ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ - 1 η ΣΕΙΡΑ
|
|
- Αλθαία Μαλαξός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΧΕΙΜ17-18 ΗΜΕΡΟΜΗΝΙΑ: ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ - 1 η ΣΕΙΡΑ CONTROL SYSTEMS TOOLBOX Υπεύθυνος Μαθήµατος: Αναπ. Καθ. Σφακιωτάκης Μιχάλης ΑΝΤΙΚΕΙΜΕΝΟ Η πρώτη σειρά των Ασκήσεων Πράξης έχει ως αντικείµενο την ανασκόπηση της χρήσης των βασικών εργαλείων του Control Systems Toolbox του Matlab για τον ορισµό και την ανάλυση συστηµάτων αυτόµατου ελέγχου. Οι φοιτητές αναµένονται µε την ολοκλήρωση της άσκησης να υπολογίζουν πόλους και µηδενικά διασυνδεδεµένων συστηµάτων ελέγχου, καθώς και να προσοµοιώνουν γραµµικά συστήµατα για διαφορετικές εισόδους αναφοράς. ΣΥΝΟΨΗ ΕΝΤΟΛΩΝ ΤΟΥ CONTROL SYSTEMS TOOLBOX Παρακάτω περιγράφονται συνοπτικά µια σειρά από εντολές του MATLAB Control Systems Toolbox για την ανάλυση και σύνθεση συστηµάτων ελέγχου. Η λίστα δεν είναι διεξοδική, αλλά περιλαµβάνει µόνο όσες εντολές θεωρούνται απαραίτητες για αυτή τη σειρά Ασκήσεων Πράξης. Επίσης, η χρήση ορισµένων εντολών δεν παρουσιάζεται στη πιο γενικευµένη τους µορφή. Για περισσότερες λεπτοµέρειες πληκτρολογήστε στο workspace του MATLAB help control, προκειµένου να εµφανιστεί µια λίστα µε όλες τις εντολές του Toolbox και στη συνέχεια δείτε τη βοήθεια για τις επιµέρους εντολές π.χ. help tf ή doc tf. 1) Ορισµός και πράξεις πολυωνύµων Το πολυώνυµο a m s m + a m 1 s m a 0 ορίζεται µέσω του διανύσµατος των συντελεστών του [a m a m-1 a 0] (σε φθίνουσα σειρά των δυνάµεων του s ). Παράδειγµα Το πολυώνυµο P(s) = 5s 4 + 2s 2 + 7s + 1 ορίζεται στο Matlab ως P = [ ] H εντολή polyval(a,v) υπολογίζει την τιµή του πολυωνύµου Α(s) (το διάνυσµα A περιλαµβάνει τους συντελεστές του για s = V (το V µπορεί να είναι και διάνυσµα, οπότε η polyval επιστρέφει την τιµή του πολυωνύµου για όλα τα στοιχεία του V). Παράδειγµα Να υπολογιστεί η τιµή του πολυωνύµου P(s) = 4s 3 + 2s + 7 για s = 0.5 και s= 2 j Εκτελώντας τις εντολές: P = [ ]; S = [0.5 2-j]; polyval(p,s) i Εποµένως, P (0.5) = 8.5 και P(2 j) = 19 j46. 1
2 H εντολή D = polyder(p) επιστρέφει την παράγωγο D(s) του πολυωνύµου P(s). Παράδειγµα Να υπολογιστεί η παράγωγος του πολυωνύµου P(s) = s 5 + 4s 3 + 3s + 1 Εκτελώντας τις εντολές: P = [ ]; D = polyder(p) D = Εποµένως, η παράγωγος του πολυωνύµου P(s) είναι το πολυώνυµο D(s) = 5s s Για να προσθέσουµε ή για να αφαιρέσουµε δύο πολυώνυµα συµπληρώνουµε στο διάνυσµα των συντελεστών εκείνου µε την µικρότερη τάξη κατάλληλο αριθµό µηδενικών (στην αρχή) έτσι ώστε να πάρουµε διανύσµατα συντελεστών ίδιου µήκους, και στην συνέχεια προσθέτουµε ή αφαιρούµε τα διανύσµατα αυτά. H εντολή roots(p) επιστρέφει τις ρίζες του πολυωνύµου P(s), υπολογίζει δηλ. τις λύσεις της εξίσωσης P(s) = 0. Παράδειγµα Να βρεθούν οι ρίζες του πολυωνύµου A(s) = 3s 4 + 2s 2 + 5s + 1 Εκτελώντας τις εντολές: A = [ ]; r = roots(p) r = i i Εποµένως, A(s) = 3s 4 + 2s 2 + 5s + 1 = (s )(s )(s j1.1799)(s j1.1799) Για τον πολλαπλασιασµό A(s)B(s) χρησιµοποιούµε την εντολή conv(a,b) όπου Α, Β τα διανύσµατα συντελεστών των πολυωνύµων. Η εντολή [Q,R] = deconv(a,b) διαιρεί το πολυώνυµο Α µε το Β και επιστρέφει το πηλίκο της διαίρεσης (πολυώνυµο Q) καθώς και το υπόλοιπο (πολυώνυµο R). Παράδειγµα Να βρεθεί το αποτέλεσµα της διαίρεσης των πολυωνύµων s 7 3s 5 + 5s 3 + 7s + 9 και 2s 6 8s 5 + 4s s Εκτελώντας τις εντολές: A = [ ]; B = [ ]; [Q,R] = deconv(a,b) Q = R = Εποµένως: s s + 5 s + 7 s = ( 0.5s + 2) + s + s s s s 8s + 4s + 10s+ 12 2s 8s + 4s + 10s+ 12 Προς επαλήθευση του αποτελέσµατος, θα πρέπει Rs () + BsQs () () = As (). Εκτελώντας την εντολή: R + conv(b,q) Το Matlab όντως επιστρέφει τα στοιχεία του πολυωνύµου A(s):
