχετικής x

10 με τον έλεγχο θεωρίας, εξηγείται ο υπολογισμός της τιμής των στατιστικών συναρτήσεων ελέγχου και δίνονται παραδείγματα εφαρμογής της σε διάφορες περιοχές της επιστημονικής έρευνας. Γίνεται επίσης προσπάθεια σύγκρισης των διαφόρων τεχνικών με τα παραμετρικά ανάλογά τους, αν τέτοια υπάρχουν, και με άλλες μη παραμετρικές τεχνικές που λειτουργούν με παρόμοιο τρόπο. Η προσέγγιση που έχει ακολουθηθεί στοχεύει να βοηθήσει τον αναγνώστη να αποκτήσει ένα βασικό επίπεδο κατανόησης των εννοιών και της θεωρίας που είναι σημαντικές στην Μη Παραμετρική Στατιστική χωρίς να θυσιάζει την διαισθητική φύση που χαρακτηρίζει τόσο την πρακτική όσο και την έρευνα στην περιοχή αυτή της Στατιστικής. Το βιβλίο έχει βασισθεί στις διαλέξεις μαθημάτων που η συγγραφέας δίδαξε στα πανεπιστήμια Trinity College Dublin ( ), Missοuri ( ) και Iowa των ΗΠΑ ( ) καθώς και στο πανεπιστήμιο της Κρήτης ( ), στην ΑΣΟΕΕ ( ) και στο Οικονομικό Πανεπιστήμιο Αθηνών (για σειρά ετών από το 1989). Μέρος των διαλέξεων αυτών εδόθησαν στους φοιτητές του Οικονομικού Πανεπιστημίου με μορφή πανεπιστημιακών παραδόσεων το Μία προκαταρκτική μορφή αυτού του κειμένου είχε επίσης χρησιμοποιηθεί ως βάση του μαθήματος που η συγγραφέας δίδαξε στο Πανεπιστήμιο της Κρήτης. Οι πανεπιστημιακές αυτές παραδόσεις, στην συνέχεια, αποτέλεσαν τον πυρήνα του αντίστοιχου κεφαλαίου που περιελήφθη στο βιβλίο των Ι. Πανάρετου και Ε. Ξεκαλάκη, «Εισαγωγή στην Στατιστική Σκέψη (Συμπλήρωμα)», που εκδόθηκε για πρώτη φορά το 1994 για εξυπηρέτηση των φοιτητών των Τμημάτων Διοίκησης των Επιχειρήσεων και Οικονομικής Επιστήμης του Οικονομικού Πανεπιστημίου Αθηνών κυρίως, αλλά και για τους xi

11 φοιτητές του Τμήματος Στατιστικής σε συνδυασμό με πρόσθετη ύλη παραδόσεων (Ε. Ξεκαλάκη, «Μη Παραμετρική Στατιστική» Πανεπιστημιακές Παραδόσεις, 1993), η οποία αποτέλεσε την βάση του εγχειριδίου Ε. Ξεκαλάκη «Ειδικά Θέματα Μη Παραμετρικής Στατιστικής», Η παρούσα έκδοση αποτελεί βελτίωση των προηγουμένων αυτών εκδόσεων με προσθήκες νέων θεμάτων, αλλά και με αλλαγές στην παρουσίαση των διαφόρων τεχνικών για την καλύτερη κατανόησή τους από τον αναγνώστη. Εδώ δίνεται έμφαση στα παραδείγματα, που επιτρέπουν στον φοιτητή την καλύτερη κατανόηση των τεχνικών που συχνά, χωρίς το κατάλληλο παράδειγμα, δεν θα ήταν εύκολη. Ενα ενδιαφέρον χαρακτηριστικό του βιβλίου είναι ότι για τα παραδείγματα παρέχονται αναλυτικές λύσεις που συνοδεύονται επίσης και από λύσεις με τα πιο γνωστά στατιστικά πακέτα (ΜΙΝΙΤΑΒ, SPSS και SAS). Θα ήταν χρήσιμο να τονισθεί στο σημείο αυτό ότι, μερικές φορές, οι λύσεις που παρέχονται από τα εν λόγω στατιστικά πακέτα, παρουσιάζουν διαφορές και μεταξύ τους αλλά και με τις αναλυτικές λύσεις των παραδειγμάτων, όσον αφορά τον υπολογισμό του κρίσιμου επιπέδου, γεγονός που ενδέχεται να προκαλέσει κάποια σύγχυση στους χρήστες. Οι διαφορές αυτές μπορεί να οφείλονται άλλοτε στο ότι τα στατιστικά πακέτα έχουν σχεδιασθεί για την επίλυση προβλημάτων της συγκεκριμένης μορφής σε διαφορετική θεωρητική βάση (π.χ. με άλλη τεχνική παρόμοιας φύσης) και άλλοτε στο ότι οι διάφοροι αλγόριθμοι για τον υπολογισμό των κρισίμων επιπέδων των ελέγχων στηρίζονται σε διαφορετικές προσεγγίσεις των κατανομών των εμπλεκομένων στατιστικών συναρτήσεων. Η ύλη του βιβλίου είναι δομημένη σε 8 κεφάλαια. Στο πρώτο κεφάλαιο, γίνεται μία εισαγωγή στην βασική λογική που διέπει τις μη xii

12 παραμετρικές τεχνικές και παρουσιάζονται τα πλεονεκτήματα και μειονεκτήματα που οι τεχνικές αυτές έχουν σε σύγκριση με αντίστοιχες παραμετρικές τεχνικές. Γίνεται επίσης μία εισαγωγή στην χρήση των στατιστικών πακέτων MINITAB, SPSS και SAS με τα οποία λύνονται τα παραδείγματα του βιβλίου. Στο κεφάλαιο 2 αναπτύσσονται έλεγχοι υποθέσεων βασισμένοι στην διωνυμική κατανομή καθώς και μέθοδοι εκτίμησης της πιθανότητας ενός ενδεχομένου και των ποσοστιαίων σημείων μίας κατανομής και εξετάζεται η περίπτωση των ορίων ανοχής. Το κεφάλαιο 3 αναφέρεται σε μη παραμετρικές μεθόδους που βασίζονται στις τάξεις μεγέθους των παρατηρήσεων και καλύπτει τις περιπτώσεις ενός ή και δύο δειγμάτων. Ελεγχοι κατανομών, περιλαμβανομένων και ελέγχων τυχαιότητας, εξετάζονται στο κεφάλαιο 4. Η περίπτωση των ελέγχων υποθέσεων για ισότητα δύο κατανομών αντιμετωπίζεται στο κεφάλαιο 5, ενώ έλεγχοι αναφερόμενοι σε περισσότερα από δύο ανεξάρτητα δείγματα εξετάζονται στο κεφάλαιο 6. Το κεφάλαιο 7 εστιάζεται σε μη παραμετρικές μεθόδους γραμμικής παλινδρόμησης και μονότονης παλινδρόμησης. Τέλος, στο κεφάλαιο 8 εξετάζονται μέθοδοι ανάλυσης δεδομένων ταξινομημένων σε πίνακες συναφείας. Στο τέλος κάθε κεφαλαίου, δίνεται μία σειρά ασκήσεων που καλύπτει τα θέματα που έχουν αναπτυχθεί. Ένα ενδιαφέρον χαρακτηριστικό είναι ότι οι ασκήσεις που το βιβλίο περιέχει περιλαμβάνουν μία επιλογή προβλημάτων που έχουν τεθεί κατά καιρούς ως θέματα γραπτών εξετάσεων (εξαμήνου ή προόδου) στα διάφορα τμήματα των πανεπιστημίων του εσωτερικού ή του εξωτερικού στα οποία η συγγραφέας εδίδαξε. Η βιβλιογραφία αναφέρεται στις σημαντικότερες πηγές, στα ελληνικά και αγγλικά, στις οποίες μπορεί να ανατρέξει ο αναγνώστης xiii

