Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Σχετικά έγγραφα
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα

A3. Σχολικό βιβλίο σελίδα 73 Α4. α. Λάθος, β. Σωστό, γ. Λάθος, δ. Σωστό, ε. Σωστό.

{ } { ( ) } ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (09/06/2017)

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 Απόδειξη θεωρήματος σελίδα 135 στο σχολικό

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ x. Η f είναι συνεχής στο x0. lim lim 1. Παρατηρούμε, δηλαδή, ότι μια

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Πανελλαδικές Εξετάσεις 2017

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Μαθηματικά Προσανατολισμού x 0 x 0. , 0,, οπότε η f είναι γνησίως αύξουσα στο 0, και

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου

AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2018

Λύσεις των θεμάτων. Παρασκευή 9 Ιουνίου 2017 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλαδικές εξετάσεις 2016

ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ TΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Εξετάσεις 9 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

Σχέδιο βαθμολόγησης-προσομοίωση Προσανατολισμού Γ Λυκείου - 1/2017 ΣΧΕΔΙΟ ΒΑΘΜΟΛΟΓΗΣΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΘΕΜΑ Β. Β1.. Η f παραγωγίσιμη στο πεδίο ορισμού της R (διότι. x άρα. x 1 0 για κάθε x R)

( f ) ( T) ( g) ( H)

Άγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα)

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ

lim f x lim g x. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 MAΪΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

ÈÅÌÁÔÁ 2008 ÏÅÖÅ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ

Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

1 εφ x dx. 1 ν 1. συνx. 2 + ln1 = - ln 2. J 3-2 = 1 2 J 1 = ln 2 2, οπότε. x lnx 2 x, x > 0.

και g(x) =, x ΙR * τότε

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ


ΑΠΑΝΤΗΣΕΙΣ. και g(x) =, x ΙR * τότε

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α

Προτεινόμενες λύσεις. , β) και η f είναι συνεχής στο x. , η f είναι γνησίως αύξουσα στο (α,x. 0]. Έτσι έχουμε: f(x) f(x

Aριστοβάθμιο ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΠ ΓΕΛ 2017 ΘΕΜΑ Α. β) Αντιπαράδειγμα η f(x)= x που είναι συνεχής στο 0 αλλά όχι παραγωγίσιμη σε αυτό αφού Β) Σ

Απαντήσεις Θεμάτων Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων (Νέο & Παλιό Σύστημα)

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ

ΕΥΤΕΡΑ 27 ΜΑΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2013

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 25 Μαΐου 2015

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 βλ. σχολικό βιβλίο σελ Α.2 βλ. σχολικό βιβλίο σελ. 246 Α.3 βλ. σχολικό βιβλίο σελ. 222 Α.4 α Λ, β Σ, γ Σ, δ Λ, ε Σ

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

Μεθοδικό Φροντιςτήριο Βουλιαγμένησ & Κύπρου 2, Αργυρούπολη, Τηλ:

Πανελλαδικές εξετάσεις 2017

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ

ΕΥΤΕΡΑ, 12 ΙΟΥΝΙΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων

4. ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελ Ορισμός σχολικού βιβλίου σελ. 303 Α2.

Αχ, πονεμένη μου συνάρτηση ολοκλήρωμα

x (x ) (x + 1) - x (x + 1)

A1. Έστω f μια συνεχής συνάρτηση σε ένα διάστημα [α, β]. Αν G είναι μια παράγουσα της f στο [α, β], τότε να αποδείξετε ότι:

1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ

και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

1.Να βρείτε την συνάρτηση f(x) για την οποία ισχύει ότι f 2 (x).f (χ)=χ 2 +1,χ 0 και περνάει από την αρχή των αξόνων.

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Transcript:

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 9 Ιουνίου 217 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο το θεώρημα της σελ. 135 (αράγραφος 2.6 ) Α2. α) Ψευδής β) Αό τη θεωρία του σχολικού βιβλίου (αράγραφος 2.1) γνωρίζουμε ως αν μια συνάρτηση f είναι αραγωγίσιμη σε σημείο o του εδίου ορισμού της τότε είναι και συνεχής στο o., Αντιαράδειγμα: f() = {, < η οοία είναι συνεχής στο o = αλλά δεν είναι αραγωγίσιμη στο o =. Α3. Θεωρία, βλ. σχολικό βιβλίο ορισμός στη σελ. 73 (αράγραφος 1.8) Α4. α) Λάθος β) Σωστό γ) Λάθος δ)σωστό ε) Σωστό Θέμα Β B1. Για να ορίζεται η συνάρτηση (f g)() = f(g()) ρέει: D g 1 1 1 { { { { < < 1 g() D f g() > 1 > (1 ) > Εομένως ορίζεται η f g και είναι: (f g)() = f(g()) = ln ( ) για κάθε (,1) 1 B2. H h είναι αραγωγίσιμη στο διάστημα (,1) ως σύνθεση αραγωγίσιμων συναρτήσεων με : h () = 1 1 ( 1 ) = 1 1 + (1 ) 2

h () = 1 1 1 = 1 >, για κάθε (,1). (1 ) H h είναι γνησίως αύξουσα στο (,1) εομένως έχει την ιδιότητα "1 1" άρα η h είναι αντιστρέψιμη. H h είναι συνεχής και γνησίως αύξουσα στο Α = (,1). Εομένως το σύνολο τιμών της είναι: h(a) = ( + h() = ln ( + + h(), h()) = (, + ) διότι: 1 = ln u = u + 1 ) h() = ln ( 1 1 1 ) ln u = + u + 1 = u + u + 1 = u 1 u + Εομένως, η συνάρτηση h 1 έχει εδίο ορισμού το (, + ). Για να βρούμε την αντίστροφη της h θέτουμε: y = h() και λύνουμε ως ρος Έχουμε: y = h() y = ln ( 1 ) e y = 1 e y e y = e y = e y + e y = (e y + 1) και e y + 1 >, για κάθε y R ey = e y + 1 Άρα ο τύος της αντίστροφης είναι: h 1 (y) = ey e y +1, y R. Θέτω όου y το οότε: h 1 () = e e +1, R

B3. H φ είναι αραγωγίσιμη στο (, + ) ως ηλίκο αραγωγίσιμων συναρτήσεων με φ () = e (e + 1) e e e (e + 1) 2 = (e > για κάθε R + 1) 2 Εομένως η φ είναι γνησίως αύξουσα στο R και δεν αρουσιάζει ακρότατα στο R. Η συνάρτηση φ είναι αραγωγίσιμη ως ηλίκο αραγωγίσιμων συναρτήσεων στο R με φ () = e (e + 1) 2 2(e + 1) e e (e + 1) 4 = = e (e + 1) 2e 2 (e + 1) 3 = e e 2 (e + 1) 3, R Λύνουμε: φ () = e (1 e ) (e +1) 3 = e (1 e ) = e >, R 1 e = = φ () > e (1 e ) (e +1) 3 > 1 e >, διότι e > και (e + 1) 3 > 1 > e e < φ () < e (1 e ) (e +1) 3 < 1 e < 1 < e e > Εομένως ροκύτει ο αρακάτω ίνακας + φ () + φ()

H φ μηδενίζεται στο σημείο = και εκατέρωθεν αλλάζει ρόσημο. Ακόμη ορίζεται η εφατομένη της C φ στο σημείο Α(, φ()). Οότε το σημείο Α (, 1 ) είναι σημείο καμής της 2 C φ. B4. Έχουμε: φ() = e e + 1 = αφού e = Άρα η ευθεία y = είναι οριζόντια ασύμτωτη της C φ στο. Είσης, έχουμε: φ() = + + e e + 1 + = D. l. H. + (e ) (e + 1) = Άρα η ευθεία y = 1 είναι οριζόντια ασύμτωτη της C φ. + e e = 1 Ειλέον αφού ισχύει φ = h 1, η φ έχει σύνολο τιμών το εδίο ορισμού της h δηλαδή το διάστημα (,1). Σχηματίζουμε τον ίνακα μεταβολών της φ και χαράσουμε τη γραφική της αράσταση. + φ () + + φ () + φ() Γραφική αράσταση: ΣΚ Α (, 1 2 )

Θέμα Γ Γ1. Η συνάρτηση f είναι αραγωγίσιμη στο [, ] με f () = συν. Έστω M(, f( )) το σημείο εαφής της εφατομένης (ε) της C f ου διέρχεται αό το A (, ). Η εξίσωση εφατομένης στο σημείο Μ είναι: 2 2 y f( ) = f ( )( ) y + ημ = συν ( ). Όμως: Α (ε) 2 + ημ = συν ( 2 ) ημ + ( 2 ) συν 2 = Θεωρούμε τη συνάρτηση: g() = ημ + ( ) συν, [, ]. 2 2 Η συνάρτηση g είναι αραγωγίσιμη στο [, ] ως ράξεις αραγωγίσιμων συναρτήσεων με g () = ( 2 ) ημ α τρόος: Παρατηρούμε ότι: g() = g() = έχει δύο τουλάχιστον ρίζες στο [, ]. Η συνάρτηση g είναι αραγωγίσιμη με: g () = ( ) ημ, [, ] 2 Ισχύει: g () = ( ) ημ = = ή = ή =. 2 2 Είσης: g () > ( ) ημ > < < 2 2 Σχηματίζουμε τον ίνακα μονοτονίας ακροτάτων: /2 g () + g Η g είναι γνησίως φθίνουσα στο Δ 1 = [, 2 ] και Δ 1, οότε η g() = έχει μοναδική ρίζα στο Δ 1 την 1 =. Η g είναι γνησίως αύξουσα στο Δ 2 = [ 2, ] και Δ 2, οότε η g() = έχει μοναδική ρίζα στο Δ 2 την 2 =. Άρα η εξίσωση g() = έχει δύο ακριβώς ρίζες στο [, ] και συνεώς ροκύτουν δύο ακριβώς σημεία εαφής Μ, δηλαδή δύο ακριβώς εφατομένες (ε 1 ), (ε 2 ) της C f ου διέρχονται αό το σημείο Α. β τρόος: Παρατηρούμε ότι: g() = g() =, άρα η εξίσωση g() = έχει δύο τουλάχιστον ρίζες στο [, ]. Έστω ότι υάρχει (, ) τρίτη ρίζα της εξίσωσης g() =. Έχουμε ότι η συνάρτηση g είναι συνεχής στα διαστήματα [, ] και [, ] και αραγωγίσιμη στα διαστήματα (, ) και (, ) αντίστοιχα με g() = g( )