3 H εντολή [R,P,K] = residue(a,β) επιστρέφει τα υπόλοιπα, τους πόλους (οι ρίζες του Β(s)), και τον απευθείας όρο του αναπτύγµατος σε απλά κλάσµατα του λόγου δύο πολυωνύµων Α(s)/Β(s). Αν δεν υπάρχουν πολλαπλές ρίζες το ανάπτυγµα αυτό είναι της µορφής: As R1 R2 Rn = + + L + + K s Bs s P1 s P2 s Pn Τα υπόλοιπα (residues) επιστρέφονται στο διάνυσµα στήλης R, οι θέσεις των πόλων στο διάνυσµα στήλης Ρ και οι απευθείας όροι στο διάνυσµα γραµµής Κ. Ο αριθµός των πόλων είναι n = length B 1 = length R = length P. Το διάνυσµα των συντελεστών του απευθείας όρου είναι κενό αν length(a)< length(b), διαφορετικά length(k) = length(a)- length(b)+ 1. Αν P(i) =...= P(i + m 1) είναι ένας πόλος πολλαπλότητας m τότε το ανάπτυγµα θα περιλαµβάνει όρους της µορφής Ri () Ri ( + 1) Ri ( + m 1) + + L +. 2 s P() i s P() i s P() i m Σηµειώνεται επίσης ότι, καλώντας την εντολή residue ως [A,B] = residue(r,p,k), γίνεται η αντίστροφη διαδικασία και το ανάπτυγµα σε απλά κλάσµατα (όπως προσδιορίζεται από τα διανύσµατα R, P, K σύµφωνα µε τα παραπάνω) µετατρέπεται στη µορφή A(s)/B(s). Παράδειγµα Να γίνει η ανάπτυξη σε απλά κλάσµατα της ακόλουθης συνάρτησης: F(s) = 2s3 + 9s + 1 s 3 + s 2 + 4s + 4 Εκτελώντας τις εντολές: A = [ ]; B = [ ]; [R,P,K] = residue(a,b) R = i i P = i i K = Εποµένως, η ανάπτυξη σε απλά κλάσµατα της F(s) θα είναι της µορφής: F(s) = 2 + j0.25 s + j2 + j0.25 s j2 + 2 s + 1 Παρατηρήστε ότι το διάνυσµα P περιέχει τις ρίζες του παρανοµαστή της F(s). Το αποτέλεσµα µπορεί να επιβεβαιωθεί και µέσω της αντίστροφης µετατροπής: [A,Β] = residue(r,p,k); F = tf(a,b); 2) Ορισµός συναρτήσεων µεταφοράς συστηµάτων tf([a m a m-1 a 0 ],[b n b n-1 b 0 ]) : µε την εντολή αυτή ορίζεται συνάρτηση µεταφοράς της µορφής: a m s m + a m 1 s m a 0 b n s n +b n 1 s n b 0 3
4 zpk([z 1 z 2 z m ], [p 1 p 2 p n ], k) : µε την εντολή αυτή ορίζεται συνάρτηση µεταφοράς της µορφής: Παραδείγµατα ορισµού συστηµάτων k (s z 1 )(s z 2 )...(s z m ) (s p 1 )(s p 2 )...(s p n ) G 1 (s) = 3s2 + 2s + 8 s 4 + 9s 3 + 2s 2s 2 1 G 2 (s) = (s + 4)(s 2 + 3s + 5) (s + 5) G 3 (s) = 9 s(s + 4)(s 2) (8s + 1) G 4 (s) = 2 s(0.2s + 1)(s + 4) (10s + 1)(s + 3) G 5 (s) = 3 (s + 6)(s 2 + 4s + 7) G1 = tf([3 2 8],[ ]) N = [2 0-1]; D = conv([1 4],[1 3 5]); G2 = tf(n,d) G3 = zpk([-5],[0-4 2],9) Z = [-1/8]; P = [0-5 -4]; k = 2*8/0.2; G4 = zpk(z,p,k) Z = [-0.1-3]; P = [-6 roots([1 4 7])' ]; G5 = zpk(z,p,3*10) 3) Εξαγωγή στοιχείων από µια συνάρτηση µεταφοράς Η εντολή [NUM,DEN] = tfdata(sys,'v') επιστρέφει τα πολυώνυµα NUM και DEN του αριθµητή και του παρονοµαστή της συνάρτησης µεταφοράς ως διανύσµατα στήλης. Η εντολή [Z,P,K] = zpkdata(sys,'v') για ένα σύστηµα µιας εισόδου µιας εξόδου επιστρέφει τα µηδενικά Ζ και τους πόλους Ρ του συστήµατος ως διανύσµατα στήλης. 4) Διασύνδεση συστηµάτων Η εντολή G = series(g1,g2) επιστρέφει την συνάρτηση µεταφοράς της εν σειρά διασύνδεσης των συναρτήσεων µεταφοράς G1,G2. Η εντολή G = parallel(g1,g2) επιστρέφει την συνάρτηση µεταφοράς της παράλληλης διασύνδεσης των συναρτήσεων µεταφοράς G1,G2. Η εντολή G = feedback(g1,g2) επιστρέφει την συνάρτηση µεταφοράς του συστήµατος κλειστού βρόχου (µε αρνητική ανατροφοδότηση) του διπλανού συστήµατος. Η εντολή G = feedback(g1,g2,+1) επιστρέφει την συνάρτηση µεταφοράς του κλειστού βρόχου συστήµατος µε θετική ανατροφοδότηση της G 2. 4