13 που ενδιαφέρεται να εμβαθύνει περισσότερο στα θέματα που παρουσιάζονται στο βιβλίο. Για όλους τους στατιστικούς όρους που αναφέρονται στις μη παραμετρικές προσεγγίσεις και τεχνικές που αναπτύσσονται, δίνονται και οι αντίστοιχοι αγγλικοί όροι, ώστε να παρέχεται στον αναγνώστη η ευχέρεια να συμβουλεύεται την αγγλική βιβλιογραφία στα αντίστοιχα θέματα. Σ αυτό συνεισφέρει επίσης το ευρετήριο αγγλικών όρων που δίνεται, παράλληλα με το ευρετήριο των ελληνικών όρων, στο τέλος του βιβλίου. Οι πίνακες που είναι απαραίτητοι για την εφαρμογή των μεθόδων που αναπτύσσονται στο βιβλίο περιέχονται στο παράρτημα. Για την διευκόλυνση των χρηστών του βιβλίου που επιθυμούν να έχουν μια συνοπτική εικόνα του σώματος των τεχνικών που περιέχονται σ αυτό, δίνεται στο τέλος του πίνακας, στον οποίο απαριθμούνται οι τεχνικές που αυτό περιέχει, σύμφωνα με το είδος των προβλημάτων για τα οποία είναι κατάλληλες. Η συγγραφέας θα ήθελε να ευχαριστήσει όλους εκείνους, συναδέλφους και φοιτητές, που σε διάφορες χρονικές περιόδους και σε διαφορετικά πανεπιστήμια, επηρέασαν την σκέψη της με τα σχόλια και τις υποδείξεις τους και συνετέλεσαν στο να πάρει το βιβλίο την σημερινή του μορφή. Ιδιαίτερα, θα ήθελε να ευχαριστήσει τον διδάσκοντα του Τμήματος Στατιστικής Φ. Σταυρόπουλο για την επεξεργασία των λύσεων των παραδειγμάτων με τα πακέτα ΜΙΝΙΤΑΒ και SPSS καθώς και για την σύντομη εισαγωγή στην χρήση τους, τον υποψήφιο διδάκτορα του Τμήματος Μ. Λιναρδάκη για την επεξεργασία των λύσεων των παραδειγμάτων με το πακέτο SAS καθώς και για την σύντομη εισαγωγή στην χρήση του και τον υποψήφιο διδάκτορα του Τμήματος Μ. Περάκη για την επιμέλεια της xiv

14 ταξινόμησης των ασκήσεων του βιβλίου. Η συγγραφέας θα ήθελε επίσης να ευχαριστήσει την συνεργάτιδά της Α. Σμυρνάκη για την ευσυνείδητη και επιμελημένη εργασία της πληκτρολόγησης του κειμένου στις διάφορες μορφές του κατά τις διαφορετικές φάσεις της διαμόρφωσής του στην παρούσα μορφή του όπως, επίσης, και τον Β. Πανάρετο για την σχεδίαση και επιμέλεια του εξωφύλλου. Ευδοκία Ξεκαλάκη Οκτώβριος, 2001 xv

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ B ΕΚΔΟΣΗ ΑΘΗΝΑ 2004 ΠΡΟΛΟΓΟΣ Η συλλογή και επεξεργασία δεδομένων από πεπερασμένους πληθυσμούς

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ Ι. ΠΑΝΑΡΕΤΟΥ & Ε. ΞΕΚΑΛΑΚΗ Καθηγητών του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ (Εισαγωγή στις Πιθανότητες και την Στατιστική Συμπερασματολογία)

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου ΠΡΟΛΟΓΟΣ Η γραμμική παλινδρόμηση χρησιμοποιείται για την μελέτη των σχέσεων μεταξύ μετρήσιμων μεταβλητών. Γενικότερα, η γραμμική στατιστική συμπερασματολογία αποτελεί ένα ευρύ πεδίο της στατιστικής ανάλυσης

Διαβάστε περισσότερα

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3)

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 2 ο Εξάμηνο του Ακαδημαϊκού Έτους 2015-2016 ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Αντώνης Κ.

Διαβάστε περισσότερα

Π Α Ρ Α Ρ Τ Η Μ Α. Πίνακας 9. p ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon

Π Α Ρ Α Ρ Τ Η Μ Α. Πίνακας 9. p ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon ΠΙΝΑΚΕΣ Π Α Ρ Α Ρ Τ Η Μ Α Πίνακας 1. Διωνυμική Κατανομή Πίνακας 2. Τυποποιημένη Κανονική Κατανομή Πίνακας 3. Oρια Εμπιστοσύνης για την Πιθανότητα p της Διωνυμικής Κατανομής Πίνακας 4. Ποσοστιαία Σημεία

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ Εξάμηνο Υ/Ε Ώρες Θεωρίας Ώρες Ασκήσης Διδακτικές μονάδες ECTS A Υ 3 3 4 6 Διδάσκουσα Μ. Αλεξίου Χατζάκη, Επίκ. Καθηγήτρια Γεν. Βιολογίας. Aντικειμενικοί στόχοι του μαθήματος Οι στόχοι

