Πεπερασμένες Διαφορές.

Σχετικά έγγραφα
Πρόβλημα δύο σημείων. Κεφάλαιο Διακριτοποίηση

Πεπερασμένες διαφορές

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις

Η μέθοδος των πεπερασμένων διαφορών για την εξίσωση θερμότητας

Αριθμητική Ανάλυση και Εφαρμογές

MEM 253. Αριθμητική Λύση ΜΔΕ * * *

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

ΜΕΜ251 Αριθμητική Ανάλυση

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y.

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Αριθμητική Ανάλυση και Εφαρμογές

2. Η μέθοδος του Euler

3. Γραμμικά Συστήματα

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

f(x) = και στην συνέχεια

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ

ΜΕΜ251 Αριθμητική Ανάλυση

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη

V. Διαφορικός Λογισμός. math-gr

1 Arq thc Majhmatik c Epagwg c

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Εξίσωση μεταφοράς. Κεφάλαιο Μέθοδοι upwind και downwind

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

Αριθμητική Ανάλυση και Εφαρμογές

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].

Κεφάλαιο 11. Πολυώνυμα Taylor Ορισμός

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o?

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

Συνήθεις Διαφορικές Εξισώσεις Ι Το πρόβλημα αρχικών τιμών. Προκαταρκτικά. Το πρόβλημα αρχικών τιμών μιας σδε πρώτης τάξης

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Η μέθοδος των πεπερασμένων στοιχείων για το πρόβλημα δύο σημείων

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).

Εισαγωγή. Κεφάλαιο Διαφορικές εξισώσεις

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

MEM 253. Αριθμητική Λύση ΜΔΕ * * *

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Μερικές Διαφορικές Εξισώσεις

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Αριθµητική Ολοκλήρωση

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Πεπερασμένες Διαφορές.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

2x y = 1 x + y = 5. 2x y = 1. x + y = 5. 2x y = 1 4x + 2y = 0. 2x y = 1 4x + 2y = 2

Αριθμητική Ανάλυση και Εφαρμογές

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

f(y) dy = b a dy = b a x f(x) dx = b a dx = x 2 = b2 a 2 2(b a) b a dx = = (a2 + ab + b 2 )(b a) 3(b a)

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ).

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE

ΜΕΜ251 Αριθμητική Ανάλυση

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W

f(t) = (1 t)a + tb. f(n) =

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Κεφάλαιο 4 Διανυσματικοί Χώροι

Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, )

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:

Παραδείγματα (2) Διανυσματικοί Χώροι

Κεφάλαιο 4: Διαφορικός Λογισμός

Διαφορικές Εξισώσεις.

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ 2011 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

Κεφάλαιο 4 Διανυσματικοί Χώροι

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

ΜΕΜ251 Αριθμητική Ανάλυση

j=1 x n (i) x s (i) < ε.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

Transcript:

Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x 0, ορίζεται ως f (x 0 )=lim 0 f(x 0 + ) f(x 0 ) Χρησιμοποιώντας αυτόν τον ορισμό μπορούμε να προσεγγίσουμε την τιμή της f (x 0 ) από το λόγο f (x 0 ) f(x 0 + ) f(x 0 ), για μικρές τιμές του >0. Με τον ίδιο τρόπο μπορούμε να προσεγγίσουμε την f (x 0 ) από το λόγο f (x 0 ) f(x 0 ) f(x 0 ) = f(x 0) f(x 0 ), για μικρές τιμές του >0. Θα καλούμε τον πρώτο λόγο εμπρός διαφορά και το δεύτερο λόγο, οπισθοδρομική διαφορά και θα θεωρήσουμε τον ακόλουθο συμβολισμό. δ + f(x 0) f(x 0 + ) f(x 0 ), > 0 δ f(x 0) f(x 0) f(x 0 ), > 0 (1.1) 1

2 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ Γεωμετρική ερμηνεία Επειδή η παράγωγος μιας συνάρτησης f στο σημείο x 0, είναι η κλίση της εφαπτομένης ευθείας στο σημείο (x 0,f(x 0 )) του γραφήματος της f, μπορούμε γεωμετρικά να την προσεγγίσουμε με την κλίση του ευθύγραμμου τμήματος που τέμνει τα σημεία (x 0,f(x 0 )), και (x 0 +, f(x 0 +)), βλέπε το γράφημα 1.1.1. Παρόμοια ισχύουν και για την κλίση του ευθύγραμμου τμήματος που ενώνει τα σημεία (x 0, f(x 0 )), και (x 0,f(x 0 )), βλέπετο γράφημα 1.1.1. κλίση f(x0 + ) f(x0) κλίση f (x 0) x 0 x 0 + Σχήμα 1.1: Γεωμετρική ερμηνεία της δ + f(x 0) Ενας άλλος τρόπος προσέγγισης της παραγώγου f (x 0 ) είναι η κεντρική διαφορά, η οποία ορίζεται από τό λόγο, f (x 0 ) f(x 0 + ) f(x 0 ), 2 για μικρές τιμές του >0 και θα συμβολίζουμε δ c f(x 0) f(x 0 + ) f(x 0 ), > 0 (1.2) 2 Μια φυσική ερώτηση που δημουργείτε είναι `πόσο καλές είναι αυτές οι προσεγγίσεις για την εκτίμηση της παραγώγου. Ας θεωρήσουμε τη συνάρτηση f(x) =ln(x) και x 0 =1.1. Στο πίνακα 1.1, δίνουμε τις τιμές των παραπάνω προσεγγίσεων για την f (1.1) = 1/1.1 0.90909.