5 5) Ανάλυση χρονικής απόκρισης συστήµατος Η εντολή step(sys,tfinal) εµφανίζει γράφηµα µε τη βηµατική απόκριση του συστήµατος SYS από t=0 έως t=tfinal. Εναλλακτικά, η κλήση της εντολής µπορεί να γίνει ως [Υ,T]=step(SYS,TFINAL), οπότε στα διανύσµατα Υ και T επιστρέφονται η βηµατική απόκριση του συστήµατος SYS και οι αντίστοιχες χρονικές στιγµές. Στην περίπτωση αυτή, δεν εµφανίζεται αυτόµατα το γράφηµα της απόκρισης. Η εντολή impulse(sys,tfinal) εµφανίζει γράφηµα µε την κρουστική απόκριση του συστήµατος SYS από t=0 έως t=tfinal. Εναλλακτικά, η κλήση της εντολής µπορεί να γίνει ως [Υ,T]=impulse(SYS,TFINAL), οπότε στα διανύσµατα Υ και T επιστρέφονται η κρουστική απόκριση του συστήµατος SYS και οι αντίστοιχες χρονικές στιγµές. Στην περίπτωση αυτή, δεν εµφανίζεται αυτόµατα το γράφηµα της απόκρισης. Η εντολή lsim(sys,u,t) εµφανίζει γράφηµα µε την απόκριση του συστήµατος SYS για το σήµα εισόδου που περιγράφεται από τα U και Τ. Το Τ είναι το διάνυσµα των χρονικών στιγµών ενώ το U είναι ένα διάνυσµα που το i-οστό του στοιχείο περιγράφει την είσοδο την χρονική στιγµή Τ(i). Για παράδειγµα, η σειρά των εντολών sys = tf([1],[5 1]); t = 0:0.01:5; u = sin(2*t); lsim(sys,u,t) εµφανίζει την απόκριση του συστήµατος 1 5s + 1 στην είσοδο u(t)=sin(2t) από 0 έως 5 sec. ΕΡΩΤΗΜΑ - 1 Δίνονται τα πολυώνυµα A(s) = s 2 + 4s + 5 και B(s) = 6s 3 + 5s + 2. Χρησιµοποιώντας το Matlab να βρεθούν τα παρακάτω: Η τιµή του A(s) για s = 4 ± j2. Η παράγωγος db(s) ds. (γ) Το αποτέλεσµα των πράξεων A(s)+ B(s) και A(s)B(s). (δ) Η περιγραφή της συνάρτησης µεταφοράς G(s) = A(s)/B(s) σε µορφή πόλων µηδενικών. (ε) Η τιµή της G(s) για s = 1 ± j2. (στ) Το ανάπτυγµα της G(s) σε άθροισµα µερικών κλασµάτων. ΕΡΩΤΗΜΑ 2 Να δοθεί η διαφορική εξίσωση που αντιστοιχεί στις παρακάτω συναρτήσεις µεταφοράς: C(s) R(s) = 10 (s+7)(s+ 8) C(s) R(s) = s+ 2 s 3 + 8s 2 + 9s+ 15 5
6 ΕΡΩΤΗΜΑ 3 Θεωρήστε το σύστηµα µάζας ελατηρίου αποσβεστήρα που παρουσιάστηκε στη Θεωρία: Λαµβάνοντας l0 = 0.06 m, m = 2 kg, k = 300 N/m και c = 70 Nsec/m να βρεθεί, µέσω υπολογισµού µε τη βοήθεια του µετασχηµατισµού Laplace, η αναλυτική έκφραση για την απόκριση x(t) της θέσης του οχήµατος για εφαρµοζόµενη δύναµη f(t) = 10 N, µε αρχικές συνθήκες x0 = 0.05 m και!x 0 = 0. Στη συνέχεια, χρησιµοποιώντας το Matlab, να δοθεί η γραφική παράσταση της x(t). Να επαναληφθεί το προηγούµενο ερώτηµα για την περίπτωση που η µάζα του οχήµατος αυξηθεί σε m = 7 kg. ΕΡΩΤΗΜΑ 4 Ο τελεστικός ενισχυτής είναι από τα στοιχεία που απαντώνται ευρύτατα στις πρακτικές υλοποιήσεις των συστηµάτων αυτόµατου ελέγχου. Υπενθυµίζεται ότι η συνάρτηση µεταφοράς µεταξύ της τάσης εξόδου και της τάσης εισόδου ενός ιδανικού τελεστικού ενισχυτή στη µη-αναστρέφουσα συνδεσµολογία του σχήµατος ισούται µε Vout() s Z () s V () s Z () s in 2 =, 1 όπου µε Z 1 (s) και Z 2 (s) συµβολίζονται οι σύνθετες αντιστάσεις των αντίστοιχων κλάδων του σχήµατος. Με βάση τα παραπάνω, να δοθεί το διάγραµµα πόλων-µηδενικών της συνάρτησης µεταφοράς G(s) =V 2 (s)/v 0 (s) του παρακάτω κυκλώµατος θεωρώντας R = 20kΩ και C = 1mF. 6