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

Στατιστική ανάλυση αποτελεσμάτων

Στατιστική ανάλυση αποτελεσμάτων HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Στατιστική ανάλυση αποτελεσμάτων Βασίλης Αγγελής Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Αιγαίου Κατερίνα Δημάκη Αν. Καθηγήτρια

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Συνοπτικά περιεχόμενα

Συνοπτικά περιεχόμενα b Συνοπτικά περιεχόμενα 1 Τι είναι η στατιστική;... 25 2 Περιγραφικές τεχνικές... 37 3 Επιστήμη και τέχνη των διαγραμματικών παρουσιάσεων... 119 4 Αριθμητικές μέθοδοι της περιγραφικής στατιστικής... 141

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Μάστερ στην Εφαρµοσµένη Στατιστική

Μάστερ στην Εφαρµοσµένη Στατιστική Μάστερ στην Εφαρµοσµένη Στατιστική Πρότυπο Πρόγραµµα Master Εξάµηνο Σπουδών Κωδικός Τίτλος Μαθήµατος ιδακτικές Μονάδες 1 ο Εξάµηνο ΜΑΣ650 Μαθηµατική Στατιστική 10 ΜΑΣ655 ειγµατοληψία 10 ΜΑΣ658 Στατιστικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ Ι ΥΛΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΚΑΙ Ο ΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. Σάββας Παπαδόπουλος metrika@otenet.gr http://www.riskmetrica.wordpress.

ΣΤΑΤΙΣΤΙΚΗ Ι ΥΛΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΚΑΙ Ο ΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. Σάββας Παπαδόπουλος metrika@otenet.gr http://www.riskmetrica.wordpress. ΣΤΑΤΙΣΤΙΚΗ Ι Η Ύλη του µαθήµατος είναι στις διαφάνειες (slides) τα οποία καλύφθηκαν στην τάξη και βρίσκονται στην ιστοσελίδα: ανεξάρτητα µε το πιο βιβλίο που χρησιµοποιείται. Μερικά από τα θέµατα καλύπτονται

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 Πίνακας Περιεχομένων Πρόλογος... 17 ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 (Basic Sampling Techniques and Questionnaire Analysis using

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Θεωρία και Εφαρμογές Επεξεργασίας Πληροφορίας 2.

Διαβάστε περισσότερα

viii 20 Δένδρα van Emde Boas 543

viii 20 Δένδρα van Emde Boas 543 Περιεχόμενα Πρόλογος xi I Θεμελιώδεις έννοιες Εισαγωγή 3 1 Ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες 5 1.1 Αλγόριθμοι 5 1.2 Οι αλγόριθμοι σαν τεχνολογία 12 2 Προκαταρκτικές έννοιες και παρατηρήσεις

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Μέρος Α. ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων

ΠΕΡΙΕΧΟΜΕΝΑ. Μέρος Α. ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... vii Μέρος Α ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων Πρόλογος Α Μέρους... 3 Αρχικές πληροφορίες και

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Το 1965, από τον Conover και πάλι προτάθηκε ένας άλλος έλεγχος τύπου Smirnov για k ανεξάρτητα δείγματα. Ο έλεγχος αυτός διαφέρει από τον προηγούμενο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ ΚΕΦΑΛΑΙO 5 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ Στο προηγούμενο κεφάλαιο εξετάσαμε διάφορες μορφές ελέγχου της υπόθεσης ότι ένα δείγμα παρατηρήσεων προέρχεται από κάποια συγκεκριμένη κατανομή. Στην

Διαβάστε περισσότερα

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Δυστυχώς, κάποτε, κάποιοι «αρμόδιοι» απεφάσισαν να μη διδάσκονται στο Λύκειο όλα τα πεδία της Φυσικής! Μεταξύ αυτών καταλέγεται και το πεδίο της

Δυστυχώς, κάποτε, κάποιοι «αρμόδιοι» απεφάσισαν να μη διδάσκονται στο Λύκειο όλα τα πεδία της Φυσικής! Μεταξύ αυτών καταλέγεται και το πεδίο της ΠΡΟΛΟΓΟΣ Το βιβλίο αυτό με τίτλο «Λυμένες Ασκήσεις Μουσικής Ακουστικής» απευθύνεται κυρίως στους φοιτητές μου στο Τμήμα Μουσικών Σπουδών του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών, στους φοιτητές

