ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΑ ΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Θ. ΠΑΝΙ ΗΣ ΠΑΤΡΑ 00
ΠΡΟΛΟΓΟΣ Οι σηµειώσεις αυτές έχουν σκοπό να βοηήσουν τους φοιτητές του Τµήµατος Μηχανολόγων και Αεροναυπηγών του Πανεπιστηµίου Πατρών κατά την παρακολούηση του µαήµατος Μετάδοση Θερµότητας ΙΙ στο 8 ο εξάµηνο των σπουδών τους. Λόγω των περιορισµών κάτω από τους οποίους ετοιµάστηκαν έχουν πολλά κενά και πιανότατα πολλά λάη. εν µπορούν να εωρηούν ένα αυτοτελές σύγγραµµα αλλά σηµατοδοτούν το περιεχόµενο του µαήµατος και πιστεύω ότι α διευκολύνουν την παρακολούηση του, α µειώσουν τον όγκο των σηµειώσεων που χρειάζεται να κρατούν οι φοιτητές κατά την παράδοση και α αποτελέσουν βάση για παραπέρα αναζητήσεις στην Ελληνική και τη ιενή βιβλιογραφία. Οι σηµειώσεις αυτές ή κατοπινές τους µορφές και βελτιώσεις διατίενται στην ιστοσελίδα http://www.mech.patras.gr/~panidis/books/
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΆΛΑΙΟ... Εισαγωγή στη µεταδοση ερµοτητας... Εισαγωγή... Μετάδοση Θερµότητας... ιαφορά µεταξύ Θερµοδυναµικής και Μετάδοσης Θερµότητας... Προβλήµατα ερµικού σχεδιασµού... Μετάδοση ερµότητας µε µεταφορά... 3 Πλαίσιο διερεύνησης... 3 Μεοδολογία προσέγγισης... 3 Βασικές καταστατικές σχέσεις... 4 Κατάταξη προβληµάτων µεταφοράς ερµότητας... 4 Ιδιότητες... 6 Εξάρτηση των Συντελεστών Μοριακής ιάχυσης από την Πίεση και την Θερµοκρασία...7 Συντελεστές ιάχυσης σε Αέρια µε Χαµηλή Πυκνότητα...6 Απλή Κινητική Θεωρία... 6 Θεωρία Chapman-Enskog (µε βάση δυναµικό τύπου Lennard-Jones)... 7 ιαστατική Ανάλυση...0 Γενικά Αδιαστατοποίηση εξισώσεων Forier και Newton... 0 Μεταφορά ερµότητας σε εξαναγκασµένη ροή γύρω από κύλινδρο... Ελεύερη µεταφορά ερµότητας από κατακόρυφη πλάκα... 6 Ασκήσεις...8 Βιβλιογραφία...8 ΚΕΦΆΛΑΙΟ... 3 Εξισώσεις εφαρµογης για εξαναγκασµένη µεταφορα ερµοτητας...3 Εξαναγκασµένη µεταφορά ερµότητας σε επίπεδες επιφάνειες...3 Στρωτή ροή... 3 Τυρβώδης ροή. Τοπικοί συντελεστές... 34 Μικτή ροή - Μέσοι συντελεστές µετάδοσης ερµότητας.... 35 Εξαναγκασµένη µεταφορά ερµότητας σε κυλινδρικούς αγωγούς...36 Στρωτή ροή... 36 Tυρβώδης Ροή... 38 Υγρά µέταλλα... 4 Εξαναγκασµένη µεταφορά σε µη κυκλικές διατοµές...4 Εξαναγκασµένη µεταφορά ερµότητας για εξωτερική ροή κάετα σε αγωγούς και συστοιχίες αγωγών...43 Ροή κάετα σε έναν κύλινδρο.... 43 Ροή κάετα σε µη κυλινδρικούς αγωγούς... 45 Ροή κάετα σε συστοιχία σωλήνων... 45 Ασκήσεις...53