7 ΕΡΩΤΗΜΑ 5 Έστω το παρακάτω ηλεκτρικό κύκλωµα: v in (t) v out (t) Να βρεθεί η αναλυτική έκφραση για τη συνάρτηση µεταφοράς V out (s) V in (s) Χρησιµοποιώντας το θεώρηµα τελικής τιµής να βρεθεί η τελική τιµή της τάσης v out για σταθερή τάση εισόδου v in (t)= 24 Volt ΕΡΩΤΗΜΑ 6 Έστω το παρακάτω σύστηµα κλειστού βρόχου: G C (s) = 1.2 s s H(s) = 100 s , G(s) = s 2 + 3s + 2 (γ) Να βρεθεί η συνάρτηση µεταφοράς του συστήµατος κλειστού βρόχου µέσω του Matlab. Αφού επαληθευτεί ότι τι σύστηµα κλειστού βρόχου είναι ευσταθές, να υπολογιστεί µέσω του θεωρήµατος τελικής τιµής η έξοδος y(t) στην µόνιµη κατάσταση ισορροπίας για r(t)=1. Στη συνέχεια, να επαληθευτεί το θεωρητικό αποτέλεσµα µέσω της step. Χρησιµοποιώντας την εντολή lsim να δοθεί η γραφική παράσταση της απόκρισης του συστήµατος στο παρακάτω σήµα εισόδου r(t): 7
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ
Συστήματα Αυτομάτου Ελέγχου II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #2: Ποιοτικά Χαρακτηριστικά Συστημάτων Κλειστού Βρόχου - Μόνιμα Σφάλματα Δημήτριος Δημογιαννόπουλος
Ανάλυση συστημάτων με χρήση μετασχηματισμού Laplace
Ανάλυση συστημάτων με χρήση μετασχηματισμού Laplace. Ο Μετασχηματισμός Laplace Ο μετασχηματισμός Laplace μιας συνάρτησης f(t) δίνεται από τη σχέση: st L[ f ( t)] = F( = f ( t) e dt Η χρήση του μετασχηματισμού
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου
ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB
Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)
Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου 204 5 (Ιούνιος 205) ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος. α. Να προσδιοριστούν οι τιμές
ΣΑΕ 1. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes
ΣΑΕ Σημειώσεις από τις παραδόσεις Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes Οκτώβριος-Ιανουάριος 207 Τελευταία ενημέρωση: 3 Οκτωβρίου 207 Συστήματα
Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί
Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τίτλος Μαθήματος Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]:
Μετασχηματισμοί Laplace
Μετασχηματισμοί Laplace Ιδιότητες μετασχηματισμών Laplace Βασικά ζεύγη μετασχηματισμών Laplace f(t) F(s) δ(t) 1 u(t) 1 / s t 1 / s 2 t n n! / s n1 e αt, α>0 1 / (s α) te αt, α>0 1 / (s α) 2 ημωt ω / (s
( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 0: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 0-3 -- Εαρινό Εξάµηνο Σειρά Ασκήσεων αρ. 6 Παρασκευή 5 Απριλίου
Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε
Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t)
Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου 2015 ΘΕΜΑ 1 Ο (6,0 μονάδες) Δίνεται το κύκλωμα του σχήματος, όπου v 1 (t) είναι η είσοδος και v 3 (t) η έξοδος. Να θεωρήσετε μηδενικές αρχικές συνθήκες. v 1
Τυπική µορφή συστήµατος 2 ας τάξης
Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το
Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:
1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση
ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ
ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ Μ. Σφακιωτάκης mfak@taff.teicrete.gr Χειµερινό Οκτώβριος εξάµηνο 2010-11 2017 Σύστηµα Μάζας-Ελατηρίου-Αποσβεστήρα
ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ
Τ.Ε.Ι. ΚΡΗΤΗΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Μ. Σφακιωτάκης msfak@staff.teicrete.gr Χειµερινό εξάµηνο 18-19
Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
ΜΜ803 ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ
ΜΜ83 ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Εαρινό εξάµηνο 8 Λύσεις εργασίας # Λύση άσκησης : Για την πρώτη συνάρτηση ισχύει ότι sin( ωt+ θ) sinωtcosθ + cosωtsinθ άρα L[sin( ωt+ θ)] L[sin ωtcosθ + cosωtsin θ] cos θ L[sin ωt]
Μαθηματικά μοντέλα συστημάτων
Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 20 ΘΕΜΑ Ο (4,0 μονάδες). Να προσδιοριστεί η συνάρτηση μεταφοράς / του συστήματος που περιγράφεται από το δομικό (λειτουργικό) διάγραμμα. (2,0
Ανάλυση Σ.Α.Ε στο χώρο κατάστασης
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος
ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ
ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ Μ. Σφακιωτάκης fak@taff.teirete.gr Χειµερινό
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Συστήματα αυτομάτου ελέγχου (ΙΙ) Modern Control Theory
Σ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Συστήματα αυτομάτου ελέγχου (ΙΙ) Modern Control Theory (Προσομοίωση δυναμικών συστημάτων) Διδάσκων : Αναπληρωτής Καθηγητής 1 Προσομοίωση δυναμικών συστημάτων Θα
Εισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 3: Μετασχηματισμός Laplace: Συνάρτηση μεταφοράς
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Μετασχ. Laplace και Συστήµατα
ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ
ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) 1 Πόλος στην αρχή των αξόνων: 2 Πόλος στον αρνητικό πραγματικό ημιάξονα: 3 Πόλος στον θετικό πραγματικό ημιάξονα: 4 Συζυγείς πόλοι πάνω
Συστήματα Αυτομάτου Ελέγχου II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #8: Χώρος Κατάστασης: Μεταβλητές, Εξισώσεις, Κανονικές Μορφές Δημήτριος Δημογιαννόπουλος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,
Σήματα και Συστήματα
Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες
Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)
Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο
Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : v(t)
Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : p(t) v(t) v(t) Πίεση στό γκάζι Σήµα εισόδου t ΣΥΣΤΗΜΑ Ταχύτης του αυτοκινήτου Σήµα εξόδου t
Ευστάθεια συστημάτων
1. Ευστάθεια συστημάτων Ευστάθεια συστημάτων Κατά την ανάλυση και σχεδίαση ενός συστήματος αυτομάτου ελέγχου, η ευστάθεια αποτελεί έναν πολύ σημαντικό παράγοντα και, γενικά, είναι επιθυμητό να έχουμε ευσταθή
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Εργαστηριακές Ασκήσεις με χρήση του λογισμικού Matlab ΣΚΟΠΟΣ: Σκοπός των εργαστηριακών ασκήσεων είναι η πλήρης μελέτη ενός συστήματος αυτομάτου ελέγχου. Για το λόγο αυτό, στη
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 205 ΘΕΜΑ Ο (2,0 μονάδες) Ο ηλεκτρικός θερμοσίφωνας χρησιμοποιείται για τη θέρμανση νερού σε μια προκαθορισμένη επιθυμητή θερμοκρασία (θερμοκρασία
Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης
ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ:
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Μετασχηματισμός Ζ (Ζ Transform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΜΕΤΡΗΣΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΣΕ ΠΡΑΚΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Κεφάλαιο ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΜΕΤΡΗΣΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΣΕ ΠΡΑΚΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Στη διαδικασία σχεδιασμού των Συστημάτων Αυτομάτου Ελέγχου, η απαραίτητη και η πρώτη εργασία που έχουμε να κάνουμε, είναι να
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V
Θέµατα εξετάσεων Θ. Κυκλωµάτων & Σηµάτων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί στις εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα
Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)
Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 05/02/2013
ΘΕΜΑ ο (.5 μονάδες) Για τον ενισχυτή του παρακάτω σχήματος δίνονται: Β 90 kω, C kω, Ε E kω, kω, V CC V, V B 0.70 V και Ι Β 0 μα. Επίσης, για τα δύο τρανζίστορ του ενισχυτή δίνονται: β h e h e 00 και h
e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5)
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς-Λύσεις 4ης Σειράς Ασκήσεων 7/5/ Λύσεις 4ης Σειράς Ασκήσεων
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός Laplace Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αιτιατότητα Μη-Αιτιατότητα. Ευστάθεια. Περιοχή Σύγκλισης Μετασχηµατισµού Laplace
Εισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Mάθηµα: "ΘΕΩΡΙΑ ΙΚΤΥΩΝ" ( ο εξάµηνο Ακαδ. Έτος: ιδάσκοντες: Τ. Κουσιουρής, Ν. Μαράτος, Κ. Τζαφέστας Λύση ου Θέµατος Κανονικής
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ - ΕΡΓΑΣΤΗΡΙΟ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ - ΕΡΓΑΣΤΗΡΙΟ ΧΕΙΜ17-18 ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΕΛΕΓΧΟΣ ΤΑΧΥΤΗΤΑΣ
Α. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
73 Α. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Ο µετασχηµατισµός Laplace µετασχηµατίζει τις διαφορικές εξισώσεις που περιγράφουν τα γραµµικά µη χρονικά µεταβαλλόµενα συστήµατα συνεχούς χρόνου, σε αλγεβρικές εξισώσεις και
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
Όταν θα έχουµε τελειώσει το κεφάλαιο αυτό θα µπορούµε να: υπολογίσουµε το µετασχηµατισµό aplace στοιχειωδών σηµάτων. αναφέρουµε τις ιδιότητες του µετασχηµατισµού aplace. Σεραφείµ Καραµπογιάς 6. ΚΕΦΑΛΑΙΟ
ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016
ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 016 Θέμα 1. α) (Μον.1.5) Αποδείξτε ότι αν το σύστημα στο χώρο
Ανάλυση υναµικής ιεργασιών
Ανάλυση υναµικής ιεργασιών Αντιπροσώπευση µε το Μοντέλο Κατάστασης- Χώρου (State-Space Space Models) υναµική Γραµµικών Συστηµάτων 1ης και 2ης Τάξης Συστήµατα SISO και MIMO Ο Μετασχηµατισµός Laplace για
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Mάθηµα: "ΘΕΩΡΙΑ ΙΚΤΥΩΝ" ( ο εξάµηνο) Ακαδ. Έτος: - ο Τµήµα (Κ-Μ), ιδάσκων: Κ. Τζαφέστας Λύσεις ης Σειράς Ασκήσεων Άσκηση - (I-
(είσοδος) (έξοδος) καθώς το τείνει στο.
Υπενθυμίζουμε ότι αν ένα σύστημα είναι ευσταθές, τότε η απόκριση είναι άθροισμα μίας μεταβατικής και μίας μόνιμης. Δηλαδή, αν το σύστημα είναι ευσταθές όπου και Είθισται, σε ένα σύστημα αυτομάτου ελέγχου
Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου (Ιούνιος 2014)
Λύσεις θεμάτων Α εξεταστικς περιόδου χειμερινού εξαμνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (2,0 μονάδες) Να σχεδιαστεί το δομικό (λειτουργικό) διάγραμμα του για τον ηλεκτρικό θερμοσίφωνα του σχματος. Είσοδος
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συστήματα πρώτης και δεύτερης τάξης Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Σεπτεμβρίου 2008 ΕΠΩΝΥΜΟ (εξεταζόμενου/ης)
3 4 5 6 7 8 9 0 3 4 ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Σεπτεμβρίου 008 ΕΠΩΝΥΜΟ (εξεταζόμενου/ης) ΟΝΟΜΑ (εξεταζόμενου/ης) Αριθμός Μητρώου Έτος (π.χ. Γ,Δ,Ε,Ε,κ.λ.π.) Υπογραφή εξεταστή Υπογραφή
ΔΙΔΑΣΚΩΝ: Λ. ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 28/01/2015
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 8//5 ΘΕΜΑ ο (.5 μονάδες) Η έξοδος του αισθητήρα του παρακάτω σχήματος είναι γραμμικό σήμα τάσης, το οποίο εφαρμόζεται για χρονικό διάστημα
Επίλυση Δ.Ε. με Laplace
Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ
Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης
ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητς: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ: Σ. ΒΑΣΙΛΕΙΑΔΟΥ
Μαθηματικά μοντέλα συστημάτων
Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να
Κυκλώματα, Σήματα και Συστήματα
Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών
x(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) )
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/10.0
ΣΦΑΛΜΑΤΑ ΜΟΝΙΜΗΣ ΚΑΤΑΣΤΑΣΗΣ
ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ Χρονική Απόκριση Συστηµάτων Τα περισσότερα συστήµατα είναι από την φύση τους δυναµικά και παρουσιάζουν κάποιας µορφής αδράνεια
ΑΣΚΗΣΗ Για τα µαθήµατα: Εισαγωγή στον Αυτόµατο Έλεγχο (5 ο Εξάµηνο ΣΗΜΜΥ) Σχεδίαση Συστηµάτων Αυτοµάτου Ελέγχου (6 ο Εξάµηνο ΣΗΜΜΥ)
ΑΣΚΗΣΗ 7-2-27 Για τα µαθήµατα: Εισαγωγή στον Αυτόµατο Έλεγχο (5 ο Εξάµηνο ΣΗΜΜΥ) Σχεδίαση Συστηµάτων Αυτοµάτου Ελέγχου (6 ο Εξάµηνο ΣΗΜΜΥ) Ακαδηµαϊκό Έτος: 27-28 ιδάσκων:γ. Π. Παπαβασιλόπουλος Επιµέλεια
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 2. ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1.1 Εισαγωγή 1.1 1.2 Συμβολισμοί και μονάδες 1.3 1.3 Φορτίο, τάση και ενέργεια 1.5 Φορτίο και ρεύμα 1.5 Τάση 1.6 Ισχύς και Ενέργεια 1.6 1.4 Γραμμικότητα 1.7 Πρόσθεση
Παρατηρήσεις για το µετασχηµατισµό Laplace
Παρατηρήσεις για το µετασχηµατισµό plce Η συνάρτηση µεταφοράς, H, ενός ΓΧΑ συστήµατος είναι µία ρητή συνάρτηση, δηλαδή, µπορείναεκφραστείςλόγοςδύοπολυνύµντηςµεταβλητής. D N H Για να είναι ένα σύστηµα αιτιατό
Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης
Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία
7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Υλοποιήσεις Ψηφιακών Φίλτρων
Ψηφιακή Επεξεργασία Σηµάτων 10 Υλοποιήσεις Ψηφιακών Φίλτρων Α. Εισαγωγή Οποιοδήποτε γραµµικό χρονικά αµετάβλητο σύστηµα διακριτού χρόνου χαρακτηρίζεται πλήρως από τη συνάρτηση µεταφοράς του η οποία έχει
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 04/02/2011 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ
ΘΕΜΑ 1 ο ( μονάδες) Για τον ενισχυτή του παρακάτω σχήματος δίνονται: 1, 0.7, 00 kω, 4 kω, h e. kω και β h 100. (α) Να προσδιορίσετε τις τιμές των αντιστάσεων και ώστε το σημείο λειτουργίας Q (, ) του τρανζίστορ
Ευστάθεια, Τύποι συστημάτων και Σφάλματα
1. Ευστάθεια συστημάτων Ευστάθεια, Τύποι συστημάτων και Σφάλματα Κατά την ανάλυση και σχεδίαση ενός συστήματος αυτομάτου ελέγχου, η ευστάθεια αποτελεί έναν πολύ σημαντικό παράγοντα και, γενικά, είναι επιθυμητό
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Χηµικών Μηχανικών Τοµέας ΙΙ, Aνάλυσης, Σχεδιασµού & Aνάπτυξης ιεργασιών & Συστηµάτων Μονάδα Αυτόµατης Ρύθµισης και Πληροφορικης ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΥΝΑΜΙΚΩΝ
Έλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Συστήματα Ελέγχου Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)
ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (hhp://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγή στο Χώρο
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
v(t) = Ri(t). (1) website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 10 Μαρτίου 2017 1 Βασικά μεγέθη ηλεκτρικών
Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.
ΕΡΩΤΗΜΑ Δίνεται το σύστημα δεξαμενών του διπλανού σχήματος, όπου: q,q : h,h : Α : R : οι παροχές υγρού στις δύο δεξαμενές, τα ύψη του υγρού στις δύο δεξαμενές, η διατομή των δεξαμενών και η αντίσταση ροής
Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink
Δυναμική Μηχανών I 5 6 Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier
Σύστημα και Μαθηματικά μοντέλα συστημάτων
Σύστημα και Μαθηματικά μοντέλα συστημάτων Όταν μελετούμε έναν συγκεκριμένο μηχανισμό η μια φυσική διεργασία επικεντρώνουμε το ενδιαφέρον μας στα φυσικά μεγέθη του μηχανισμού τα οποία μας ενδιαφέρει να
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΑΣΚΗΣΗ 2
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 206 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/0/206 Ηµεροµηνία
Συστήματα Αυτομάτου Ελέγχου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Καθ. Εφαρμογών: Σ. Βασιλειάδου Εργαστήριο Συστήματα Αυτομάτου Ελέγχου για Ηλεκτρολόγους Μηχανικούς Εργαστηριακές Ασκήσεις Χειμερινό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εβδοµη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/4/206
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 203 ιδάσκων : Π. Τσακαλίδης Λύσεις Πέµπτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/05/203 Ηµεροµηνία
ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ
ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του
Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές
Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές Διδακτικές Σημειώσεις Τμήματος Πληροφορικής και Επικοινωνιών Τομέας Αρχιτεκτονικής Υπολογιστικών και Βιομηχανικών εφαρμογών Δρ. Βολογιαννίδης Σταύρος email:
Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας
ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος