0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0
1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς. Αν πάρουμε μί ευθεί, κάθε σημείο της ντιστοιχεί σ' έν πργμτικό ριθμό. Η ευθεί υτή ονομάζετι ευθεί των πργμτικών ριθμών. Πράστση των πργμτικών σε άξον Κάθε πργμτικός ριθμός ντιστοιχίζετι σε έν σημείο του άξον χ χ. 2 1 2 χ' χ' -2,25-2,25-1 0 1 π -1 0 1 π χ χ ρνητικοί θετικοί άτιτλο-n 1
2 RΠργμτικοί ριθμοί Q Άρρητοι ριθμοί Q Ρητοί ριθμοί Άρρητοι : Οι ριθμοί που εν μπορούν ν γρφούν σν κλάσμτ ή σν εκικοί περιοικοί ριθμοί είνι οι άρρητοι. Π.χ Ρητοί : Κάθε ριθμός που μπορεί ν πάρει κλσμτική μορφή, ηλή τη μορφή, 0 με, κέριοι ριθμοί, λέγετι ρητός. Κάθε ρητός ριθμός μπορεί ν γρφεί ως εκικός ή περιοικός εκικός κι ντιστρόφως, κάθε εκικός ή περιοικός εκικός που μπορεί ν πάρει κλσμτική μορφή, είνι ρητός. 2
1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ιιότητες των πράξεων Στους πργμτικούς ριθμούς ορίστηκν οι πράξεις της πρόσθεσης κι του πολλπλσισμού κι με την οήθειά τους η φίρεση κι η ιίρεση. Γι τον πολλπλσισμό κι την πρόσθεση ισχύουν οι ιιότητες που νφέροντι στον πρκάτω πίνκ, οι οποίες ποτελούν την άση του λγερικού λογισμού. Ιιότητες Πρόσθεση Πολλπλσισμός ντιμετθετική + = + = προσετιριστική +( +γ ) = ( + )+γ. (. γ ) = (. ). γ επιμεριστική. ( + γ ) =. +. γ ουέτερο + 0 =. 1 = ντίθετο + (- ) = 0. 1 = 1, 0 Η φίρεση κι η ιίρεση ορίζοντι, με τη οήθει της πρόσθεσης κι του πολλπλσισμού, ως εξής : - = +(-) κι : = / = 1 /, όπου 0 Γι τις τέσσερις πράξεις ισχύουν κι οι κόλουθες ιιότητες : 1. Αν = κι γ = τότε: + γ = + κι γ = Δηλή: Δύο ισότητες μπορούμε ν τις προσθέσουμε κι ν τις πολλπλσιάσουμε κτά μέλη. 2. Αν = τότε : + γ = + κι γ = γ Δηλή: 1
2 Μπορούμε κι στ ύο μέλη μίς ισότητς ν προσθέσουμε τον ίιο ριθμό. Μπορούμε κι τ ύο μέλη μίς ισότητς ν πολλπλσιάσουμε με τον ίιο ριθμό. 3. Αν + γ = + γ, τότε = Αν γ = γ κι γ 0, τότε = Δηλή : Μπορούμε κι πό τ ύο μέλη μις ισότητς ν ιγράψουμε τον ίιο προσθετέο ή τον ίιο μ η μ η ε ν ι κ ό πράγοντ. Βλέπουμε ότι, ν ισχύει μί πό τις ισότητες =, +γ = +γ, τότε ισχύει κι η άλλη. Γι υτό λέμε ότι οι ισότητες υτές είνι ισούνμες κι γράφουμε : = => +γ = +γ Συμολικά πλέον οι προηγούμενες ύο ιιότητες γράφοντι: = => +γ = +γ Αν γ 0, τότε : = => γ = γ 4. 0 = 0 Αν = 0, τότε = 0 ή = 0 Δηλή : Άμεση συνέπει της ιιότητς υτής είνι η κόλουθη : 0<-> 0 κι 0 2
3 5. ( -1 ) = - ( - ) = - ( - )(- )= ( Κνόνς των προσήμων) -( + ) = -- 6. (1/) = 1/ 1/ (Κνόνς πλοιφής πρενθέσεων) Δηλή : Ο ντίθετος ενός θροίσμτος ισούτι με το άθροισμ των ντίθετων των προσθετέων. Ο ντίστροφος ενός γινομένου ισούτι με το γινόμενο των ντίστροφων των πργόντων. Οι ιιότητες υτές ισχύουν κι γι περισσότερους πό ύο προσθετέους ή πράγοντες ντίστοιχ. Ας ούμε ότι: γ γ γ (1) γ γ (2) :γ γ γ (3) γ = (4) γ κι γ =γ (5) γ =γ (6) γ γ = ( 7) γ τοτε γ +γ + (8) 3
4 Ότν έχουμε ισότητ κλσμάτων π.χ. υτό λ έχουμε: a x τότε ονομάζοντς το λόγο Με την ντικτάστση υτή μειώνουμε το πλήθος των μετλητών, πράγμ χρήσιμο στην ντιμετώπιση πολλών σχετικών προλημάτων. Σχόλι : Συγκεκριμένος ριθμός χωρίς πρόσημο: σημίνει ότι είνι θετικός, ηλή έχει πρόσημο +. Τυχίος ριθμός χωρίς πρόσημο: Δε σημίνει ότι είνι θετικός, φού μπορεί ν έχει μέσ του το. Ακόμη κι ν γράψουμε +, ε σημίνει ότι ο είνι θετικός. Οι ύο σημσίες του συμόλου «+» : i) Μπροστά πό ριθμό σημίνει ότι ο ριθμός είνι θετικός + 4, + 7, 6 ii) Μετξύ ύο ριθμών σημίνει την πράξη της πρόσθεσης 6 + 2, 5 + 1, 5 + ( 4), 3 + ( 5) Οι ύο σημσίες του συμόλου : i) Μπροστά πό ριθμό σημίνει ότι ο ριθμός είνι ρνητικός 3, 1 ii) Μετξύ ύο ριθμών σημίνει την πράξη της φίρεσης 5 1, 5 1, 5 ( 3), 4 ( 1) 4
5 Η πράξη της πρόσθεσης i) Πρόσθεση ομοσήμων (+2) + (+5) = + 7 = 7 2 + 5 = 7 ( 2) + ( 5) = 7 ii) Πρόσθεση ετεροσήμων ( 2) + (+5) = +3 = 3 2 + (+5) = +3 = 3 2 + 5 = +3 = 3 2 + ( 5) = 3 Η πράξη της φίρεσης 5 2 = 3 3-5 = 3 + (-5) = 2 3-(-5) = 3+ 5 = 8 Θέτουμε το κοινό πρόσημό τους κι προσθέτουμε τους ριθμούς Θέτουμε το πρόσημο του μεγλύτερου κι φιρούμε τους ριθμούς Αν το ποτέλεσμ εν είνι προφνές, μεττρέπουμε την φίρεση σε πρόσθεση λλάζοντς το πρόσημο του εύτερου Η επιμεριστική ιιότητ ντίστροφ Μς ίνει κοινό πράγοντ :. +.γ =.( + γ) 2 χ + 2 ψ = 2 ( χ + ψ ) 4 4 = 4( + ) 4 4 = 4( ) Η ιίρεση με το 0 είνι ύντη. Επειή κάθε κλάσμ ηλώνει ιίρεση, πρέπει κάθε πρνομστής ν είνι 0, ώστε το κλάσμ ν έχει νόημ πργμτικού ριθμού. 5
6 6