1.1. ΠΡΟΣΕΓΓΙΣΗ ΠΑΡΑΓΩΓΩΝ. 3 κλίση f (x 0) κλίση f(x0) f(x0 ) x 0 x 0 Σχήμα 1.2: Γεωμετρική ερμηνεία της δ f(x 0) δ + f(1.1) δ f(1.1) δc f(1.1) 0.50 0.74939 1.21227 0.98083 0.10 0.87011 0.95310 0.91161 0.05 0.88904 0.93040 0.90972 0.01 0.90498 0.91325 0.90912 Πίνακας 1.1: 0.90909 Πίνακας με τιμές των προσεγγίσεων της f (1.1) = 1/1.1 Λήμμα 1.1. Εστω f[a, b] R, f C 2 [a, b], x 0 (a, b) και >0, τότε ισχύουν τα ακόλουθα φράγματα: Αν επιπλέον f C 3 [a, b], τότε δ + f(x 0) f (x 0 ) 2 max x [a,b] f (x), δ f(x 0) f (x 0 ) 2 max x [a,b] f (x). (1.3) δ c f(x 0) f (x 0 ) 2 6 max x [a,b] f (x). (1.4) Απόδειξη. Αναπτύσοντας κατά Taylor έχουμε f(x 0 + ) =f(x 0 )+f (x 0 )+ 2 2 f (ξ 1 ), ξ 1 (x 0,x 0 + ), > 0. (1.5)

4 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ κλίση f (x 0) κλίση f(x0 + ) f(x0 ) 2 x 0 x 0 x 0 + Σχήμα 1.3: Γεωμετρική ερμηνεία της δ c f(x 0) Επίσης, f(x 0 ) =f(x 0 ) f (x 0 )+ 2 2 f (ξ 2 ), ξ 2 (x 0, x 0 ), > 0. (1.6) Από τις σχέσεις (1.5) και (1.6) εύκολα προκύπτει η ζητούμενη σχέση (1.3). Αν τώρα η f C 3 [a, b], μπορούμε να αναπτύξουμε και πάλι κατά Taylor και να πάρουμε τις παρακάτω δύο σχέσεις. f(x 0 + ) =f(x 0 )+f (x 0 )+ 2 2 f (x 0 )+ 3 6 f (ζ 1 ), ζ 1 (x 0,x 0 + ), f(x 0 ) =f(x 0 ) f (x 0 )+ 2 2 f (x 0 ) 3 6 f (ζ 2 ), ζ 2 (x 0, x 0 ), με >0. Αφαιρώντας τώρα κατά μέλη τις 2 σχέσεις της (1.7) έχουμε f(x 0 + ) f(x 0 ) =2f (x 0 )+ 3 6 (f (ζ 1 )+f (ζ 2 )), από όπου εύκολα προκύπτει η ζητούμενη σχέση (1.4). (1.7) Παρατήρηση: Από το Λήμμα 1.1, φαίνεται ότι το σφάλμα της προσέγγισης δ c f(x 0) είναι μικρότερο από τα αντίστοιχα των προσεγγίσεων δ + f(x 0) και

1.1. ΠΡΟΣΕΓΓΙΣΗ ΠΑΡΑΓΩΓΩΝ. 5 δ f(x 0), για <1 και εξηγεί γιατί στον Πίνακα 1.1 η δ c f(1.1) προσεγγίζει καλύτερα την f (1.1) από τις δ + f(1.1) και δ f(1.1). Η συμμετρία που υπάρχει στον ορισμό της προσέγγισης δ c f(x 0) είναι ο λόγος γιατί το σφάλμα (1.4) είναι μικρότερο από αυτών των δ + f(1.1) και δ f(1.1). Αυτό φαίνεται στην (1.7), όπου οι όροι 2 2 f (x 0 ) αλληλοαναιρούνται αφαιρώντας τις δύο σχέσεις. 1.1.2 Δεύτερη παράγωγος. Από τον ορισμό της δεύτερης παράγωγου μιας συνάρτησης f στο x 0 έχουμε f f (x 0 + ) f (x 0 ) (x 0 )=lim. 0 Οπότε, μπορούμε να την προσεγγίσουμε χρησιμοποιώντας μία από τις προσεγγίσεις δ + f (x 0 ), δ f (x 0 ) ή δ c f (x 0 ). Αν όμως θέλουμε να χρησιμοποιήσουμε μόνο τιμές της f, θα πρέπει να αντικαταστήσουμε την f (x 0 ) με κάποια προσέγγιση της. Ετσι ένας τρόπος είναι f (x 0 ) δ + f (x 0 )= f (x 0 + ) f (x 0 ) =δ + δ f(x 0). δ f(x 0 + ) δ f(x 0) Από τον ορισμό των δ + και δ προκύπτει ότι δ + δ f(x 0)= 1 (f(x 0 + ) f(x 0 ) f(x 0) f(x 0 ) ) = f(x 0 + ) 2f(x 0 )+f(x 0 ) 2. Ακολουθώντας παρόμοιο τρόπο μπορούμε να προσεγγίσουμε την f (x 0 ) ως f (x 0 ) δ f (x 0 )= f (x 0 ) f (x 0 ) =δ δ+ f(x 0). δ+ f(x 0 + ) δ + f(x 0) Από όπου προκύπτει δ δ+ f(x 0)= 1 (f(x 0 + ) f(x 0 ) f(x 0) f(x 0 ) ) = f(x 0 + ) 2f(x 0 )+f(x 0 ) 2.