και g( ) = g(). Συνεώς, με το θεώρημα Rolle υάρχουν ξ 1 (, ), ξ 2 (, ) τέτοια ώστε g (ξ 1 ) = g (ξ 2 ) =. Όμως g () = ( 2 ) ημ = = ή = 2 ή =. Αλλά: ξ 1, ξ 2 (, ) οότε καταλήγουμε σε άτοο, αφού η εξίσωση g() = έχει μοναδική ρίζα (, ) την = 2. Άρα η εξίσωση g() = έχει δύο ακριβώς ρίζες στο [, ] και συνεώς ροκύτουν δύο ακριβώς σημεία εαφής Μ, δηλαδή δύο ακριβώς εφατομένες (ε 1 ), (ε 2 ) της C f ου διέρχονται αό το σημείο Α. Γ2. Για να βρούμε τα σημεία τομής της C f με τον λύνουμε στο [, ] την εξίσωση: f() = ημ = = ή = γιατί [, ]. Για κάθε [, ] ισχύει ημ ημ f() Εομένως, Ε 2 = f() d = f() d = ημ d Το εμβαδό του τριγώνου ΟΑΒ είναι Ε ΟΑΒ = (ΟΒ)(ΑΓ) 2 Συνεώς Ε 1 = Ε ΟΑΒ Ε 2 και τελικά Ε 1 Ε 2 = Ε ΟΑΒ Ε 2 Ε 2 = = [ συν] =1+1=2 τ.μ. = 1 2 2 = 2 2 4 2 = 2 1. 2 8 4 Ο Γ ( 2, ) Β(, ) Α ( 2, 2 )

Γ3. Έχουμε: f() + f() + D f = [, ] = ημ + ημ + (1) Θεωρούμε τη συνάρτηση h() = ημ +, [, ]. Η h είναι συνεχής στο [, ] και αραγωγίσιμη στο (, ) ως ράξεις μεταξύ αραγωγίσιμων συναρτήσεων με h () = συν 1 < για κάθε (, ). Εειδή η h είναι συνεχής στο =, η h είναι γνησίως φθίνουσα στο [, ]. Άρα για κάθε < h h() > h() h() >. Οότε αό τη σχέση (1) το όριο γίνεται: ημ + ημ + = [( ημ + ) 1 ] = (+ ) = + ημ + αφού ( ημ + ) = και ημ + = h() >, για κάθε (, ). β τρόος: Η f είναι συνεχής στο [, ] και δύο φορές αραγωγίσιμη στο (, ) με f () = ημ > για κάθε (, ). Εομένως, η f είναι κυρτή στο [, ] και η εφατομένη (ε 2 ) της C f βρίσκεται κάτω αό την C f με εξαίρεση το σημείο εαφής Β(, ). Δηλαδή f() > ημ + > για κάθε [, ). γ τρόος: Θέτοντας στην (1) u = έχουμε ότι u + καθώς και το όριο γίνεται: [( u ημ( u)) 1 ] = [( u ημu) 1 ] = (+ ) = +, u + u ημ( u) u + u ημu αφού (u ημu) = και u ημu >, για κάθε u (, ). u + Γ4. Η f είναι αραγωγίσιμη στο [, ] με f () = ημ για κάθε [, ] με την ισότητα να ισχύει μόνο για = και =. Εομένως, η f είναι κυρτή στο [, ] και η εφατομένη (ε 2 ) της C f βρίσκεται κάτω αό την C f με εξαίρεση το σημείο εαφής Β(, ). Δηλαδή f() > > f() > 1 Άρα f() d > 1 e e (1 ) d = 1 για κάθε (1, e). [ ln ] 1 e = e 1 + = e 1