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ ΠΕΡΙΕΧOΜΕΝΑ Πρόλογος στη δεύτερη έκδοση Πρόλογος στην πρώτη έκδοση Εισαγωγή Τι είναι η μεθοδολογία έρευνας Οι μέθοδοι έρευνας ΜEΡOΣ A : ΓNΩΡΙΜΙΑ ΜΕ ΤΗΝ ΕΠΙΣΤΗΜOΝΙΚΗ ΕΡΓΑΣΙΑ ΚΕΦΑΛΑΙO 1: Γενικά για την επιστημονική

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΠΑΛΑΙΟΤΕΡΩΝ ΕΤΩΝ

ΚΕΦΑΛΑΙΟ 5 ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΠΑΛΑΙΟΤΕΡΩΝ ΕΤΩΝ ΚΕΦΑΛΑΙΟ 5 ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΠΑΛΑΙΟΤΕΡΩΝ ΕΤΩΝ Εισαγωγή Στο κεφάλαιο αυτό διερευνούµε αν το να είναι κανείς υποψήφιος παλαιοτέρων ετών, που έχει δώσει τουλάχιστον µια φορά εξετάσεις, του προσδίδει

Διαβάστε περισσότερα

Περιεχόμενα. ΚΕΦΑΛΑΙΟ 1 Κατευθύνσεις στην έρευνα των επιστημών υγείας. ΚΕΦΑΛΑΙΟ 2 Έρευνα και θεωρία

Περιεχόμενα. ΚΕΦΑΛΑΙΟ 1 Κατευθύνσεις στην έρευνα των επιστημών υγείας. ΚΕΦΑΛΑΙΟ 2 Έρευνα και θεωρία Περιεχόμενα Σχετικά με τους συγγραφείς... ΧΙΙΙ Πρόλογος... XV Eισαγωγή...XVΙΙ ΚΕΦΑΛΑΙΟ 1 Κατευθύνσεις στην έρευνα των επιστημών υγείας Εισαγωγή... 1 Τι είναι η έρευνα;... 2 Τι είναι η έρευνα των επιστημών

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης Περιγραφική Στατιστική Ακαδ. Έτος 2012-2013 1 ο εξάμηνο Κ. Πολίτης 1 2 Η στατιστική ασχολείται με τη συλλογή, οργάνωση, παρουσίαση και ανάλυση πληροφοριών. Οι πληροφορίες αυτές, πολύ συχνά αριθμητικές,

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

Δημήτρης Κουτσογιάννης. Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων ΣΤΑΤΙΣΤΙΚΗ ΥΔΡΟΛΟΓΙΑ

Δημήτρης Κουτσογιάννης. Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων ΣΤΑΤΙΣΤΙΚΗ ΥΔΡΟΛΟΓΙΑ Δημήτρης Κουτσογιάννης Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων ΣΤΑΤΙΣΤΙΚΗ ΥΔΡΟΛΟΓΙΑ Έκδοση 4 Αθήνα 1997 ΣΤΑΤΙΣΤΙΚΗ ΥΔΡΟΛΟΓΙΑ Δημήτρης Κουτσογιάννης Επίκουρος Καθηγητής Τομέας Υδατικών Πόρων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΡΑΓΙΑΝΝΑΚΗΣ ΔΗΜΗΤΡΙΟΣ

ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΡΑΓΙΑΝΝΑΚΗΣ ΔΗΜΗΤΡΙΟΣ ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΡΑΓΙΑΝΝΑΚΗΣ ΔΗΜΗΤΡΙΟΣ _CONT_.indd iii τίτλος: ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ συγγραφέας: Καραγιαννάκης Δημήτριος 2014 Εκδόσεις Δίσιγμα Για την ελληνική

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ Πειραιάς, 19-04-2016 Θέμα: Κατατάξεις Πτυχιούχων για το Ακαδημαϊκό Έτος 2016-2017

Διαβάστε περισσότερα

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ . ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ (RANK REGRESSION).1 Μονότονη Παλινδρόμηση (Monotonic Regression) Από τη γραφική παράσταση των δεδομένων του προηγουμένου προβλήματος παρατηρούμε ότι τα ζευγάρια (Χ i, i )

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ Πειραιάς, 2/10/2014 ΑΝΑΚΟΙΝΩΣΗ ΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Η κατάταξη των υποψηφίων στο Τμήμα για το ακαδημαϊκό έτος 2014-15, θα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Στόχοι Ο κύριος στόχος του μαθήματος είναι να βοηθήσει τους φοιτητές να αναπτύξουν πρακτικές

Διαβάστε περισσότερα

Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ. Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών.

Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ. Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών. Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών. Η μέση τιμή ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ

ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ Κατηγορίες ασκήσεων στα απόλυτα ΠΕΡΙΠΤΩΣΗ : Εξισώσεις που περιέχουν απόλυτο μιας παράστασης και όχι παράταση του x έξω από το απόλυτο. α) Λύνουμε ως προς το απόλυτο

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-07 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΥΛΗ ΕΞΕΤΑΣΕΩΝ ΕΑΡΙΝΟΥ ΕΞΑΜΗΝΟΥ 2012-2013. zxcvbnmσγqwφertyuioσδφpγρaηsόρ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ & ΠΡΟΝΟΙΑΣ

ΥΛΗ ΕΞΕΤΑΣΕΩΝ ΕΑΡΙΝΟΥ ΕΞΑΜΗΝΟΥ 2012-2013. zxcvbnmσγqwφertyuioσδφpγρaηsόρ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ & ΠΡΟΝΟΙΑΣ qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj klzxcvλοπbnαmqwertyuiopasdfghjkl ΥΛΗ ΕΞΕΤΑΣΕΩΝ ΕΑΡΙΝΟΥ ΕΞΑΜΗΝΟΥ 2012-2013

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή (ΨΥΧ-122) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 1 Εισαγωγή ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να

ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να N161 _ (262) Στατιστική στη Φυσική Αγωγή Βιβλία ή 1 ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ

ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ Θ = ΘΕΩΡΙΑ Ε = ΕΡΓΑΣΤΗΡΙΟ Σ = ΣΥΝΟΛΟ ΔΜ = ΔΙΔΑΚΤΙΚΕΣ ΜΟΝΑΔΕΣ ECTS = ΠΙΣΤΩΤΙΚΕΣ ΜΟΝΑΔΕΣ 1 ο ΕΞΑΜΗΝΟ Α ΕΤΟΣ 1ΚΠ01 Μαθηματική Ανάλυση Ι 4 1 5 5 5 1ΚΠ02 Γραμμική Άλγεβρα 4 5

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. iii

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. iii ΕΥΧΑΡΙΣΤΙΕΣ Ευχαριστώ τον Προϊστάμενο της Διεύθυνσης Δευτεροβάθμιας εκπαίδευσης του νομού Χανίων κύριο Βασίλειο Γλυμιδάκη, για τη διευκόλυνση που μου παρείχε έτσι ώστε να έχω πρόσβαση στα δεδομένα κάθε

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού Με τις στατιστικές μεθόδους επιδιώκεται αφενός η συνοπτική αλλά εμπεριστατωμένη παρουσίαση των

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

3.4.1 Ο Συντελεστής ρ του Spearman

3.4.1 Ο Συντελεστής ρ του Spearman 3.4. Ο Συντελεστής ρ του Spearma Έστω (, ), (, ),..., (, ) ένα δείγμα παρατηρήσεων πάνω στο τυχαίο διάνυσμα (, ). Έστω ( ) ο βαθμός ή η τάξη μεγέθους της μεταβλητής όταν αυτή συγκρίνεται με τις άλλες Χ

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Β ΤΟΜΟΣ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα και τη σφραγίδα του εκδότη ISBN SET: 960-56-026-9

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis)

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΚΕΦΑΛΑΙΟ 23 ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΕΙΣΑΓΩΓΗ Έχοντας παρουσιάσει τις βασικές έννοιες των ελέγχων υποθέσεων, θα ήταν, ίσως, χρήσιμο να αναφερθούμε σε μια άλλη περιοχή στατιστικής συμπερασματολογίας

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ Αστική Μη Κερδοσκοπική Εταιρεία- ISO 9001 Σαπφούς 3, 81100 Μυτιλήνη (1ος Όροφος) 2251054739 (09:00-14:30) academy@aigaion.org civilacademy.ucoz.org «ΠΡΟΓΡΑΜΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