ΚΕΦΆΛΑΙΟ 3... 57 Εξισώσεις εφαρµογης για ελευερη µεταφορα ερµοτητας...57 Κατακόρυφες επίπεδες επιφάνειες...58 Οριζόντιες επίπεδες επιφάνειες...60 Πάνω από ερµή ή κάτω από ψυχρή πλάκα... 6 Κάτω από ερµή ή πάνω από ψυχρή πλάκα... 6 Επίπεδες επιφάνειες υπο κλιση...6 Κατακόρυφοι κυλινδροι...6 Οριζόντιοι κύλινδροι...6 Ελεύερη µεταφορά από σφαίρα...63 Ασκήσεις...65 ΚΕΦΆΛΑΙΟ 4... 69 Εναλλάκτες ερµότητας...69 Εναλλάκτες κελύφους σωλήνα...69 Ροή µέσα από σωλήνα µε ισοερµοκρασιακή επιφάνεια... 70 Ολικός συντελεστής µεταφοράς ερµότητας... 7 Εναλλάκτες παράλληλης και αντιπαράλληλης ροής... 74 Γραµµικά µεταβαλλόµενος ολικός συντελεστής µεταφοράς... 77 Εναλλάκτες κελύφους - δύο διαδροµών σωλήνα... 78 Αριµός Μεταφεροµένων Μονάδων (NTU)...80 Εναλλάκτης Αντιπαράλληλης Ροής.... 8 Ασκήσεις...9 ΚΕΦΆΛΑΙΟ 5... 97 Ανάλυση της µεταφοράς ερµότητας...97 Εξισώσεις ιατήρησης...97 Ορισµοί...97 Σύστηµα (υλικό)... 97 Όγκος ελέγχου... 97 Εντατική ιδιότητα... 98 Εκτατική ιδιότητα... 98 Θεώρηµα του Reynolds...98 Θεώρηµα του Gass...0 ιατήρηση τησ µαζασ (Εξίσωση τησ συνεχειασ)...0 Εξίσωση Συνέχειας σε διάφορα συστήµατα συντεταγµένων...03 ιατήρηση τησ µαζασ σε πολυσυστατικο µιγµα...04 Εξίσωση Συνέχειας του είδους A σε διάφορα συστήµατα συντεταγµένων...06 Εξίσωση Συνέχειας του είδους A για σταερά ρ και AB σε διάφορα συστήµατα συντεταγµένων...06 ιατήρηση τησ ορµησ...07 Εξίσωση ιατήρησης της Oρµής σε Ορογώνιες Συντεταγµένες (, y, z)... Ως προς τις βαµίδες της ταχύτητας για Νευτώνειο ρευστό µε σταερά ρ και µ:... Εξίσωση ιατήρησης της Oρµής σε Κυλινδρικές Συντεταγµένες (r,, z)...
Ως προς τ... Ως προς τις βαµίδες της ταχύτητας για Νευτώνειο ρευστό µε σταερά ρ και µ... Εξίσωση ιατήρησης της Oρµής σε Σφαιρικές Συντεταγµένες (r,, φ)... 3 Ως προς τ...3 Ως προς τις βαµίδες της ταχύτητας για Νευτώνειο ρευστό µε σταερά ρ και µ...4 Συνιστώσες του Τανυστή των Τάσεων για Νευτώνειο Ρευστό σε Ορογώνιες Συντεταγµένες (, y, z)... 5 Συνιστώσες του Τανυστή των Τάσεων για Νευτώνειο Ρευστό σε Κυλινδρικές Συντεταγµένες (r,, z)... 5 Συνιστώσες του Τανυστή των Τάσεων για Νευτώνειο Ρευστό σε Σφαιρικές Συντεταγµένες (r,, φ)... 6 Η Συνάρτηση Φ = ( : ) µ τ Για Νευτώνειο Ρευστό... 7 ιατηρηση τησ ενεργειασ... 8 Συνιστώσες του Ρυµού Ροής Ενέργειας... Η Εξίσωση ιατήρησης Ενέργειας ως προς τους Ρυµούς Ροής Ενέργειας και Ορµής... Η Εξίσωση ιατήρησης Ενέργειας ως προς τις Ιδιότητες Μεταφοράς για Νευτώνειο Ρευστό µε Σταερά ρ και k... 3 Εξισώσεις διατήρησης για κααρά ρευστά ως προς αντίστοιχους ρυµούς ροής... 5 Αδιαστατοποίηση των εξισώσεων διατήρησης µάζας, ορµής και ενέργειας ( ισδιάστατη Μορφή)... 9 Οριακό στρώµα... 3 ιαστατές Εξισώσεις Οριακού Στρώµατος...3 Τυρβώδης ροή Εξισώσεις µέσων τιµών Ανάλυση κατά Reynolds... 33 Αναλογία Reynolds - Στρωτή Ροή... 36 Αναλογία Reynolds - Τυρβώδης Ροή... 37 Blasis... 38 Ασκήσεις... 4 ΚΕΦΆΛΑΙΟ 6...45 Μετάδοση Θερµότητας µε ακτινοβολία... 45 Ορισµοί... 45 Νόµος Stefan Boltzmann... 49 Νόµος του Planck... 50 Νοµογράφηµα για την µονοχρωµατική ισχύ εκποµπής µέλανος σώµατος... 50 Μη Μέλανες Επιφάνειες...53 Ο νόµος του Kirchhoff... 56 Ηλιακή ακτινοβολία και συντελεστήσ ηλιακής απορρόφησης... 57 Συντελεστής απορρόφησης ηλιακής ακτινοβολίας... 59 ιαχυτή ανταλλαγή ακτινοβολίας µεταξύ άπειρων φαιών παράλληλων επιπέδων... 66 Συντελεστής µορφής... 69 Ιδιότητες του συντελεστή µορφής... 7 Υπολογισµός του Συντελεστή Μορφής... 7
Συντελεστής µορφής αντικριστών ιδίων παραλληλόγραµµων...7 Συντελεστής µορφής κάετων παραλληλόγραµµων µε κοινή ακµή...74 Συντελεστής µορφής κάετων παραλληλόγραµµων...75 Γενικές σχέσεις για κάετα και παράλληλα παραλληλόγραµµα...77 Ανταλλαγή ακτινοβολίας µεταξύ µέλανων σωµάτων...80 Ανταλλαγή διάχυτης ακτινοβολίας µεταξύ φαιών επιφανειών...8 ΠΑΡΑΡΤΉΜΑΤΑ... 85 Παράτηµα Α...85 Ορισµοί...85 Το δέλτα του Kronecker... 85 Το σύµβολο µετάεσης... 85 Συµβολισµός µε επαναλαµβανόµενoυς δείκτες...86 Παράρτηµα Β...87 Εξισώσεις Εφαρµογής Σε Προβλήµατα Μεταφοράς Θερµότητας...87 Ορισµοί και παρατηρήσεις για τη χρήση των εξισώσεων εφαρµογής... 87 Εξαναγκασµένη Μεταφορά Θερµότητας Σε Πλάκες... 88 Εξαναγκασµένη Μεταφορά Θερµότητας Σε Σωλήνες... 89 Ελεύερη (Φυσική) Μεταφορά Θερµότητας... 9 Παράρτηµα Γ...9 Ιδιότητες ξηρού αέρα σε ατµοσφαιρική πίεση...9 Ιδιότητες διάφορων αερίων σε ατµοσφαιρική πίεση...94 Ιδιότητες στο κρίσιµο σηµείο...97 Ιδιότητες κορεσµένου νερού...98 Ιδιότητες ατµού...99 Ιδιότητες διάφορων κορεσµένων υγρών...00 Ιδιότητες υγρών µετάλλων...0 Παράµετροι Ενδοµοριακών υνάµεων και Κρίσιµες Ιδιότητες...03 Συναρτήσεις για τον Προσδιορισµό των Ιδιοτήτων Μεταφοράς Αερίων σε Χαµηλή Πυκνότητα...03
ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΤΑ ΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΕΙΣΑΓΩΓΗ Μετάδοση Θερµότητας Οικεία έννοια Κρυώνω Ντύνοµαι (Αποφεύγω τον άνεµο, Ιδρώνω Αλλάζω ρούχα) Κάνω καφέ Μαγειρεύω Χρησιµοποιώ οικιακές συσκευές Θερµαίνω κλιµατίζω ένα χώρο Προσοχή στην ταύτιση των επιστηµονικών εννοιών µε τη καηµερινή χρήση των λέξεων. ιαφορά µεταξύ Θερµοδυναµικής και Μετάδοσης Θερµότητας Η Θερµοδυναµική ασχολείται µε την µελέτη της ενεργειακής κατάστασης ενός συστήµατος σε ερµοδυναµική ισορροπία και τα ποσά ενέργειας που απαιτούνται για την αλλαγή της. Η Μετάδοση Θερµότητας ασχολείται µε τον προσδιορισµό του ρυµού ανταλλαγής ερµότητας µεταξύ συστηµάτων αλλά και των εσωτερικών ρυµών ροής ενέργειας και της κατανοµής ερµοκρασίας που αυτή συνεπάγεται.
Προβλήµατα ερµικού σχεδιασµού Μόνωση Έλεγχος Θερµοκρασίας Κτίρια Άνρωποι Ευεξία Αεροπλάνα Κρυογονική Ψύξη ακροφυσίων κινητήρων εξοπλισµού (ηλεκτρονικών κλπ) Ζώνη καλής λειτουργίας Τρανζίστορ δίοδοι Μπαταρίες Οπτικά συστήµατα ευυγράµµιση Μετάδοση ερµότητας µεταξύ ρευστών (εξοπλισµός) Εναλλάκτες Ψυγείο αυτοκινήτου Συστήµατα µετατροπής ενέργειας Λέβητες συµπυκνωτές Ψυκτικοί κύκλοι Εξατµιστής (σε χαµηλή ερµοκρασία) Συµπυκνωτής (σε υψηλή ερµοκρασία) Βιοµηχανία διεργασιών Θερµική επεξεργασία Μέταλλα Γυαλί ιαµόρφωση µηχανικών στοιχείων Χηµική βιοµηχανία Εκµετάλλευση απόβλητης ερµότητας(προέρµανση αναγέννηση) Αποβολή ερµότητας (ψυκτικοί πύργοι) Φυσικά συστήµατα Μετεωρολογία
3 Οργανισµοί Πόλεις Μετάδοση ερµότητας µε µεταφορά Μετάδοση ερµότητας παρουσία ρευστού Μετάδοση ερµότητας από επιφάνεια σε ρευστό Αγωγή + κίνηση Πλαίσιο διερεύνησης Μακροσκοπική προσέγγιση µε βάση τους νόµους του συνεχούς µέσου ιατήρηση της µάζας (συνέχεια) ιατήρηση της ορµής (δεύτερος Νόµος κίνησης του Newton) Πρώτος Νόµος της Θερµοδυναµικής U = Q + W Εξίσωση διατήρησης της ενέργειας εύτερος Νόµος της Θερµοδυναµικής Η ερµότητα διαδίδεται από το ερµότερο προς το ψυχρότερο µέσο Μεοδολογία προσέγγισης Κατανόηση φυσικών µηχανισµών Μαηµατική περιγραφή Περιορισµός της πολυπλοκότητας - Αφαίρεση (µείωση της πολυπλοκότητας µε παραδοχές, π.χ. οριακό στρώµα ελεύερη ροή κλπ) Οµοιότητα - Αδιαστατοποίηση Μοντελοποίηση Αναλυτική προσέγγιση Εµπειρική προσέγγιση Υπολογιστική προσέγγιση
4 Σχήµα. Οµοιότητα ροϊκού και ερµοκρασιακού πεδίου Σχήµα. Ρευστοδυναµική Οµοιότητα Βασικές καταστατικές σχέσεις Νόµος του Forier Νόµος ψύξης του Newton dt q = k d q = h T Τυπικές τιµές του συντελεστή µεταφοράς h [W/m K] Ελεύερη Μεταφορά Αέρας 3-5 Νερό 5-00 Εξαναγκασµένη Μεταφορά Αέρας 0-00 Νερό 50-0000 Συµπύκνωση ατµού 5000-50000 Βρασµός νερού 3000-00000 Κατάταξη προβληµάτων µεταφοράς ερµότητας Εξαναγκασµένη Ελεύερη (φυσική) Εσωτερική ροή Εξωτερική ροή Στρωτή ροή Τυρβώδης ροή
5 Τυπικές ροές Εξωτερική εξαναγκασµένη ροή πάνω από πλάκα Εσωτερική εξαναγκασµένη ροή µέσα σε αγωγό Εξωτερική εξαναγκασµένη ροή γύρω από κύλινδρο Εξαναγκασµένη ροή γύρω από συστοιχία κυλίνδρων Εξωτερική ελεύερη ροή σε κατακόρυφη πλάκα Εξωτερική ελεύερη ροή σε οριζόντια πλάκα Εξωτερική ελεύερη ροή σε κεκλιµένη πλάκα Εσωτερική ελεύερη ροή σε κοιλότητα
6 Ιδιότητες υναµικό ιξώδες µ [kgr/(m s)] Κινηµατικό ιξώδες ν [m /s] Αγωγιµότητα k [W/ (m K)] Θερµοχωρητικότητα c p [kj/(kgr K)] Θερµική διαχυτότητα k α = ρ [m /s] Συντελεστής διαστολής Αριµός Prandtl c p V ρ β = = [K - ] V T P ρ T P µ ν ρ µ c p Pr = = = [-] α k k ρ c p
7 ΕΞΑΡΤΗΣΗ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΜΟΡΙΑΚΗΣ ΙΑΧΥΣΗΣ ΑΠΟ ΤΗΝ ΠΙΕΣΗ ΚΑΙ ΤΗΝ ΘΕΡΜΟΚΡΑΣΙΑ Οι συντελεστές µοριακής διάχυσης (ιξώδες για την ορµή, αγωγιµότητα για τη ερµότητα και µάζας για τη µάζα) εξαρτώνται από την πίεση και την ερµοκρασία. Πληροφορίες για την τιµή των συντελεστών αυτών βρίσκονται στην βιβλιογραφία συνήως σε µορφή πινάκων. Η διαεσιµότητα των δεδοµένων αυτών µειώνεται µε το ιξώδες στην αγωγιµότητα και ακόµη περισσότερο στον συντελεστή διάχυσης µάζας αντανακλώντας τον βαµό διερεύνησης των επιµέρους τοµέων αλλά και την πολυπλοκότητα της εξάρτησής τους και του πειραµατικού προσδιορισµού κάε συντελεστή. Στην συνέχεια παρουσιάζονται κάποιες συσχετίσεις που επιτρέπουν τον προσδιορισµό των συντελεστών όταν δεν υπάρχουν διαέσιµα πειραµατικά δεδοµένα. Στο σχήµα 5 παρουσιάζονται διαγράµµατα που συνδέουν το ανηγµένο ιξώδες µ µ r = µε την ανηγµένη ερµοκρασία T T µ r = και πίεση P P T r =. Οι P c παράµετροι αναγωγής αναφέρονται στο κρίσιµο σηµείο. Στο διάγραµµα αυτό φαίνεται ότι το ιξώδες ενός αερίου προσεγγίζει ένα συγκεκριµένο όριο (το όριο χαµηλής πυκνότητας) καώς η πίεση τείνει στο µηδέν για δεδοµένη ερµοκρασία. Το ιξώδες των περισσότερων αερίων έχει ουσιαστικά πιάσει το όριο σε πίεση atm. Από το διάγραµµα είναι επίσης φανερό ότι το ιξώδες ενός αερίου σε χαµηλή πυκνότητα αυξάνεται µε την αύξηση της ερµοκρασίας ενώ αντίετα το ιξώδες ενός υγρού µειώνεται µε την αύξηση της ερµοκρασίας. c c
8 Υγρό Πυκνό Αέριο Ανηγµένο Ιξώδες µr=µ/µc ιφασική Περιοχή Κρίσιµο Σηµείο Όριο Χαµηλής Πυκνότητας Ανηγµένη ερµοκρασία T r =T/T c
9 Ανηγµένο Ιξώδες µ # =µ/µ 0 Ανηγµένη Πίεση p r =p/p c Συνήως δεν υπάρχουν πειραµατικές τιµές για το εκτίµηση της τιµής του µε δύο τρόπους. µ c. Είναι όµως δυνατή η
0 Αν είναι γνωστή η τιµή του ιξώδους σε συγκεκριµένη ανηγµένη πίεση και ερµοκρασία (κατά προτίµηση σε συνήκες παραπλήσιες προς τι ζητούµενες) τότε το µ c µπορεί να υπολογιστεί ως µ µ c =. µ Αν είναι γνωστά µόνο δεδοµένα p.v.t. τότε το σχέσεις ( M T ) ( V ) µ 6.6 c c c 3 = ή r µ c µπορεί να εκτιµηεί από τις µ = 7.70M p T 3 6 c c c από τις οποίες το µ c προκύπτει σε (µp) (µικρό-poise, p =g / cm s), M είναι το µοριακό βάρος, T c σε ( ο Κ), P c σε (atm) και V ο ειδικός όγκος ανά γραµµοµόριο σε (cm 3 / gram mole). Ένας άλλος τρόπος για την εκτίµηση του ιξώδους βασίζεται στο διάγραµµα του σχήµατος 6. Το διάγραµµα αυτό παρουσιάζει την εξάρτηση του ανηγµένου ιξώδους µ # =µ/µ 0 από την ανηγµένη πίεση P r και ερµοκρασία Τ r. Το µ 0 είναι το ιξώδες σε ατµοσφαιρική πίεση και στην ίδια ερµοκρασία. Τα διαγράµµατα που παρουσιάστηκαν βρίσκονται σε καλή συµφωνία µεταξύ τους στην κοινή τους περιοχή. Για τον υπολογισµό του ιξώδους πολυσυστατικών µιγµάτων µε χρήση του πρώτου διαγράµµατος χρησιµοποιούνται οι ψευδοκρίσιµες ιδιότητες που ορίζονται εµπειρικά ως p =Σ p, T =Σ T, µ =Σ µ c i ci c i ci c i ci Η µέοδος αυτή δεν είναι ιδιαίτερα ακριβής όταν το µίγµα περιέχει χηµικά ανόµοια συστατικά ή όταν οι κρίσιµες ιδιότητες διαφέρουν σηµαντικά. Το δεύτερο διάγραµµα µπορεί επίσης να χρησιµοποιηεί για πολυσυστατικά µίγµατα µε αντίστοιχη διαδικασία. Το µ* σ αυτή την περίπτωση δίνεται από την ανάλυση του ιξώδους των αερίων σε χαµηλή πυκνότητα που α παρουσιαστεί σε επόµενη παράγραφο. Στο σχήµα 7 παρουσιάζεται ένα αντίστοιχο διάγραµµα που συνδέει την ανηγµένη ερµική αγωγιµότητα k k r = (k k c στο κρίσιµο σηµείο) µε την ανηγµένη c ερµοκρασία T T r = και πίεση p p T r =. Το διάγραµµα αυτό αν και έγινε για p c c
µονοατοµικά υλικά µπορεί να χρησιµοποιηεί προσεγγιστικά και για πολυατοµικά. Παρατηρείται και σ αυτή την περίπτωση ότι η αγωγιµότητα ενός αερίου προσεγγίζει στο όριο για χαµηλές πιέσεις µία συνάρτηση του Τ. Η αγωγιµότητα των περισσότερων αερίων έχει ουσιαστικά φτάσει σ αυτό το όριο σε πίεση atm. Κατ αντιστοιχία µε το ιξώδες η αγωγιµότητα των αερίων σε χαµηλή πυκνότητα αυξάνεται µε την αύξηση της ερµοκρασίας και των περισσότερων υγρών µειώνεται µε την αύξηση της ερµοκρασίας. Η συσχέτιση αυτή είναι λιγότερο αξιόπιστη στην περιοχή του υγρού. Πολικά υγρά όπως το νερό είναι δυνατόν να παρουσιάζουν τοπικά µέγιστο στην καµπύλη k ως προς Τ. εδοµένα για την τιµή του k c δεν είναι συνήως διαέσιµα. Η τιµή αυτή όµως µπορεί να εκτιµηεί κατ αντιστοιχία µε το µ c αν είναι γνωστή η τιµή του k για συγκεκριµένη ερµοκρασία και πίεση κατά προτίµηση σε συνήκες κοντά σε ζητούµενες. Το k µπορεί σε περίπτωση που δεν υπάρχουν πειραµατικά δεδοµένα να υπολογιστεί στην περιοχή χαµηλών πυκνοτήτων από σχέσεις που α παρουσιαστούν σε επόµενη παράγραφο.
Ανηγµένοη ερµική αγωγιµότητα, kr=k/kc Ανηγµένη ερµοκρασία, T r =T/T c Το διάγραµµα του σχήµατος 8 χρησιµοποιείται επίσης για τον προσδιορισµό της αγωγιµότητας. Στο διάγραµµα αυτό παρουσιάζεται η συναρτησιακή εξάρτηση της # 0 ανηγµένης αγωγιµότητας k = k/ k από την ανηγµένη πίεση p r και ερµοκρασία
Τ r. Το k 0 είναι η ερµική αγωγιµότητα στην ζητούµενη ερµοκρασία αλλά σε ατµοσφαιρική πίεση. Πρέπει να σηµειωεί ότι τα διαγράµµατα αυτά βασίζονται σε περιορισµένο αριµό πειραµατικών δεδοµένων και η ακρίβειά τους είναι περιορισµένη ιδιαίτερα για πολυατοµικά είδη. Για πολυσυστατικά µίγµατα χρησιµοποιούνται τεχνικές ανάλογες µε αυτές για το ιξώδες. Η ακρίβεια αυτών των τεχνικών είναι αµφισβητήσιµη ιδίως λόγω της έλλειψης πειραµατικών δεδοµένων για µίγµατα σε υψηλές πιέσεις. 3 Ανηγµένη ερµική Αγωγιµότητα k # =k/k 0 Ανηγµένη Πίεση p r =p/p c
4 Οι πληροφορίες για τον συντελεστή διάχυσης µάζας είναι πολύ περιορισµένες. Για δυαδικά συστήµατα τα πειραµατικά δεδοµένα που υπάρχουν αφορούν µικρές περιοχές συνηκών και η ακρίβειά τους είναι αµφισβητήσιµη. Επί πλέον ο συντελεστής εξαρτάται και από την σύνεση του µίγµατος πέρα από την AB εξάρτηση από την πίεση και την ερµοκρασία. Για τους λόγους αυτούς οι συσχετίσεις που υπάρχουν για τον βασίζονται περισσότερο στη εωρία παρά στο πείραµα και η αξιοπιστία τους είναι περιορισµένη. AB Για χαµηλές πιέσεις και µε βάση την κινητική εωρία και την εωρία αντίστοιχων καταστάσεων προτείνεται η σχέση p AB 5 3 TcAT cb ca cb ca cb + MA MB ( p p ) ( T T ) T = a όπου το AB είναι σε µονάδες cm sec, το p σε atm και το Τ σε ο k. Με βάση πειραµατικά δεδοµένα προσδιορίζονται οι τιµές των