CURS 9 MECANICA CONSTRUCŢIILOR
|
|
- Δημήτηρ Αναστασούλα Μαγγίνας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 CURS 9 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu
2 CINEMATICA
3 NOŢIUNI DE BAZĂ ÎN CINEMATICA Cinematica studiază mişcările mecanice ale corpurilor, fără a lua în considerare masa acestora şi acţiunile care se exercită asupra lor. Studiind numai aspectul mişcărilor din punct de vedere geometric, această parte a mecanicii se mai numeşte şi geometria mişcărilor. Prin urmare, în cinematică se folosesc mărimile fundamentale de spaţiu şi timp. Mişcarea este o noţiune care cuprinde în sfera ei următoarele elemente: corpul sau mobilul care efectuează mişcarea, mediul sau spaţiul în care se desfăşoară mişcarea şi sistemul de referinţă în raport cu care se studiază mişcarea. Atunci când reperul este considerat fix mişcarea se numeşte absolută, iar când reperul este considerat mobil mişcarea se numeşte relativă.
4 Problema generală Cunoaşterea mişcării unui punct material implică răspunsul la două întrebări: unde se găseşte la orice moment de timp şi cum se mişcă faţă de sistemul de referinţă considerat. În general, răspunsul se obţine în mod direct dacă este cunoscut vectorul de poziţie r ca funcţie de timp. r = r(t) (1)
5 Această funcţie vectorială trebuie să fie: continuă, uniformă (punctul nu poate ocupa simultan două poziţii în spaţiu), finită în modul şi derivabilă de cel puţin două ori. Relaţia vectorială (1) reprezintă legea (vectorială) de mişcare a punctului material. r = r(t) (1) Vectorul r este definit de trei funcţii scalare (coordonate) în spaţiu, de două pe o suprafaţă şi de una pe o curbă, din care rezultă că punctul are trei, două şi respectiv un grad de libertate.
6 Traiectoria Traiectoria este locul geometric al poziţiilor succesive pe care punctul material le ocupă în spaţiu, în timpul mişcării. Între traiectoria şi curba pe care se deplasează punctul nu există totdeauna o coincidenţă. Ţinând cont că mişcarea începe de la un anumit moment t 0 şi se termină la un alt moment t 1, iar timpul este strict crescător, domeniul de existenţă al acestuia impune condiţii restrictive coordonatelor geometrice. Spre exemplu, pe un cerc, un punct poate parcurge numai un arc sau poate parcurge de mai multe ori cercul, iar pe o dreaptă poate parcurge numai un segment din aceasta, dar nu toată dreapta.
7
8 Referitor la definirea curbei traiectorii a punctului material se impun unele precizări referitoare la gradul de mobilitate a punctului material. a) În cazul punctului material liber (gradul de mobilitate este 3) traiectoria rezultă din expresia vectorului de poziţie r(t) care se defineşte în general cu ajutorul a trei funcţii scalare. În sistemul de referinţă cartezian, triortogonal, drept aceste funcţii sunt: iar vectorul de poziţie r(t) se poate scrie: (2) (3) unde i, j, k sunt versorii axelor Ox, Oy, Oz.
9 În sistemul coordonatelor cilindrice cele trei funcţii scalare sunt: raza polară r, unghiul polar θ şi cota punctului z. Se pot scrie sub forma: (4) Vectorul de poziţie variabil are expresia în acest caz: Ecuaţiile (2) şi (4) sunt ecuaţiile parametrice ale traiectoriei. Eliminând parametrul timp (t) se poate obţine ecuaţia curbei respective. (5)
10 b) În cazul punctului material cu legături gradul de mobilitate este mai mic decât trei (cât avea punctul material liber), dar nu mai puţin de unu. Rezultă că se studiază mişcarea punctului cu una sau două legături simple. Spre deosebire de cazul punctului material liber, traiectoria punctului material cu legături poate avea o existenţă concretă, mergând până la identificarea ei cu legătura aplicată. Astfel, în cazul punctului material cu un grad de libertate şi având în vedere că traiectoria este o curbă continuă şi că aceasta are în orice punct o tangentă unică, atunci poziţia punctului se poate stabili cu ajutorul unui singur parametru scalar: coordonata curbilinie s care reprezintă arcul de curbă, măsurat de la o origine a arcelor M 0, în sensul mişcării.