6 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ δ,2 c f(1.1) 0.50-0.92577 0.10-0.82988 0.05-0.82730 0.01-0.82648 Πίνακας 1.2: Πίνακας με τιμές των προσεγγίσεων της f (1.1) = 1/(1.1) 2 0.82645 Επίσης από τον ορισμό της δ c έχουμε δ c /2 δc /2 f(x 0)= δc /2 f(x 0 + /2) δ c /2 f(x 0 /2) = 1 (f(x 0 + 2 + 2 ) f(x 0 + 2 2 ) = f(x 0 + ) 2f(x 0 )+f(x 0 ) 2. Συμβολίζουμε λοιπόν f(x 0 2 + 2 ) f(x 0 2 2 ) ) δ c,2 f(x 0) f(x 0 + ) 2f(x 0 )+f(x 0 ) 2, (1.8) και αυτός ο λόγος θα αποτελεί προσέγγιση της f (x 0 ).Οπότεσύμφωναμετα παραπάνω θα έχουμε ότι δ c,2 f(x 0)=δ + δ f(x 0)=δ δ+ f(x 0)=δ c /2 δc /2 f(x 0). Στο πίνακα 1.2, δίνουμε τιμές για παραπάνω προσεγγίσης για τη συνάρτηση f(x) =ln(x) και x 0 =1.1, όπουf (1.1) = 1/(1.1) 2 0.82645. Λήμμα 1.2. Εστω f[a, b] R, f C 4 [a, b], x 0 (a, b) και >0, τότε ισχύει το ακόλουθο φράγμα: δ c,2 f(x 0) f (x 0 ) 2 12 max x [a,b] f (4) (x). (1.9) Απόδειξη. Αν τώρα η f C 4 [a, b], μπορούμε να αναπτύξουμε και πάλι κατά Taylor και να πάρουμε τις παρακάτω δύο σχέσεις. f(x 0 + ) =f(x 0 )+f (x 0 )+ 2 2 f (x 0 )+ 3 6 f (x 0 )+ 4 24 f (4) (ζ 1 ), f(x 0 ) =f(x 0 ) f (x 0 )+ 2 2 f (x 0 ) 3 6 f (x 0 )+ 4 24 f (4) (ζ 2 ), (1.10)

1.2. ΤΟ ΠΡΟΒΛΗΜΑ 2 ΣΗΜΕΙΩΝ. 7 με ζ 1 (x 0,x 0 + ), ζ 2 (x 0, x 0 ) και >0. Προσθέτοντας κατά μέλη τις 2 σχέσεις της (1.10) έχουμε f(x 0 + )+f(x 0 ) =2f(x 0 )+ 2 f (x 0 )+ 4 24 (f (4) (ζ 1 )+f (4) (ζ 2 )). Συνεπώς από το θεώρημα ενδιάμεσης τιμής έχουμε f(x 0 + ) 2f(x 0 )+f(x 0 ) 2 από όπου εύκολα προκύπτει η ζητούμενη σχέση (1.9). 1.2 Το πρόβλημα 2 σημείων. = f (x 0 )+ 2 12 f (4) (ξ), ξ (ζ 2,ζ1), (1.11) Θεωρούμε το πρόβλημα δύο σημείων για μια συνήθη διαφορική εξίσωση (Σ.Δ.Ε.) δεύτερης τάξης: Ζητείται μια συνάρτηση u C 2 [a, b], τέτοιαώστε u (x)+q(x)u(x) =f(x), x [a, b], με u(a) =u(b) =0, (1.12) όπου a, b R, q, f C[a, b] και q(x) > 0, για κάθε x [a, b]. Θα θεωρήσουμε ένα φυσικό αριθμό N και μια διαμέριση του διαστήματος [a, b] από ισαπέχοντα N +2 σημεία a = x 0 <x 1 <...<x N <x N+1 = b, όπου = x i+1 x i, i =0,...,N. Τότε σε κάθε σημείο του διαμερισμού x i, i =1,...,N,θαισχύει: u (x i )+q(x i )u(x i )=f(x i ), i =1,...,N. (1.13) Σκοπός μας είναι να κατασκευάσουμε προσεγγίσεις των τιμών u(x i ) της ακριβούς λύσης του (1.12), τις οποίες θα συμβολίζουμε με U i, i =0,...,N+1. Λόγω των συνοριακών συνθήκών έχουμε ότι u(x 0 )=u(x N+1 )=0, θέτουμε λοιπόν U 0 = U N+1 =0. Οι τιμές των U i, i =1,...,N προκύπτουν με τον ακόλουθο τρόπο. Για να προσεγγίσουμε την u (x) στα σημεία x i, i =1,...,N,χρησιμοποιούμε την προσέγγιση δ,2 c που θεωρήσαμε στην (1.8), έτσι αν υποθέσουμε ότι u C 4 [a, b], λόγω της (1.11) η (1.13) γίνεται, u(x i+1) 2u(x i )+u(x i 1 ) 2 + q(x i )u(x i )=f(x i )+η i, i =1,...,N, (1.14) όπου η i = 2 12 u(4) (ξ i ), μεξ i (x i 1,x i+1 ). Για να κατασκευάσουμε λοιπόν προσεγγίσεις U i των u(x i ), i =1,...,N, θεωρούμε τις ακόλουθες εξισώσεις U i+1 2U i + U i 1 2 + q(x i )U i = f(x i ), i =1,...,N. (1.15)

8 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ Επομένως αν συμβολίσουμε με U R N, το διάνυσμα με συνιστώσες U = (U 1,...,U N ) T, το σύστημα των εξισώσεων (1.15) μπορούμε να το γράψουμε ισοδύναμα με το γραμμικό σύστημα AU = F, (1.16) όπου A είναι ο N N πίνακας 2+ 2 q(x 1 ) 1 0 0 A = 1 1 2+ 2 q(x 2 ) 1 0 2. 0........ 0 1 2+ 2 q(x N 1 ) 1 1 2+ 2 q(x N ) και F =(f(x 1 ),...,f(x N )) T. Ενα ερώτημα που δημιουργείται είναι αν το γραμμικό σύστημα (1.36) έχει μοναδική λύση, το οποίο είναι ισοδύναμο μετο αν ο πίνακας A είναι αντιστρέψιμος. Οπως εύκολα μπορούμε να παρατηρήσουμε ο πίνακας A είναι τριδιαγώνιος, δηλαδή τα στοιχεία a ij =0αν i j > 1 και έχει αυστηρά κυριαρχική διαγώνιο αν q(x) > 0 για x [a, b]. Οπωςθαδούμε παρακάτω, υπάρχουν εύκολα υλοποιήσιμοι αλγόριθμοι για την ανάλυση LU ενός αντιστρέψιμου τριδιαγώνιου πίνακα. 1.2.1 Επίλυση τριδιαγώνιου γραμμικού συστήματος Εστω ότι θέλουμε να λύσουμε το γραμμικό σύστημα Ay = z, δηλαδή να βρούμε το y R N,όπουA είναι ένας N N τριδιαγώνιος πίνακας με στοιχεία a 1 b 1 0 c 2 a 2 b 2 A =........., (1.17) 0 c N 1 a N 1 b N 1 c N a N και z R N ένα δοσμένο διάνυσμα. Για τα στοιχεία του πίνακα A, θα κάνουμε τις ακόλουθες υποθέσεις a 1 > b 1, a k b k + c k, k =2,...,N 1, a N > c N. (1.18) Για να λύσουμε το γραμμικό σύστημα Ay = b μπορούμε να εφαρμόσουμε διάφορους αλγόριθμους όπως είναι η απαλοιφή Gauss. Στηνπερίπτωσηόμως του πίνακα A, είναι προτιμότερο να χρησιμοποιήσουμε έναν αλγόριθμο που να εφαρμοστεί ειδικά για τριδιαγώνιους πίνακες, όπως ο ακόλουθος:

1.2. ΤΟ ΠΡΟΒΛΗΜΑ 2 ΣΗΜΕΙΩΝ. 9 Ο πίνακας A μπορεί να γραφεί ως γινόμενο δύο πινάκων LU που έχουν τη μορφή L = 1 e 1,U= 1 e 2 0. 0....., (1.19) 0 c N d N 1 d 1 c 2 d 2 0...... δηλαδή έχουν μη μηδενικά στοιχεία στη διαγώνιο και ο L στην πρώτη υποδιαγώνιο και ο U στην πρώτη υπερδιαγώνιο. Είναι απλό να δούμε ότι οι αριθμοί d 1,...,d N και e 1,...,e N 1 προκύπτουν με τον ακόλουθο αλγόριθμο, d 1 = a 1,e 1 = b 1 /d 1 για k =2, 3,...,N 1 d k = a k c k e k 1 e k = b k /d k τέλος για d N = a k c N e N 1. (1.20) Η υπάρξη των πινάκων L και U, και η ολοκλήρωση του αλγορίθμου (1.20) αποδεικνύεται στο ακόλουθο λήμμα. Λήμμα 1.3. Εστω A ένας τριδιαγώνιος πίνακας της μορφής (1.17) τέτοιος ώστε ισχύουν οι υποθέσεις (1.18), τότε υπάρχουν πίνακες L και U και ο αλγόριθμος (1.20) είναι καλά ορισμένος και ολοκληρώνεται. Απόδειξη. Για να είναι ο αλγόριθμος (1.17) καλά ορισμένος και συνεπώς να υπάρχει η ανάλυση του Α=LU (1.19), αρκεί να ισχύει, d k 0, k =1,...,N. Από τις υποθέσεις (1.18) έχουμε ότι a 1 > b 1,οπότε e 1 < 1. Επαγωγικά μπορούμε θα δείξουμε ότι d k 0,k =1,...,N, e k < 1 Εστω ότι ισχύει d k 1 0, e k 1 < 1 για κάποιο k. Τότε d k = a k c k e k 1 a k c k e k 1 > a k c k b k > 0. Επιπλέον e k = b k / d k < 1 Εφόσον έχουμε δείξει ότι A = LU, για να λύσουμε τώρα το γραμμικό σύστημα LUy = z, λύνουμε πρώτα το Lw = z εφαρμόζοντας τον ακόλουθο

10 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ αλγόριθμο w 1 = z 1 /d 1 για k =2, 3,...,N 1 τέλος για w k =(z k c k w k 1 )/d k (1.21) και στη συνέχεια το διάνυσμα y προκύπτει ως λύση του γραμμικού συστήματος Uy = w y N = w N για k = N 1,N 2,...,1 τέλος για y k = w k e k y k+1 (1.22) Παράδειγμα 1: Θεωρούμε το ακόλουθο πρόβλημα συνοριακών τιμών u (x)+u(x) =sin(2πx), 0 <x<1, με u(0) = u(1) = 0. (1.23) Η ακριβής λύση αυτού του προβλήματος είναι η u(x) = sin(2πx) 1+4π 2. (1.24) Η εξίσωση πεπερασμένων διαφορών (1.15) γίνεται τώρα U i+1 2U i + U i 1 2 + U i =sin(2πx i ), i =1,...,N. (1.25) Χρησιμοποιώντας τον παραπάνω αλγόριθμο, μπορούμε να βρούμε διακριτές λύσεις που προσεγγίζουν την ακριβή λύση, όπως φαίνεται από το γράφημα 1.2.1 1.2.2 Ανάλυση της μεθόδου πεπερασμένων διαφορών Θεώρημα 1.1. Εστω U R N η λύση του προβλήματος (1.15), μεu 0 = U N+1 =0. Τότε ισχύει η ακόλουθη ανισότητα, max 0 i N+1 U i max x [a,b] f(x i). (1.26)

1.2. ΤΟ ΠΡΟΒΛΗΜΑ 2 ΣΗΜΕΙΩΝ. 11 0.04 0.03 ακριβής λύση λύση για N =2 λύση για N =4 0.02 Λύση 0.01 0 0.01 0.02 0.03 0.04 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x άξονας Σχήμα 1.4: Παράδειγμα 1: Ακριβής και προσεγγιστικές λύσεις Απόδειξη. Από τη σχέση (1.15), εύκολα παίρνουμε (2 + 2 q(x i ))U i = U i+1 + U i 1 + f(x i ), 1 i N. Στη συνέχεια, επειδή q συνεχής και q(x) > 0, για x [a, b], αν θέσουμε q min =min x [a,b] q(x), η παραπάνω ισότητα δίνει για κάθε i =1,...,N, Οπότε (2 + 2 q min ) U i U i+1 + U i 1 + f(x i ) 2 max U i +max 0 i N+1 x [a,b] f(x). (2 + 2 q min ) max U i 2 max U i +max 1 i N 0 i N+1 η οποία εύκολα δίνει τη ζητούμενη σχέση (1.32). x [a,b] f(x), Ευστάθεια: Μια αριθμητική μέθοδος λέγεται ευσταθής αν μικρές μεταβολές των δεδομένων οδηγούν σε μικρές μεταβολές της αριθμητικής λύσης. Στην ειδική περίπτωση που η διαφορική εξίσωση είναι γραμμική όπως είναι η (1.12), ζητούμε η αριθμητική λύση να φράσσεται με μια σταθερά επί τα δεδομένα, όπως η σχέση (1.32). Η ευστάθεια του αριθμητικού σχήματος είναι εσωτερική ιδιότητα του σχήματος, δηλαδή δεν έχει σχέση με τη συγκεκριμμένο πρόβλημα που θέλουμε να λύσουμε.

