Μετασχηματισμοί Laplace



Σχετικά έγγραφα
Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t)

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου (Ιούνιος 2014)

Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου (Ιούνιος 2014)

5. (Λειτουργικά) Δομικά Διαγράμματα

Μαθηματικά μοντέλα συστημάτων

Ευστάθεια, Τύποι συστημάτων και Σφάλματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Μαθηματικά μοντέλα συστημάτων

Ευστάθεια συστημάτων

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

(είσοδος) (έξοδος) καθώς το τείνει στο.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

ΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1)

Σήματα και Συστήματα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου II

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΣΑΕ 1. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις:

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης

Ισοδυναµία τοπολογιών βρόχων.

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

. Σήματα και Συστήματα

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα

Κλασσική Θεωρία Ελέγχου

ΜΜ803 ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ

Κλασσική Θεωρία Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Κυκλώματα, Σήματα και Συστήματα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Τυπική µορφή συστήµατος 2 ας τάξης

( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτόματου Ελέγχου

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016

Επίλυση Δ.Ε. με Laplace

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Ψηφιακή Επεξεργασία Σημάτων

Αριθμητική Ανάλυση και Εφαρμογές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Η κρουστική απόκριση του συστήματος είναι L : =

ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης

website:

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Συστήματα Αυτομάτου Ελέγχου

ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ

e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5)

ΣΥΣΤΗΜΑ ΚΑΙ ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ

Ανάλυση υναµικής ιεργασιών

Κεφάλαιο 5 Μετασχηματισμός z και Συνάρτηση μεταφοράς

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

a n = 3 n a n+1 = 3 a n, a 0 = 1

ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ - 1 η ΣΕΙΡΑ

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

2. Ορίζουσες-ιδιότητες -ανάπτυγμα ορίζουσας. Σε κάθε τετραγωνικό πίνακα ν-τάξης Α, αντιστοιχεί ένας πραγματικός αριθμός,

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

Συστήματα Αυτομάτου Ελέγχου II

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:

Σύστημα και Μαθηματικά μοντέλα συστημάτων

Ψηφιακή Επεξεργασία Σημάτων

Συστήματα Αυτόματου Ελέγχου

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

Συστήματα Αυτομάτου Ελέγχου, Θεωρία και Εφαρμογές. Δρ. Βολογιαννίδης Σταύρος,

Περιεχόμενα 2 Μαθηματικές Μέθοδοι Ανάλυσης Γραμμικών Συστημάτων Αυτόματης Ρύθμισης j ω α j ω j ω

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης - Τεστ

MATLAB. Εισαγωγή στο SIMULINK. Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές)

Ανάλυση Ηλεκτρικών Κυκλωμάτων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

HMY 220: Σήματα και Συστήματα Ι

Transcript:

Μετασχηματισμοί Laplace Ιδιότητες μετασχηματισμών Laplace Βασικά ζεύγη μετασχηματισμών Laplace f(t) F(s) δ(t) 1 u(t) 1 / s t 1 / s 2 t n n! / s n1 e αt, α>0 1 / (s α) te αt, α>0 1 / (s α) 2 ημωt ω / (s 2 ω 2 ) συνωt s / (s 2 ω 2 ) (t/2ω)sinωt s/( s 2 ω 2 ) 2 e αt ημωt, α>0 ω / [(s α) 2 ω 2 ] e αt συνωt, α>0 (s α) / [(s α) 2 ω 2 ] Θεώρημα αρχικής τιμής: Θεωρήματα μετασχηματισμών Laplace Θεώρημα τελικής τιμής:

Εάν: Αντίστροφος Μετασχηματισμός Laplace τότε η συνάρτηση F(s) μπορεί να εκφραστεί ως ένα άθροισμα απλών κλασμάτων: Άρα: οπότε το πρόβλημα ανάγεται στον προσδιορισμό των συντελεστών c 1, c 2,, c n Ανάλογα με τη μορφή των πόλων της F(s), διακρίνουμε τρεις διαφορετικούς τρόπους υπολογισμού των συντελεστών c i : i Διακεκριμένες πραγματικές ρίζες: Αλγεβρική μέθοδος Πολλαπλασιάζουμε και τα δύο μέλη της σχέσης για την F(s) με τον παρανομαστή του πρώτου κλάσματος: Μετά την εκτέλεση των πράξεων, το πολυώνυμο που θα προκύψει στο δεύτερο μέλος θα είναι nβαθμού και θα πρέπει να είναι κατά ταυτότητα ίσο με το πολυώνυμο B(s) Έτσι προκύπτουν και οι ζητούμενοι συντελεστές c 1, c 2,, c n Μέθοδος των ορίων ii κοκ Πραγματικές ρίζες με βαθμό πολλαπλότητας: Έστω, για παράδειγμα, ότι ο παρανομαστής της συνάρτησης F(s) έχει βαθμό πολλαπλότητας τρία: Τότε ισχύει: iii Οι υπόλοιποι συντελεστές υπολογίζονται με τη μέθοδο των ορίων της προηγούμενης περίπτωσης Μιγαδικές ρίζες: Στην περίπτωση αυτή υπολογίζεται σύμφωνα με κάποια από τις προηγούμενες μεθόδους (συνήθως τη μέθοδος των ορίων) ο συντελεστής που είναι αριθμητής στη μία από τις μιγαδικές ρίζες Άρα ο συντελεστής που είναι αριθμητής στον όρο που έχει παρονομαστή τη συζυγή ρίζα της προηγούμενης, θα είναι συζυγής του πρώτου συντελεστή

Μετασχηματισμοί δομικών διαγραμμάτων Αρχικό δομικό διάγραμμα Ισοδύναμο δομικό διάγραμμα Σύνδεση δομικών μονάδων σε σειρά G1(s) G2(s) X 0(s) G 1(s)G 2(s) Παράλληλη σύνδεση δομικών μονάδων G1(s) G2(s) G1(s) G2(s) Μετατροπή κανονικού συστήματος σε σύστημα με μοναδιαία ανάδραση X(s) X(s) 1/F(s) F(s) F(s) Μετακίνηση σημείου άθροισης μετά από δομική μονάδα Μετακίνηση σημείου άθροισης μπροστά από δομική μονάδα 1/ Μετακίνηση σημείου λήψης μπροστά από δομική μονάδα Μετακίνηση σημείου λήψης μετά από δομική μονάδα 1/ Εναλλαγή σημείων άθροισης

Κανόνας του Mason για τον υπολογισμό της ολικής συνάρτησης μεταφοράς όπου: X(s) = η είσοδος του συστήματος, = η έξοδος του συστήματος, N = το πλήθος των απευθείας δρόμων μεταξύ εισόδου και εξόδου του συστήματος, Q k (s) = η απολαβή του k απευθείας δρόμου, Δ(s) = η ορίζουσα του συστήματος: με: ΣL 1 = το άθροισμα των απολαβών όλων των βρόχων, ΣL 2 = το άθροισμα του γινομένου ανά δύο των απολαβών όλων των δυνατών συνδυασμών των μη εγγιζόντων ανά δύο βρόχων, ΣL 3 = το άθροισμα του γινομένου ανά τρεις των απολαβών όλων των δυνατών συνδυασμών των μη εγγιζόντων ανά τρεις βρόχων, ΣL n = το άθροισμα του γινομένου ανά n το πλήθος των απολαβών όλων των δυνατών συνδυασμών των μη εγγιζόντων ανά n το πλήθος βρόχων, Δ k (s) = η τιμή της ορίζουσας Δ(s), εάν δεν λάβουμε υπόψη μας τις απολαβές των βρόχων που εγγίζουν (έχουν κοινό κόμβο με) τον k απευθείας δρόμο Κριτήριο Routh Έστω ένα σύστημα με χαρακτηριστική εξίσωση: a n s n a n1 s n1 a n2 s n2 a 1 s a 0 = 0 πίνακα Routh, ο οποίος ορίζεται ως ακολούθως: s n a n a n2 a n4 s n1 a n1 a n3 a n5 s n2 b 1 b 2 b 3 s n3 c 1 c 2 c 3 s 0 όπου a n, a n1, a n2,, a 1, a 0 είναι οι συντελεστές της χαρακτηριστικής εξίσωσης και

Τυπικά σήματα δοκιμής για την χρονική απόκριση συστημάτων ελέγχου Βηματική συνάρτηση Συνάρτηση ράμπας Παραβολική συνάρτηση x(t) x(t) x(t) A Κλίση = Α 0 x(t)=au(t) X(s)=A/s t 0 t 0 t x(t)=atu(t) X(s)=A/s 2 x(t)=at 2 u(t) X(s)=2A/s 3 Σταθερές σφάλματος και Σφάλματα στη μόνιμη κατάσταση Τύπος Συστήματος Σταθερές Σφάλματος N K p K v K a Σφάλμα Μόνιμης Κατάστασης e ss Βηματική x(t)=au(t) X(s)=A/s Ράμπας x(t)=atu(t) X(s)=A/s 2 Παραβολική x(t)=at 2 u(t) X(s)=2A/s 3 0 0 0 1 0 0 2 0 0