Θέμα Δ Δ.1. Για την συνέχεια της f έχουμε: Η f είναι συνεχής στο [ 1,) ως σύνθεση συνεχών συναρτήσεων Η f είναι συνεχής στο (, ] ως γινόμενο συνεχών συναρτήσεων 3 f() = 4 = f() = + +(e ημ) =, άρα f() = = f() και η f συνεχής στο. Τελικά η f είναι συνεχής στο [ 1, ]. Τα κρίσιμα σημεία της f είναι τα εσωτερικά σημεία του διαστήματος όου η f δεν είναι αραγωγίσιμη ή ισχύει f () =. H f είναι αραγωγίσιμη στο ( 1,) με f 3 () = ( 4 4 ) = ( 3) = (( ) 4 3) = 4 3 ( )1 3( ) = 4 3 3 < H f είναι αραγωγίσιμη στο (, ) με f () = (e ημ) = e ημ + e συν = e (ημ + συν) και f () = e (ημ + συν) = ημ + συν = ημ = συν εφ = 1 = 3 4 3 f() = 4 = 4 ( ) 3 ( ( ) ) = ( ( )1 3) = f() + = e ημ ημ = + + e + = 1 1 = 1 Άρα η f δεν είναι αραγωγίσιμη στο. Τελικά τα κρίσιμα της f στο [ 1, ] είναι τα 1 = και 2 = 3 4. ( 3 ) =

Δ2. Οι ρίζες και το ρόσημο της αραγώγου φαίνονται στον αρακάτω ίνακα: 1 3 4 f () + + f() Τοικό Μέγιστο Ελάχιστο Μέγιστο Ελάχιστο Η f είναι γνησίως φθίνουσα στα διαστήματα [ 1,], [ 3 4, ] και γνησίως αύξουσα στο [, 3 4 ]. Έχει τοικό μέγιστο για = 1, το f( 1) = 1 και για = 3 έχει ολικό μέγιστο το 4 f ( 3 ) = 2 4 2 e3 4 = M και ολικό ελάχιστο για =, το f() = = m και για =, το f() = = m. Σύμφωνα με το Θεώρημα Μέγιστης και Ελάχιστης Τιμής (ΘΜΕΤ), η f έχει σύνολο τιμών το 2 [m, M] = [, 2 e3 4 ], όου m το ελάχιστο και Μ το μέγιστο της f. Δ3. Ε = f() e 5 d = e ημ e 5 Ισχύει: e ημ e 5 = e (ημ e 4 ) Για κάθε [, ] είναι: d (1) 4 e 4 1 ημ και άρα ημ e 4. Η (1) γίνεται: 2 4 1 2 e3 Ε = (e 5 e ημ) d e 5 d e ημ d = = Ι 1 Ι 2 Για το ολοκλήρωμα Ι 1 έχουμε Ι 1 = e 5 d = [ 1 5 e5 ] = 1 5 e5 1 5

Για το ολοκλήρωμα Ι 2 έχουμε Ι 2 = e ημ d = = e συν d = ( e 1) I 2 2 I 2 = e + 1 I 2 = e + 1 2 (e ) ημ d = [e ημ] Άρα Ε = Ι 1 Ι 2 = 1 5 e5 1 5 e + 1 2 Δ4. Είναι: = (e ) συν d = [e συν] 16 e 3 4 f() e 3 4 (4 3) 2 = 8 2, [ 1, ] e συν d e ημ d 16 f() (4 3) 2 = 8 2 e 3 4 (4 3)2 f() 16 f() ( 3 4 ) 2 = 2 2 e3 4 = 2 2 e3 4 ( 3 4 ) 2 = f() M Άρα ( 3 2 4 ) = 3 4 = = 3 4 Ειμέλεια: Γιάννης Μερτίκας, Δημήτρης Βλάχος, Χρήστος Αναστασίου, Μάριος Πααδιαμαντής, Αλέξανδρος Φιτσόουλος, Αοστόλης Κωτσιαρίνης, Κωνσταντίνα Μωραΐτη, Δημήτρης Κότσιρας, Γιάννης Αλεξόουλος, Ιάσονας Μαρκάκης, Ηρώ Μαρκάκη Ευχόμαστε καλά αοτελέσματα! Για την εύστοχη Συμλήρωση του Μηχανογραφικού Δελτίου συμβουλευτείτε τη νέα έκδοση του Οδηγού Σουδών: «ΣΠΟΥΔΕΣ & ΕΠΑΓΓΕΛΜΑΤΑ 217». Όλες οι ααραίτητες ληροφορίες για τις Σχολές, τις Σουδές και τα Εαγγέλματα! Περισσότερες ληροφορίες στην ιστοσελίδα του ΜΕΘΟΔΙΚΟΥ: