ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται



Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2012 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΜΑΙΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ. Άρα ο γ.τ. των Μ(z) είναι κύκλος µε κέντρο το Ο(0, 0) και ακτίνα ρ=1

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ΛΥΣΕΙΣ ΙΟΥΝΙΟΣ (

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 28 ΜΑΪΟΥ 2012

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1. Θεωρία (θεώρηµα Fermat) σχολικό βιβλίο, σελ Α2. Θεωρία (ορισµός) σχολικό βιβλίο, σελ Α3.

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

( ) ( ) ΘΕΜΑ 2 ο Α. Είναι. f (x) > 0 e 1 x > 0 1 x > 0 1 > x x < 1. η f είναι γνησίως αύξουσα Στο [ 1, + ) η f είναι γνησίως φθίνουσα.

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012

ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2012

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ Α : Α1. Σχολικό βιβλίο σελίδα 253. Α2. Σχολικό βιβλίο σελίδα 191. Α3. Σχολικό βιβλίο σελίδα 150. Α4. Α)Σ β)σ γ)λ δ)λ ε)λ ΘΕΜΑ Β : Β1.

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

( ) ( ) ( ) ( ) ( ) ( )

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

Κατεύθυνσης. Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Κατεύθυνσης. Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0.

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 253 σχολικού βιβλίου. Έστω x1,

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2015

2015zi 2015zi 2015zi 2015zi 4030zi 4030zi z z

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ÏÑÏÓÇÌÏ ÇÑÁÊËÅÉÏ ( )( ) ( )( ) Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. w w + 1= + 1. α= α.

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 Σχολικό βιβλίο σελ Α2 Σχολικό βιβλίο σελ. 28 Α3. α σωστό, β σωστό, γ λάθος, δ λάθος, ε σωστό. ΘΕΜΑ Β

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

1 1 1 (x yi) x yi = = = 2 (x - 1) + y 2

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 28 MAΪΟΥ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Δευτέρα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ. Α4.) α) Λάθος, β) Σωστό, γ) Λάθος, δ) Σωστό, ε) Σωστό

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ:28/05/2012

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ( ) ( ) ( ) ( )

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

Τομέας Mαθηματικών "ρούλα μακρή"

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2015 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

Επομένως ο γεωμετρικός τόπος των εικόνων του z είναι ο κύκλος με κέντρο

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x

( ) ( ) ΘΕΜΑ Β Β1. Θέτουμε z = x + yi, x, y ΙR Είναι: 2 x + y + 2xi 4 2i = 0 2x + 2y 4 + (2x 2)i = 0. 2y = 2 y = 1 ήy= 1 = = = Άρα = 1+ i, z2. z 1 Β2.

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. c είναι παράγουσες της f στο Δ και κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή G( x) F( x) c,

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013

z 2 2z z 1 Θ Ε Μ Α Β Α 1 : Θεώρημα ςελ. 304 (Σχολικό βιβλίο) Α 2 : Οριςμόσ ςελ. 279 (Σχολικό βιβλίο) Α 3 : Οριςμόσ ςελ. 273 (Σχολικό βιβλίο)

Απαντήσεις Εξεταζόμενη Ύλη: Μιγαδικοί Αριθμοί Όριο Συνέχεια Συνάρτησης Διαφορικός Λογισμός (μέχρι 2.7) 03/01/2014. Θέμα A. Θέμα Β

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 25 MAΪΟΥ 2015 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014

ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ 2012

- + Απαντήσεις. Θέμα Β Β1. Από την Cf παρατηρούμε ότι 0. f x για κάθε (0,4) συνεπώς η f είναι γνήσια αύξουσα στο [4, 5] και γνήσια φθίνουσα στο [0,4].

z - 3i + z + 3i = 2 z - 3i + z - 3i = 2 2 z - 3i = 2 z - 3i = 1 άρα ο γ.τ. των εικόνων του z είναι

Θέµα 3 ο : Έστω οι µιγαδικοί z και z µε z = z = και z z. Έστω ο µιγαδικός αριθµός zz! = z z Να δείξετε ότι: α. z = και z =. z z β.! " R γ.! " ΜΟΝΑΔΕΣ

άρα ο γεωµετρικός τόπος είναι κύκλος µε κέντρο την αρχή Ο (0,0) και ακτίνα ρ = 2. αυτό σηµαίνει ότι οι εικόνες των µιγαδικών w

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6

Λύσεις του διαγωνίσματος στις παραγώγους

Α1. Θεωρία Σελίδες Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Πανελλαδικές εξετάσεις 2015

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΘΕΜΑ Α. Α1. Σχολικό βιβλίο σελίδα 217. Α2. Σχολικό βιβλίο σελίδα 273. Α3. Σχολικό βιβλίο σελίδα 92 Α4. Λ - Σ - Σ - Λ - Σ ΘΕΜΑ Β. B1.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου

ΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ/ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

y = 2 x και y = 2 y 3 } ή

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ (Γ Λυκείου) α) νδο η συνάρτηση f '' = c. (Υπόδ: παραγωγίζω την δοσμένη σχέση 2 φορές)

Transcript:

ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ, γ) Λ, δ) Λ, ε) Λ ΘΕΜΑ Β Β. α τρόπος: Αν z= yi,, y R, η σχέση () γράφεται ( ) yi ( ) yi = 4 ( ) y ( ) y = 4 y =. Άρα ο γεωµετρικός τόπος των εικόνων των µιγαδικών αριθµών z στο επίπεδο είναι κύκλος µε κέντρο την αρχή των αξόνων και ακτίνα ρ =. β τρόπος: Η σχέση () γράφεται: ( z ) ( z ) ( z ) ( z ) = 4 ( z ) ( z ) ( z ) ( z ) = 4 z z z z z z z z = 4 z z = z z = z = z =. Άρα ο γεωµετρικός τόπος των εικόνων των µιγαδικών αριθµών z στο επίπεδο είναι κύκλος µε κέντρο την αρχή των αξόνων και ακτίνα ρ =. Β. Έστω z z =, 0. Τότε Β3. ( )( ) z z = z z = z z z z = ( z z )( z z ) ( ) = zz z z z z zz = z z zz zz = (α) ( )( ) z z = z z = z z z z = ( ) ( z z ) z z = z z z z z z z z = ( ) = (β). z z z z z z z z =. Προσθέτοντας τις (α), (β) κατά µέλη έχουµε: ( ) Όµως z=, z= οπότε προκύπτει = 4 = =, αφού 0. 5 5 ( w 5 w) ( w 5 w) 44 w w = w w = = 5 5 5 44 ww w w ww = w 5( w w ) 5w = 44 6w 5( w w ) = 44 (3) Έστω w = yi,, y R τότε η σχέση (3) γίνεται:

6( y ) 5 ( yi) ( yi) = 44 6( y ) 5( y yi y yi) = 44 6 6y 5( y ) = 44 6 6y 0 0y = 44 6 36y = 44 y y 4 9y = 36 = =. 9 4 3 Άρα ο γεωµετρικός τόπος των εικόνων του w είναι η παραπάνω έλλειψη µε µήκος µεγάλου ηµιάξονα a = 3 και µήκος µικρού ηµιάξοναβ=. Αν Α, Α, Β, Β οι κορυφές της έλλειψης, τότε: Α ( 3,0), Α(3, 0), Β (0, ), Β(0, ). Είναι w = ( OA) = ( OA') = 3 και w = ( OB) = ( OB ') =. ma min Β4. Με βάση την τριγωνική ανισότητα και επειδή z w = w z έχουµε: ΘΕΜΑ Γ w z w z w z w w z w (4) Όµως λόγω του Β 3 είναι w 3, άρα: w και w 4. Τότε όµως η (4) γράφεται: w z 4. Γ. Η f είναι συνεχής στο (0, ) ως αποτέλεσµα πράξεων µεταξύ συνεχών συναρτήσεων και παραγωγίσιµη µε f '( ) = ln = ln, (0 ). Όταν (0, ) είναι < και επειδή η συνάρτηση ln είναι γνησίως αύξουσα έχουµε ln < ln ln < 0. Επίσης < 0 και > 0 άρα < 0. Έτσι ln < 0 για κάθε (0, ), άρα η f είναι γν. φθίνουσα στο (0, ]. Όταν (, ) είναι > και επειδή ln γνησίως αύξουσα είναι ln > ln ln > 0. Επίσης είναι > 0 για κάθε (, ), οπότε ln > 0 για κάθε (, ). ηλαδή f () > 0 για κάθε (0, ). Έτσι όµως η f είναι γνησίως αύξουσα στο [, ). Από τα προηγούµενα προκύπτει ο επόµενος πίνακας µεταβλητών για την f: 0 f min (-)

Επειδή f γνησίως φθίνουσα στο (0, ] είναι f( (0,]) = f ( ), lim f ( ) ) 0 Όµως lim f ( ) = lim [( ) ln ] =. 0 0 f (0,] = [, ) (). Άρα ( ) Επίσης επειδή η f είναι γνησίως αύξουσα στο [, ) είναι f [, = f (), lim f ( ). ( ) ) Όµως lim f ( ) lim [( ) ln ] Άρα ( ) = =. f [, ) = [, ) (). Από (), () προκύπτει ότι το σύνολο τιµών της f είναι το [, ). Γ. Η εξίσωση = 03 (επειδή η συνάρτηση y = ln είναι γνησίως αύξουσα και άρα ) γράφεται ισοδύναµα: 03 ln( ) = ln( ) ( ) ln = 03 ( ) ln = 0 f ( ) 0 = 0. Από το Γ ερώτηµα είναι: f (0,] = [, ) άρα υπάρχει (0, ] ώστε f( ) = 0 και επειδή η f α) ( ) είναι γνησίως φθίνουσα είναι και, άρα η τιµή είναι µοναδική στο διάστηµα (0,]. f [, ] = [, ), άρα υπάρχει [, ) ώστε f ( ) = 0 και β) ( ) επειδή η f είναι γνησίως αύξουσα είναι και, άρα η τιµή είναι µοναδική στο διάστηµα [, ). Από α) και β) προκύπτει ότι η δοσµένη εξίσωση έχει ακριβώς θετικές ρίζες. Γ3. Θεωρούµε τη συνάρτηση h() = f () 0. µε (0, ). Η h είναι συνεχής στο [, ] ως αποτέλεσµα πράξεων συνεχών συναρτήσεων. Η h είναι παραγωγίσιµη στο (, ) ως αποτέλεσµα πράξεων παραγωγίσιµων συναρτήσεων µε ( ) h ( ) = f ( ) f ( ) 0. h f ( ) = ( ) 0 = 0 0 = 0 h( ) = f ( ) 0 = 0 0 = 0 Άρα ισχύουν οι προϋποθέσεις του Θ. Roll για την h στο [, ], οπότε υπάρχει 0 (, ), ώστε h ( 0 ) = 0 0 0 0 ( f 0 f 0 ) f 0 f 0 B τρόπος ( ) ( ) 0 = 0 ( ) ( ) 0 = 0. Θεωρούµε τη συνάρτηση h( ) = f ( ) f ( ) 0 µε > 0. Η f είναι συνεχής στο (0, ) ως γινόµενο συνεχών. H f είναι συνεχής στο (0, ) ως άθροισµα συνεχών. Άρα η h είναι συνεχής στο (0, ) ως άθροισµα συνεχών. Άρα η h είναι συνεχής στο [, ].. 3

Γ h( ) = f ( ) f ( ) 0 = f ( ) 0 0 = f ( ) < 0, αφού από το Γ για (0, ) είναι f ( ) < 0. Γ h( ) = f ( ) f ( ) 0 = f ( ) 0 0 = f ( ) > 0, αφού από το Γ για (0, ) είναι f ( ) > 0. ηλαδή είναι h( ) h( ) < 0. Από το Θεώρηµα Bolzano θα υπάρχει ένα τουλάχιστον 0 (, ) ώστε: h( ) = 0 f ( ) f ( ) 0 = 0 f ( ) f ( ) = 0. 0 0 0 0 0 Γ4. Είναι: g( ) = f ( ) = ( ) ln = ( ) ln > 0 για κάθε (0, ). Άρα: ΘΕΜΑ Ε( Ω ) = ( )ln d = ln d ln d ( ) ln d ( ) ln d = = = ln d [ ln ] d d [ ] = = 3 3 = = = = τ.µ. 4 4 4 4 4 4. Θεωρούµε τη συνάρτηση G( ) = f ( t) dt, (0, ). Η G είναι παραγωγίσιµη µε G ( ) = f ( )( ) ( ), για κάθε (0, ). Η δοσµένη σχέση f( t) dt επειδή G() = 0 γράφεται ισοδύναµα: f ( t) dt 0 G( ) G(), για κάθε (0, ). Αυτό όµως σηµαίνει ότι η G έχει ελάχιστο στη θέση = την τιµή G()=0. Από το θεώρηµα Frmat προκύπτει τότε ότι G () = 0 f () =. Επειδή η f συνεχής στο (0, ) και f ( ) 0 για κάθε (0, ), η f διατηρεί σταθερό πρόσηµο στο (0, ) και επειδή f () = < 0, είναι f ( ) < 0, (0, ). Έτσι f( ) = f( ) και από τη δοσµένη σχέση προκύπτει ln t t ln ln t t ln = dt ( f ( ) ), οπότε = dt f ( t) f ( ). f ( t) Οι συναρτήσεις και στα δύο µέλη είναι παραγωγίσιµες οπότε: 4

ln ln t t ln ln = dt, f ( ) άρα =. f ( t) f ( ) f ( ) ln Αν θέσουµε g( ) = έχουµε g ( ) = g( ) για κάθε (0, ), οπότε f ( ) σύµφωνα µε την εφαρµογή της σελίδας 5 του σχολικού βιβλίου είναι: g( ) = c, δηλαδή ln = c. f ( ) Για = προκύπτει = c = c c =. f () Άρα τελικά f () = ln (ln ) =, (0, ). 5

. Είναι: Άρα = =, lim ln =, lim ( ) = 0. 0 lim 0 0 0 lim (ln ) =. 0 Τότε όµως lim = 0. 0 f ( ) Αν θέσουµε u f ( ) = έχουµε u < 0 και 0 0 ηµ u u συν u lim f ( )ηµ f ( ) lim ηµ u lim lim ( ) 0 f ( ) = u 0 u u = = = u 0 u u 0 u συν u = lim ( ) = 0 = 0. u 0 u 3. Η F είναι δύο φορές παραγωγίσιµη στο (0, ) µε F ( ) = f( ) και F ( ) = f ( ) = (ln ) ( ) = ( ln ). Επειδή ln 0 και > 0, για κάθε >0 είναι ( ) 0 F >, για κάθε >0. Άρα η F είναι κυρτή στο (0, ). Η σχέση τώρα F( ) F(3 ) > F( ), >0 γράφεται: F(3 ) F( ) F( ) F( ) F(3 ) F( ) > F( ) F( ), >0 >, >0. 3 Από Θ.Μ.Τ. για την F στα διαστήµατα [, ] και [, 3] αντίστοιχα υπάρχουν F( ) F( ) F(3 ) F( ) ξ (, ) και ξ (, 3) ώστε F ( ξ) = και F ( ξ) =, 3 οπότε αρκεί να δειχθεί ότι F ( ξ) > F ( ξ) µε < ξ < < ξ < 3. Η τελευταία είναι αληθής διότι η F είναι κυρτή και άρα η F γνησίως αύξουσα στο (0, ). 4. Θεωρούµε τη συνάρτηση h() = F() F(β) F(3β), [β, β]. Η F είναι συνεχής και παραγωγίσιµη στο (0, ) άρα και η h. h(β) = F(β) F(3β) h(β) = F(β) F(β) F(3β). Επειδή F () = f() < 0 για κάθε (0, ) η F είναι γνησίως φθίνουσα στο (0, ). Έτσι από β < 3β έπεται: F(β) > F(3β) F(β) F(3β) > 0 h(β) > 0. Λόγω τώρα του 3 είναι h(β) = F( β) F( β) F(3 β) < 0. Άρα h( β) h( β) < 0, οπότε λόγω του θεωρ. Bolzano προκύπτει ότι υπάρχει ξ ( β, β) ώστε h( ξ ) = 0 F( β) F(3 β) = F( ξ ). Η τιµή ξ είναι µοναδική διότι η συνάρτηση h είναι γνησίως φθίνουσα και άρα, αφού h () = F () = f() < 0, για κάθε (0, ). 6