11 Relaţia (6) reprezintă ecuaţia orară a mişcării unui punct pe o curbă. De exemplu, în cazul mişcării punctului pe cerc, lungimea arcului s este egală cu produsul razei R prin unghiul la centru θ: s = Rθ(t). În cazul când legăturile sunt date explicit în enunţul problemei, trebuie ţinut cont ca mişcarea (adică vectorul de poziţie r(t)) să fie compatibilă cu acele legături.
12 Viteza Răspunsul la întrebarea la întrebarea cum se mişcă punctul se obţine introducând pe rând noţiunile de viteză, apoi de acceleraţie. Astfel, considerând două mobile, acestea pot parcurge distanţe diferite în intervale de timp egale sau aceleaşi distanţe în intervale de timp diferite, rezultă că introducerea unei prime noţiuni, numită viteză, este absolut necesară. Se consideră un punct pe o traiectorie curbilinie mai întâi în poziţia A 1, apoi în poziţia vecină A 2. Intervalul de timp t pentru parcurgerea arcului A 1 A 2 fiind foarte mic, se poate asimila elementul de arc cu elementul de coardă. Se defineşte ca viteză medie, raportul (7)
13 Dacă intervalul de timp tinde către zero, adică A 1 tinde către A 2, viteza medie devine viteza instantanee: (8)
14 Stabilirea elementelor caracteristice vectorului viteză se află din relaţia (8): (9) deoarece (10) unde s-a notat cu versorul tangentei la curbă. Prin urmare, viteza este un vector legat, cu direcţia tangentă la curbă şi sensul dat de sensul mişcării. Din punct de vedere dimensional, ecuaţia vitezei este [v] = LT -1, iar ca unitate de măsură în SI este metru pe secundă (m/s).
15 Acceleraţia Noţiunea de acceleraţie este introdusă pentru a caracteriza modul de variaţie al vitezei în timpul mişcării, ca direcţie, sens şi modul. Variaţia vitezei v între două poziţii vecine A 1 şi A 2, raportată la intervalul de timp t se defineşte ca o mărime medie vectorială şi anume, acceleraţia medie: (11)
16 Acceleraţia instantanee a (numită simplu acceleraţie) se obţine prin trecere la limită, adică: (11) Ca şi viteza, acceleraţia este un vector legat punctului în mişcare. Ecuaţia de dimensiuni a acceleraţiei este [a]= LT 2. Unitatea de măsură pentru acceleraţie în SI este m/s 2.
17 Studiul mişcării punctului material în sistemul de coordonate cartezian
18 Studiul mişcării punctului material în sistemul de coordonate polar (cilindrice)
19 Viteza şi acceleraţia unghiulară Poziţia unui punct pe o traiectorie circulară poate fi precizată cu ajutorul unui unghi polar θ, raportat la o axă fixă: (12) Pe cercul din figura alăturată se consideră două poziţii succesive A1 şi A2.
20 Analog cu viteza medie, viteza unghiulară medie se defineşte: (13) Viteza unghiulară instantanee este: iar acceleraţia instantanee (14) (15) Dimensiunile acestor mărimi fizice sunt [ω] = T -1 şi [ε] = T -2, iar unităţile lor de măsură sunt respectiv rad/s şi rad/s 2.
21 Clasificarea mişcărilor Criteriile de clasificare folosite în mod obişnuit sunt după forma traiectoriei (rectilinie sau curbilinie) şi după modul de variaţie a vitezei sau a acceleraţiei. Mişcarea în care viteza este constantă în modul se numeşte mişcare uniformă, iar mişcarea în care viteza este variabilă se numeşte mişcare variată. Dacă viteza este o funcţie liniară în raport cu timpul, mişcarea se numeşte uniform variată. Se cunosc două posibilităţi: dacă viteza şi componenta tangenţială a acceleraţiei au acelaşi sens, mişcarea este uniform accelerată, iar dacă au sensuri contrare, mişcarea este uniform încetinită.
22 Studiul mişcării punctului material în triedrul lui Frenet Se consideră un punct material M în mişcare pe o traiectorie C, poziţionat prin arcul de curbă s faţă de poziţia iniţială M 0, ca în figură. Triedrul lui Frenet
23 Triedrul lui Frenet este un sistem triortogonal drept, în ordinea axelor,,, cu originea mobilă plasată în punctul material M în mişcare şi având următoarele axe: axa tangentă la curbă, de versor, orientat pozitiv în sensul mişcării, adică în sensul creşterii arcului s; axa normală principală, de versor, cu direcţia şi sensul către centrul de curbură; Planul (, ) se numeşte plan osculator. axa binormală, de versor, perpendiculară pe planul osculator şi cu sensul pozitiv orientat astfel încât ordinea,, să formeze un sistem drept. Făcând apel la formulele lui Frenet: unde ρ este curbura, obţinem: (16) (17)
24 Deci viteza punctului material are direcţia axei normale principale.. (18) Din relaţia (18) rezultă că acceleraţia punctului material are două componente în planul osculator: (19) Acceleraţia tangenţială a ne oferă informaţii în legătură cu viteza de variaţie a mărimii vectorului viteză, iar acceleraţia normală a oferă informaţii legate de viteza de variaţie a direcţiei vectorului viteză.
25 Cazuri particulare de mişcare ale punctului material a) mişcare rectilinie uniformă: Mişcarea punctului material este rectilinie şi uniformă atunci când traiectoria punctului este o dreaptă şi modulul vitezei este constant în timp. (20) b) mişcare rectilinie uniform variată: Traiectoria punctului material este o dreaptă şi modulul acceleraţiei este constant în timp. (21)
26 c) mişcare circulară uniformă: (22) d) mişcare rectilinie oscilatorie armonică: (23)
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραCurs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραCURS MECANICA CONSTRUCŢIILOR
CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότεραEcuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Διαβάστε περισσότεραDefiniţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότεραConice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότεραCurs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Διαβάστε περισσότεραV.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Διαβάστε περισσότερα2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Διαβάστε περισσότεραCurs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότερα3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότεραAplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότεραIII. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Διαβάστε περισσότεραAlgebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Διαβάστε περισσότεραSisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Διαβάστε περισσότερα1. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t = 1.
. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t.5t (m/s). Să se calculeze: a) dependența de timp a spațiului străbătut
Διαβάστε περισσότερα15. Se dă bara O 1 AB, îndoită în unghi drept care se roteşte faţă de O 1 cu viteza unghiulară ω=const, axa se rotaţie fiind perpendiculară pe planul
INEMTI 1. Se consideră mecanismul plan din figură, compus din manivelele 1 şi 2, respectiv biela legate intre ele prin articulaţiile cilindrice şi. Manivela 1 se roteşte cu viteza unghiulară constantă
Διαβάστε περισσότεραR R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Διαβάστε περισσότεραGeometria diferenţială a curbelor în spaţiu
Geometria diferenţială a curbelor în spaţiu A. U. Thor 0.1 Generalităţi Definitia 1.1 Se numeşte curbă înspaţiu dată parametric mulţimea punctelor M (x, y, z) din spaţiuacăror coordonate sunt date de x
Διαβάστε περισσότεραa. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Διαβάστε περισσότεραSeminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Διαβάστε περισσότεραCapitolul 9. Geometrie analitică. 9.1 Repere
Capitolul 9 Geometrie analitică 9.1 Repere Vom considera spaţiile liniare (X, +,, R)în careelementelespaţiului X sunt vectorii de pe odreaptă, V 1, dintr-un plan, V sau din spaţiu, V 3 (adică X V 1 sau
Διαβάστε περισσότεραCUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1
CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare
Διαβάστε περισσότεραConice - Câteva proprietǎţi elementare
Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii
Διαβάστε περισσότεραx 1 = x x 2 + t, x 2 = 2 x 1 + x 1 + e t, x 1 (0) = 1, x 2 (0) = 1; (c) Să se studieze stabilitatea soluţiei nule pentru sistemul
Seminar mecanică 1. Să se găsească soluţiile următoarelor probleme Cauchy şi să se indice intervalul maxim de existenţă a soluţiei: (a) x = 1 x, t 0, x(1) = 0; t (b) (1 t x) x = t + x, t R, x(0) = 0; (c)
Διαβάστε περισσότεραCUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1
CURS 5 REDUCEREA SISTEMELOR DE FORŢE (CONTINUARE) CUPRINS 5. Reducerea sistemelor de forţe (continuare)...... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 5.1. Teorema lui Varignon pentru sisteme
Διαβάστε περισσότερα2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότεραSeminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Διαβάστε περισσότεραFIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE
FIZICĂ Oscilatii mecanice ş.l. dr. Marius COSTACHE 3.1. OSCILAŢII. Noţiuni generale Oscilaţii mecanice Oscilaţia fenomenul fizic în decursul căruia o anumită mărime fizică prezintă o variaţie periodică
Διαβάστε περισσότεραCURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
Διαβάστε περισσότεραFunctii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
Διαβάστε περισσότεραRĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Διαβάστε περισσότεραProfesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Διαβάστε περισσότεραCapitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
Διαβάστε περισσότεραMiscarea oscilatorie armonica ( Fisa nr. 2 )
Miscarea oscilatorie armonica ( Fisa nr. 2 ) In prima fisa publicata pe site-ul didactic.ro ( Miscarea armonica) am explicat parametrii ce definesc miscarea oscilatorie ( perioda, frecventa ) dar nu am
Διαβάστε περισσότεραCUPRINS 2. Sisteme de forţe... 1 Cuprins..1
CURS 2 SISTEME DE FORŢE CUPRINS 2. Sisteme de forţe.... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 2.1. Forţa...2 Test de autoevaluare 1...3 2.2. Proiecţia forţei pe o axă. Componenta forţei
Διαβάστε περισσότεραCapitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
Διαβάστε περισσότεραVectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.
liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia
Διαβάστε περισσότεραCAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan
CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU 81 Curbe în plan I Definiţia analitică a curbelor plane În capitolul 7 am studiat deja câteva eemple de curbe plane, amintim aici conicele nedegenerate: elipsa, hiperbola
Διαβάστε περισσότεραI. CINEMATICA INTRODUCERE. mișcarea mecanică Cinematica II. Dinamica III. Statica I. Cinematica (punctului material). Noțiuni introductive.
I. CINEMATICA MOTTO: La început a fost mecanica! Max von Laue, "Istoria fizicii" INTRODUCERE. Mecanica este parte a fizicii care studiază primul și cel mai simplu tip de mișcare observat de om, mișcarea
Διαβάστε περισσότεραz a + c 0 + c 1 (z a)
1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei
Διαβάστε περισσότερα5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Διαβάστε περισσότεραLucrul si energia mecanica
Lucrul si energia mecanica 1 Lucrul si energia mecanica I. Lucrul mecanic este produsul dintre forta si deplasare: Daca forta este constanta, atunci dl = F dr. L 1 = F r 1 cos α, unde r 1 este modulul
Διαβάστε περισσότεραCOLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Διαβάστε περισσότεραELEMENTE DE GEOMETRIE. Dorel Fetcu
ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială
Διαβάστε περισσότεραLectia VII Dreapta si planul
Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.
Διαβάστε περισσότεραSEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Διαβάστε περισσότεραSERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Διαβάστε περισσότεραProblema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Διαβάστε περισσότερα1. Introducere in Fizică
FIZICA se ocupă cu studiul proprietăţilor şi naturii materiei, a diferitelor forme de energie şi a metodelor prin care materia şi enegia interacţionează în lumea în care ne înconjoară.. Introducere in
Διαβάστε περισσότεραSubiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Διαβάστε περισσότεραCapitolul 1. Noțiuni Generale. 1.1 Definiții
Capitolul 1 Noțiuni Generale 1.1 Definiții Forța este acțiunea asupra unui corp care produce accelerația acestuia cu condiția ca asupra corpului să nu acționeze şi alte forțe de sens contrar primeia. Forța
Διαβάστε περισσότεραcateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC
.Masurarea unghiurilor intr-un triunghi dreptunghic sin B= cateta opusa ipotenuza = AC BC cateta alaturata, cos B= AB ipotenuza BC cateta opusa AC cateta alaturata AB tg B=, ctg B= cateta alaturata AB
Διαβάστε περισσότεραCurs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Διαβάστε περισσότεραCURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.
Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.
Διαβάστε περισσότεραMetode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Διαβάστε περισσότεραa. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
Διαβάστε περισσότεραFig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Διαβάστε περισσότεραToate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Διαβάστε περισσότεραSpatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă
Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare
Διαβάστε περισσότεραLectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane
Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii
Διαβάστε περισσότεραBrutus Demşoreanu. - cu aplicaţii -
Brutus Demşoreanu Mecanică teoretică - cu aplicaţii - TIMIŞOARA 00 Tehnoredactarea în L A TEX ε aparţine autorului. Copyright c 00, B. Demşoreanu Cuprins I Mecanică raţională 7 1 Concepte generale 9 1.1
Διαβάστε περισσότεραriptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Διαβάστε περισσότεραOANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }.