12 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ Από το Θεώρημα 1.1 μπορούμε να δείξουμε ότι το γραμμικό σύστημα που οδηγεί η (1.15) έχει μοναδική λύση. Αν θεωρήσουμε το αντίστοιχο ομογενές γραμμικό σύστημα, τότε από το Θεώρημα 1.1, οδηγούμαστε ότι η μοναδική λύση είναι η μηδενική λύση U i =0, i =0,...,N +1. Συνέπεια: Αν αντικαταστήσουμε στο αριθμητικό σχήμα που ικανοποιεί η προσεγγιστική λύση U, (1.15), με την ακριβή λύση u, τότε θα πάρουμε τη σχέση (1.14). Φυσικά το διάνυσμα με συνιστώσες u(x i ), i =1,...,N δεν θα ικανοποιεί τη (1.15) και θα υπάρχει ένα σφάλμα, όπως φαίνεται από τη (1.14). Αν αυτό το σφάλμα η i, τείνει στο μηδέν καθώς το τείνει στο μηδέν, όπως γίνεται στη περίπτωση του σχήματος που μελετούμε, τότε η μέθοδος λέγεται συνεπής. Θεώρημα 1.2. Εστω ότι η λύση u του προβλήματος (1.12) είναι αρκετά ομαλή, u C 4 [a, b], τότε υπάρχει μια σταθερά C, ανεξάρτητη του, τέτοια ώστε max U i u(x i ) C 2. (1.27) 0 i N+1 Απόδειξη. Θέτουμε E i = U i u(x i ), i =0,...,N+1, όπου λόγω των σχέσεων U 0 = u(a) =0και U N+1 = u(b) =0, έχουμε E 0 = E N+1 =0. Αφαιρούμε τώρα κατά μέλη τις (1.15) και (1.14), οπότε παίρνουμε E i+1 (2 + q(x i ) 2 )E i + E i 1 = 2 η i, i =1,...,N, όπου λόγω του Λήμματος 1.2, max η i 2 1 i N 12 max a x b u(4) (x). Θέτουμε στη συνέχεια Ē =max 1 i N E i, η =max 1 i N η i και επειδή q συνεχής και q(x) > 0, για x [a, b], q min =min x [a,b] q(x). Συνεπώς οπότε Από όπου προκύπτει η οποία δίνει τη ζητούμενη ανισότητα (2 + q(x i ) 2 )E i = E i+1 + E i 1 + 2 η i, (2 + q min 2 ) E i 2Ē + 2 η. q min 2 max E i 2 η 1 i N max E i η C 2 1 i N

1.2. ΤΟ ΠΡΟΒΛΗΜΑ 2 ΣΗΜΕΙΩΝ. 13 1.2.3 Συνοριακές Συνθήκες Neumann Θεωρούμε τώρα το πρόβλημα δύο σημείων (1.12), με διαφορετικές συνοριακές συνθήκες, δηλαδή το εξής: u (x)+q(x)u(x) =f(x), x [a, b], με u (a) =u (b) =0, (1.28) όπου a, b R, q, f C[a, b] και q(x) > 0, για κάθε x [a, b]. Σε αυτή την περίπτωση είναι απαραίτητο να ισχύει ότι q>0 στο [a, b], γιατί διαφορετικά δεν έχουμε μοναδική λύση του (1.28). Πράγματι, το πρόβλημα u (x) =0, x [a, b], με u (a) =u (b) =0, (1.29) έχει ως λύση όλες τις σταθερές συναρτήσεις στο [a, b]. Θεωρούμε και πάλι ένα φυσικό αριθμό N και μια διαμέριση του διαστήματος [a, b] από ισαπέχοντα N +2 σημεία a = x 0 <x 1 <...<x N <x N+1 = b, όπου = x i+1 x i, i =0,...,N. Σκοπός μας είναι και πάλι να κατασκευάσουμε προσεγγίσεις U i των τιμών u(x i ) της ακριβούς λύσης του (1.28). Ομως σε αντίθεση με προηγουμένως δεν γνωρίζουμε τις τιμές u(x 0 ) και u(x N+1 ). Ετσι τώρα θα χρειαστούμε 2 επιπλέον εξισώσεις εκτός από τις (1.15), για να υπολογίσουμε τα U i, i =0,...,N +1. Ενας τρόπος για να το κάνουμε αυτό είναι να θεωρήσουμε ότι η u επεκτείνεται άρτια αριστερά του a και δεξιά του b, δηλαδή u(a + ) =u(a ) και u(b ) =u(b + ), >0. Ο λόγος που θεωρούμε άρτια επέκταση είναι διότι αν π.χ. η u είναι άρτια γύρω από το a, τότεu (a) =lim 0 (u(a + ) u(a )/(2) =0. Επομένως η προσέγγιση της u (a), δ,2 c u(a) γίνεται δ,2 c + ) 2u(a)+u(a ) u(a + ) u(a) u(a) =u(a 2 =2 2. Συνεπώς οι δύο επιπλέον σχέσεις που συμπληρώνουν τις (1.15) εδώ είναι 2 U 1 U 0 2 + q(x 0 )U 0 = f(x 0 ) 2 U N U N+1 2 + q(x N+1 )U N+1 = f(x N+1 ) (1.30) Επομένως αν συμβολίσουμε με U R N+2, το διάνυσμα με συνιστώσες U = (U 0,...,U N+1 ) T το νέο σύστημα εξισώσεων μπορούμε να το γράψουμε ισοδύναμα AU = F, (1.31)

14 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ όπου A είναι ο (N +2) (N +2)πίνακας 2+ 2 q(x 0 ) 2 0 0 A = 1 1 2+ 2 q(x 1 ) 1 0 2. 0........ 0 1 2+ 2 q(x N ) 1 2 2+ 2 q(x N+1 ) και F =(f(x 0 ),...,f(x N+1 )) T. Προκύπτει λοιπόν ένα τριδιαγώνιο γραμμικό σύστημα με αυστηρά κυριαρχική διαγώνιο διότι q>0. Με όμοια επιχειρήματα όπως και στην περίπτωση του Θεωρήματος 1.1, προκύπτει Θεώρημα 1.3. Εστω U R N+2 η λύση του προβλήματος (1.28). ισχύει η ακόλουθη ανισότητα, Τότε max U i max f(x i). (1.32) 0 i N+1 x [a,b] Απόδειξη. Η απόδειξη προκύπτει με ανάλογο τρόπο όπως και αυτή του Θεωρήματος 1.1 Και σε αυτό το πρόβλημα μπορούμε να δείξουμε ότι η προσεγγιστική λύση θα συγκλίνει στην ακριβή λύση του (1.28). Θεώρημα 1.4. Εστω ότι η λύση u του προβλήματος (1.28) είναι αρκετά ομαλή, u C 4 [a, b], τότε υπάρχει μια σταθερά C, ανεξάρτητη του, τέτοια ώστε max U i u(x i ) C. (1.33) 0 i N+1 Απόδειξη. Η απόδειξη προκύπτει με ανάλογο τρόπο όπως και αυτή του Θεωρήματος 1.2 Παρατήρηση: Μπορούμε να δείξουμε μεγαλύτερη τάξη σύγκλισης (δηλαδή 2) όπως και για τη μέθοδο για το πρόβλημα με τις ομογενείς συνοριακές συνθήκες, όπως χρειαζόμαστε περισσότερη αναλύση της μεθόδου που δεν θα αναπτύξουμε σε αυτές τις σημειώσεις. 1.2.4 Ενα γενικότερο πρόβλημα Θεωρούμε τώρα το πρόβλημα δύο σημείων (1.12), με ομογενείς συνοριακές συνθήκες Diriclet, u (x)+p(x)u (x)+q(x)u(x) =f(x), x [a, b], με u(a) =u(b) =0, (1.34)

1.2. ΤΟ ΠΡΟΒΛΗΜΑ 2 ΣΗΜΕΙΩΝ. 15 όπου a, b R, p, q, f C[a, b] και q(x) > 0, για κάθε x [a, b]. Σκοπός μας είναι να κατασκευάσουμε προσεγγίσεις των τιμών u(x i ) της ακριβούς λύσης του (1.12), τις οποίες θα συμβολίζουμε με U i, i =0,...,N+1. Λόγω των συνοριακών συνθήκών έχουμε ότι u(x 0 )=u(x N+1 )=0, θέτουμε λοιπόν U 0 = U N+1 =0. Οι τιμές των U i, i =1,...,N προκύπτουν με τον ακόλουθο τρόπο U i+1 2U i + U i 1 2 + p(x i ) U i+1 U i 1 2 + q(x i )U i = f(x i ), i =1,...,N. (1.35) Επομένως αν συμβολίσουμε με U R N, το διάνυσμα με συνιστώσες U = (U 1,...,U N ) T το νέο σύστημα εξισώσεων μπορούμε να το γράψουμε ισοδύναμα AU = F, (1.36) όπου A R N+1 N+1 είναι ο πίνακας 2+ 2 q(x 0 ) 1+p(x 1 ) 2 0 1 A = 1 1 p(x 2 ) 2 2+ 2 q(x 1 ) 1+p(x 2 ) 2 0 2. 0........ 0 1 p(x N 1 ) 2 2+ 2 q(x N 1 ) 1+p(x N 1 ) 2 0 0 1 p(x N ) 2 2+ 2 q(x N ) και F =(f(x 1 ),...,f(x N )) T. Προκύπτει λοιπόν ένα τριδιαγώνιο γραμμικό σύστημα. Για να έχει αυστηρά κυριαρχική διαγώνιο ο A πρέπει καθώς και 2+ 2 q(x i ) 1+p(x i ) 2 + 1 p(x i), i =2,...,N 1, 2 2+ 2 q(x 1 ) 1 p(x 1 ) 2, και 2+2 q(x N ) 1+p(x N ) 2. Για να ισχύουν οι παραπάνω αρκεί να ισχύει ότι p(x i ) 2 < 1, γιατί σε αυτή την περίπτωση έχουμε ότι 1+p(x i ) 2 > 0 και 1 p(x i) 2 > 0. Με όμοια επιχειρήματα όπως και στην περίπτωση του Θεωρήματος 1.1, προκύπτει Θεώρημα 1.5. Εστω U R N η λύση του προβλήματος (1.34) και επιπλέον p(x i ) 2 < 1, i =0,...,N +1. Τότε ισχύει η ακόλουθη ανισότητα, max U i max f(x i). (1.37) 0 i N+1 x [a,b] Απόδειξη. Η απόδειξη προκύπτει με ανάλογο τρόπο όπως και αυτή του Θεωρήματος 1.1

16 ΚΕΦΑΛΑΙΟ 1. ΠΕΠΕΡΑΣΜΕΝΕΣ ΔΙΑΦΟΡΕΣ 1.3 Ασκήσεις Ασκήσεις για προβλήματα συνοριακών τιμών της μορφής: u (x)+p(x)u + q(x)u(x) =f(x), u(a) =c, u(b) =d. x [a, b], 1. Εστω u η λύση του προβλήματος συνοριακών τιμών x 2 u (x) xu (x)+4u(x) =20x 3, x [1, 2], u(1) = 0, u(2) = 0. Γράψτε το αριθμητικό σχήμα πεπερασμένων διαφορών χρησιμοποιώντας κεντρικές διαφορές. Ποιός είναι ο περιορισμός για το βήμα, ώστε ο α- ντίστοιχός πίνακας που χρησιμοποιούμε για την προσέγγιση της λύσης να είναι αντιστρέψιμος; 2. Εστω u η λύση του προβλήματος συνοριακών τιμών u (x)+u =1, u(a) =c, u(b) =d. x [a, b], (αʹ) Εστω ότι προσεγγίζουμε τη δεύτερη παράγωγο, u (x i ),μετηκεντρική διαφορά (u(x i+1 ) 2u(x i )+u(x i 1 ))/ 2 και τη πρώτη παράγωγο, u (x i ), με τη διαφορά (u(x i ) u(x i 1 ))/. Ποιό θα είναι το διακριτό σχήμα και ποιό το σφάλμα διακριτοποίησης; (βʹ) Γράψτε τη μέθοδο σε μορφή πινάκων. Για να είναι αντιστρέψιμος ο πίνακας υπάρχει περιορισμός στο βήμα ; 3. Εστω u η λύση του προβλήματος συνοριακών τιμών u (x)+u(x) =f(x), x [0, 1], au(0) + bu (0) = c, u(1) = 0. (αʹ) Διατυπώστε ένα διακριτό σχήμα με σφάλμα διακριτοποίησης O( 2 ). (βʹ) Γράψτε τη μέθοδο σε μορφή πινάκων. 4. Εστω u η λύση του προβλήματος συνοριακών τιμών u (x)+u(x) =f(x), x [0, 1], u(0) = u(1), u (0) = u (1).

1.3. ΑΣΚΗΣΕΙΣ 17 (αʹ) Διατυπώστε ένα διακριτό σχήμα με σφάλμα διακριτοποίησης O( 2 ). (βʹ) Γράψτε τη μέθοδο σε μορφή πινάκων. 5. (αʹ) Χρησιμοποιώντας το θεώρημα του Taylor δείξτε ότι u(x i+1 ) 2u(x i )+ u(x i 1 )= 2 u (x i )+ 1 12 4 u (x i )+O( 6 ) και από αυτό δείξτε ότι u(x i+1 ) 2u(x i )+u(x i 1 )= 1 12 2 (u (x i+1 )+10u (x i )+u (x i 1 ))+ O( 6 ). (βʹ) Αν υποθέσουμε ότι η u ικανοποιεί τη Δ.Ε. u (x) =F (x, u), χρησιμοποιείστε το παραπάνω αποτέλεσμα για να καταλήξετε στη μέθοδο πεπερασμένων διαφορών (U i+1 2U i + U i+1 )= 2 12 (F i+1 +10F i + F i+1 ) (γʹ) Διατυπώστε τη μέθοδο οταν F (x, u) = f(x) q(x)u. Γράψτε τη μέθοδο σε μορφή πίνακα. 6. Θεωρούμε το πρόβλημα d dx (D(x) d u(x)) + u(x) =f(x), x [0, 1], dx u(0) = u(1) = 0. όπου D είναι θετική συνάρτηση. (αʹ) Γράψτε ένα πεπλεγμένο αριθμητικό σχήμα με σφάλμα διακριτοποίησης O( 2 ). Εκφράστε τη μέθοδο και σε μορφή πίνακα. (βʹ) Είναι αυτή η μέθοδος ευσταθής; 7. Θεωρούμε το πρόβλημα u (x)+p(x)u + q(x)u(x) =f(x), x [0, 1], u(0) = u(1) = 0. Θεωρούμε ένα μη ομοιόμορφο διαμερισμό του διαστήματος [0, 1], και συμβολίζουμε με i = x i x i 1 (αʹ) Εκφράστε με πεπερασμένες διαφορές την προσέγγιση της πρώτης και της δεύτερης παραγώγου στο x i και δώστε το τοπικό σφάλμα διακριτοποίησης. Οι προσεγγίσεις πρέπει να είναι συνεπείς, δηλαδή αν i και i+1 πάει στο μηδέν, τότε το σφάλμα τείνει και αυτό στο μηδέν. (βʹ) Χρησιμοποιήστε τα αποτελέσματα του προηγούμενου ερωτήματος για να διατύπώστε ένα σχήμα πεπερασμένων διαφορών για την παραπάνω διαφορική εξίσωση.