329 Στατιστικής Οικονομικού Παν. Αθήνας

329 Στατιστικής Οικονομικού Παν. Αθήνας 329 Στατιστικής Οικονομικού Παν. Αθήνας Σκοπός Το Τμήμα σκοπό έχει να αναδείξει επιστήμονες ικανούς να σχεδιάζουν, να αναλύουν και να επεξεργάζονται στατιστικές καθώς επίσης και να δημιουργούν προγράμματα

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο Εαρινό εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜEΡOΣ A : ΓNΩΡΙΜΙΑ ΜΕ ΤΗΝ ΕΠΙΣΤΗΜOΝΙΚΗ ΕΡΓΑΣΙΑ

ΠΕΡΙΕΧΟΜΕΝΑ ΜEΡOΣ A : ΓNΩΡΙΜΙΑ ΜΕ ΤΗΝ ΕΠΙΣΤΗΜOΝΙΚΗ ΕΡΓΑΣΙΑ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος στη δεύτερη έκδοση........................................... 13 Πρόλογος στην πρώτη έκδοση............................................ 17 Εισαγωγή................................................................

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Άλγεβρα και Στοιχεία Πιθανοτήτων

Άλγεβρα και Στοιχεία Πιθανοτήτων Άλγεβρα και Στοιχεία Πιθανοτήτων I. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως της πιθανότητας, της απόλυτης τιμής, των προόδων, της συνάρτησης

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΚΑΤΑΝΟΜΩΝ ΒΑΣΙΖΟΜΕΝΟΙ ΣΕ ΠΕΡΙΣΣΟΤΕΡΑ ΑΠΟ ΔΥΟ ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΚΑΤΑΝΟΜΩΝ ΒΑΣΙΖΟΜΕΝΟΙ ΣΕ ΠΕΡΙΣΣΟΤΕΡΑ ΑΠΟ ΔΥΟ ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΚΑΤΑΝΟΜΩΝ ΒΑΣΙΖΟΜΕΝΟΙ ΣΕ ΠΕΡΙΣΣΟΤΕΡΑ ΑΠΟ ΔΥΟ ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Οι έλεγχοι που εξετάζονται στο κεφάλαιο αυτό αποτελούν επεκτάσεις για την περίπτωση περισσοτέρων

Διαβάστε περισσότερα

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Στατιστικοί Έλεγχοι Υποθέσεων Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Τι θέλουμε να συγκρίνουμε; Δύο δείγματα Μέση αρτηριακή πίεση σε δύο ομάδες Πιθανότητα θανάτου με δύο διαφορετικά

Διαβάστε περισσότερα

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι...

Πρόλογος. 1 Εισαγωγή Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο Μερικά Ιστορικά Στοιχεία Ενα Παράδοξο Παιχνίδι... ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xv 1 Εισαγωγή 1 1.1 Θεωρία Παιγνίων υό Λόγια για το Αντικείµενο........ 1 1.2 Μερικά Ιστορικά Στοιχεία..................... 3 1.3 Ενα Παράδοξο Παιχνίδι...................... 4 Μέρος

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

1 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΙΟ ΛΟΓΟ;...19 ΓΝΩΣΗ ΤΩΝ ΕΝΝΟΙΩΝ...76 ΑΠΑΝΤΉΣΕΙΣ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...27 ΠΡΑΚΤΙΚΗ ΕΦΑΡΜΟΓΗ...57 ΑΠΑΝΤΗΣΕΙΣ...

1 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΙΟ ΛΟΓΟ;...19 ΓΝΩΣΗ ΤΩΝ ΕΝΝΟΙΩΝ...76 ΑΠΑΝΤΉΣΕΙΣ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...27 ΠΡΑΚΤΙΚΗ ΕΦΑΡΜΟΓΗ...57 ΑΠΑΝΤΗΣΕΙΣ... ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...13 Κατάλογος Συμβόλων και Συντμήσεων...15 1 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΙΟ ΛΟΓΟ;...19 Χρήση Στατιστικών Τεχνικών στις Επιχειρήσεις...19 Οι Δύο Έννοιες της Λέξης Στατιστική...20 Πληθυσμοί και

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. E. Αναστασίου Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α ΕΝΑΡΞΗ ΜΑΘΗΜΑΤΟΣ Βόλος, 2015-2016 1 ΓΕΝΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΜΑΘΗΜΑ: ΠΙΣΤΩΤΙΚΕΣ ΜΟΝΑΔΕΣ

Διαβάστε περισσότερα