ELEMENTE DE SIMETRIE ALE UNEI HIPERCUADRICE IN SPATII AFINE EUCLIDIENE OANA CONSTANTINESCU 1. Centru de simetrie pentru o hipercuadrica afina Pentru inceput cadrul de lucru este un spatiu an real de dimensiune
Διαβάστε περισσότεραNOŢIUNI INTRODUCTIVE
1 NOŢIUNI INTRODUCTIVE 1.1. Spaţiul vectorial R n Mulţimea R n reprezintă mulţimea tuturor n-uplelor (x 1,..., x n ) cu x 1,..., x n numere reale, adică R n = {(x 1,..., x n ) : x 1,..., x n R}. Un n-uplu
Διαβάστε περισσότεραDEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0
DEFINITIVAT 1993 TIMIŞOARA PROFESORI I 1. a) Metodica predării noţiunii de derivată a unei funcţii. b) Să se reprezinte grafic funci a sinx, dacă x (0,2π] f : [0,2π] R, f(x) = x. 0, dacă x = 0 2. Fie G
Διαβάστε περισσότερα2.3 Geometria analitică liniarăînspaţiu
2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea
Διαβάστε περισσότεραCap. I NOŢIUNI FUNDAMENTALE DESPRE VECTORI
Cap. I NOŢIUNI FUNDAMENTALE DESPRE VECTORI In mecanică există mărimi scalare sau scalari şi mărimi vectoriale sau vectori. Mărimile scalare (scalarii) sunt complet determinate prin valoarea lor numerică
Διαβάστε περισσότεραa carei ecuatie matriceala este data in raport cu R.
POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai
Διαβάστε περισσότεραEsalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Διαβάστε περισσότεραCONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Διαβάστε περισσότεραAsupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Διαβάστε περισσότεραEcuatii trigonometrice
Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos
Διαβάστε περισσότεραBrutus Demşoreanu. Mecanica analitică. - Probleme -
Brutus Demşoreanu Mecanica analitică - Probleme - TIMIŞOARA 003 Tehnoredactarea în L A TEX ε aparţine autorului. Copyright c 003, B. Demşoreanu Cuprins 1 Mecanica newtoniană 5 1.1 Problema determinării
Διαβάστε περισσότεραMARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Διαβάστε περισσότερα2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede
2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind
Διαβάστε περισσότεραy y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =
Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului
Διαβάστε περισσότεραIV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
Διαβάστε περισσότεραCurs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Διαβάστε περισσότερα4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Διαβάστε περισσότεραLucian Maticiuc SEMINAR Conf. dr. Lucian Maticiuc. Capitolul VI. Integrala triplă. Teoria:
Capitolul I: Integrala triplă Conf. dr. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Analiza Matematică II, Semestrul II Conf. dr. Lucian MATICIUC Teoria: SEMINAR 3 Capitolul I. Integrala
Διαβάστε περισσότεραDreapta in plan. = y y 0
Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului
Διαβάστε περισσότερα7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează
TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014
Διαβάστε περισσότεραGEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi
GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE Gabriel POPA, Paul GEORGESCU c August 0, 009, Iaşi Cuprins 1 SPAŢIUL VECTORILOR LIBERI. STRUCTURA AFINĂ 4 SPAŢIUL VECTORILOR LIBERI.
Διαβάστε περισσότερα8 Intervale de încredere
8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată
Διαβάστε περισσότεραBrutus Demşoreanu. Mecanica analitică. - Note de curs -
Brutus Demşoreanu Mecanica analitică - Note de curs - TIMIŞOARA 2003 Tehnoredactarea în L A TEX 2ε aparţine autorului. Copyright c 2003, B. Demşoreanu Cuprins I Mecanica newtoniană 7 1 Elemente de cinematica
Διαβάστε περισσότεραCapitolul 30. Transmisii prin lant
Capitolul 30 Transmisii prin lant T.30.1. Sa se precizeze domeniile de utilizare a transmisiilor prin lant. T.30.2. Sa se precizeze avantajele si dezavantajele transmisiilor prin lant. T.30.3. Realizati
Διαβάστε περισσότεραCercul lui Euler ( al celor nouă puncte și nu numai!)
Cercul lui Euler ( al celor nouă puncte și nu numai!) Prof. ION CĂLINESCU,CNDG, Câmpulung Voi prezenta o abordare simplă a determinării cercului lui Euler, pe baza unei probleme de loc geometric. Preliminarii:
Διαβάστε περισσότεραLucrul mecanic şi energia mecanică.
ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al
Διαβάστε περισσότερα