σταερών α και b. b Για µη πολικά ζεύγη αερίων a 4 =.745 0 και b =.83. Για H O και ένα µη πολικό αέριο a 4 = 3.640 0 και b =.334. Η συσχέτιση αυτή παρουσιάζει ακρίβεια 8% σχετικά µε πειραµατικές µετρήσεις σε ατµοσφαιρική πίεση. Για ζεύγη µη πολικών αερίων για τα οποία είναι γνωστές οι παράµετροι Lennard Jones η σχέση που α δοεί σε επόµενη παράγραφο µε βάση την κινητική εωρία είναι προτιµότερη. Για υψηλές πιέσεις υπάρχουν περιορισµένα δεδοµένα για τον συντελεστή αυτοδιάχυσης βασισµένα σε πειράµατα µε ισότοπα. Με βάση τέτοια δεδοµένα AA και την κινητική εωρία για πυκνά αέρια κατά Enskog δηµιουργήηκε το διάγραµµα του σχήµατος 9 όπου δίνεται η εξάρτηση του λόγου ( ) o p p σαν συνάρτηση της ανηγµένης ερµοκρασίας Tr = T Tc και πίεσης pr = p pc. Ο εκέτης ο δείχνει ότι το γινόµενο πρέπει να υπολογιστεί στην ίδια ερµοκρασία µε το ζητούµενο αλλά σε χαµηλή πίεση. Λόγω έλλειψης άλλων στοιχείων έχει προταεί η χρήση του διαγράµµατος αυτού για τον προσδιορισµό του σε δυαδικά µίγµατα µε την αντικατάσταση των p c AB AA AA
5 και T c από τις ψευδοκρίσιµες τιµές είναι άγνωστη. p c και T c. Η ακρίβεια µιας τέτοιας εκτίµησης p /(p ) 0 Ανηγµένη Πίεση p r =p/p c Σχήµα 9
6 ΣΥΝΤΕΛΕΣΤΕΣ ΙΑΧΥΣΗΣ ΣΕ ΑΕΡΙΑ ΜΕ ΧΑΜΗΛΗ ΠΥΚΝΟΤΗΤΑ Απλή Κινητική Θεωρία Σφαιρικά µόρια που δεν έλκονται και δεν παραµορφώνονται mκt ιξώδες: µ = 3 3π d αγωγιµότητα: k 3 κ T = (µονοατοµικό αέριο) 3 d π m συντελεστής διάχυσης µάζας: AA 3 κ = 3 π m T pd 3 3 A A AB 3 3 κ T 3 3 π ma mb da + db = + p Κατανοµή ταχύτητας (y) Μόριο που προέρχεται από το επίπεδο (y - α) µε συνιστώσα της ταχύτητας στη διεύυνση y-α
7 Θεωρία Chapman-Enskog (µε βάση δυναµικό τύπου Lennard-Jones) υναµικό Lennard-Jones: µ =.6693 0 5 MT σ Ω µ 6 σ σ ϕ() r 4ε = r r Τα µόρια απωούνται σε αποστάσεις r<r m k =.989 0 4 T M σ Ω k (µονοατοµικό) Τα µόρια έλκονται σε αποστάσεις r>r m k = cp + 5 4 R M µ Μίγµα Αερίων (πολυατοµικό) Όταν r = 3σ, το φ είναι πλέον µικρότερο από 0.0 µ mi = n iµ i Σ Φ i= i M i Φ i = + + 8 M µ Mi 4 µ M i για διάχυση µάζας : σ ( σ σ ) = + ε AB = εε A B AB A B AB = 0.008583 3 T + M M pσ A B ABΩ, AB Μονάδες µ g cm sec, T K, σ A, k cal cm sec ϕ cal g mole k, R.987cal g mole k 3 AB cm sec, c g mole cm, p atm
8 κ 6 =.3805 0 erg molecle K (στα. Boltzmann)
9 ΣΥΝΤΕΛΕΣΤΕΣ ΙΑΧΥΣΗΣ ΣΕ ΥΓΡΑ N h T µ = EXP 3.8 B V T όπου 5 = 6.05 0 (Avogadro) N g mole 7 h= 6.64 0 g cm sec (Planck) V ειδικός όγκος ανά γραµµοµόριο δείκτης Β: βρασµός N k =.8 s V κ όπου s c ρ p = cv p T η ταχύτητα του ήχου AB όπου = 7.4 0 8 ( ) ψ M B µ V B 0.6 A T µ cpoise 3 V A cm g mole στο Κ.Σ.Β. υγρό ψ B.6 νερό.9 µεανόλη.5 εανόλη.0 βενζίνη, αιέρας, επτάνιο. Κενή έση πλέγµατος ή «τρύπα». Ενέργεια µορίου Σε ήρεµο ρευστό Σε ρευστό υπό τάση τ y
0 ΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ Γενικά Αδιαστατοποίηση εξισώσεων Forier και Newton Οποιαδήποτε διαστατή συναρτησιακή σχέση µπορούµε να την µετασχηµατίσουµε σε µία αντίστοιχη αδιάστατη. Ας εωρήσουµε για παράδειγµα την µεταφορά ερµότητας από µια επιφάνεια στο ρευστό που την περιβάλλει. Ο ρυµός ροής ερµότητας σύµφωνα µε τον νόµο ψύξης του Newton α είναι q = h ( ) T s T f Το ποσό αυτό της ερµότητας µεταδίδεται µε αγωγή µέσα από ένα πολύ λεπτό στρώµα ρευστού που παραµένει ακίνητο επάνω στο τοίχωµα (συνήκη µη ολίσησης). Σύµφωνα µε το νόµο του Forier dt q = k dy s Συνδυάζουµε τις δύο αυτές σχέσεις και καταγράφουµε τις µονάδες q = h W ( T T ) { K} s f m Αναδιατάσσοντας K = k dt dy s W m K K m h k W m K = W m K m = K ( T T ) m s f dt dy s Τέλος χρησιµοποιώντας ένα µήκος χαρακτηριστικό της γεωµετρίας του προβλήµατος, όπως είναι η διάµετρος D του κυλίνδρου µπορούµε να εξαλείψουµε και την διάσταση του µήκους. T Tf d hl D dt ( T s T f ) dθ { } = = = k ( T T ) d y d dη D K = m s f s s s
Όπου T T f y Θ = είναι η αδιάστατη ερµοκρασία και η = T T D s f συντεταγµένη κάετα στην επιφάνεια η αδιάστατη Η τελική σχέση έχει την καόλου τυχαία µορφή N = hl k = dθ dη s που δείχνει ότι ο αριµός Nsselt, N, η αδιάστατη δηλαδή έκφραση του συντελεστή µεταφοράς ερµότητας, h, είναι ίσος και αντίετος µε την αδιάστατη βαµίδα τη ερµοκρασίας κάετα στο τοίχωµα. Μεταφορά ερµότητας σε εξαναγκασµένη ροή γύρω από κύλινδρο Ας εωρήσουµε το πρόβληµα του πειραµατικού προσδιορισµού της εξαναγκασµένης µεταφοράς ερµότητας από ένα κύλινδρο του οποίου η εξωτερική επιφάνεια διατηρείται σε σταερή ερµοκρασία προς ένα ρευστό που ρέει κάετα προς την εξωτερική του επιφάνεια. Ο προσδιορισµός του συντελεστή µεταφοράς, h, αναµένεται να εξαρτάται από τις παραµέτρους, D, ρ, µ, c p, k, T. Το ερώτηµα που τίεται είναι αν για τον πειραµατικό προσδιορισµό του h χρειάζεται να διερευνήσουµε την επίδραση της µεταβολής όλων αυτών των παραµέτρων ή αν µπορούµε να περιορίσουµε κατά κάποιο τρόπο τη διερεύνηση.
Μέγεος Μονάδες SI ιαστάσεις m s - L t - D m L ρ kg m -3 M L -3 µ kg m - s - M L - t - c p W s kg - K - = m s - K - L t - T - k W m - K - = kg m s -3 K - M L t -3 T - T K T h W m - K - = kg s -3 K - M t -3 T - D ρ µ c p k T h M 0 0 0 0 L -3-0 0 t - 0 0 - - -3 0-3 T 0 0 0 0 - - - Αριµός αδιάστατων οµάδων που περιγράφουν πλήρως το φαινόµενο. i = n r Όπου n, ο αριµός των αρχικών µεταβλητών και r η τάξη του µεγαλύτερου πίνακα rr χωρίς εξαφανιζόµενη ορίζουσα. Άρα i = 8-4 = 4 ηµιουργία αδιάστατων οµάδων Μορφή κάε αδιάστατης οµάδας Π = α D β ρ γ µ δ c p ε k ζ T η h ιαστάσεις κάε οµάδας = (L t - ) α (L) β (M L -3 ) γ (M L - t - ) δ (L t - T - ) ε (M L t -3 T - ) ζ (T) η (M t -3 T - ) Σύστηµα για τον υπολογισµό των εκετών της οµάδας M: γ+δ+ζ+=0 L: α+β-3γ-δ+ε+ζ=0 t: -α-δ-ε-3ζ-3=0 T: -ε-ζ+η-=0 ιαµόρφωση των τεσσάρων αδιάστατων οµάδων
3 Κοινός πυρήνας των οµάδων D, ρ, µ, k Μορφή των οµάδων Π = D a ρ b µ c k d Π = D e ρ f µ g k h c p Π 3 = D i ρ µ k k l h Π 4 = D m ρ n µ o k p T Προσδιορισµός πρώτης οµάδας Μορφή οµάδας Π = D a ρ b µ c k d ιαστάσεις οµάδας = (L) a (M L -3 ) b (M L - t - ) c (M L t -3 T - ) d (L t - ) Σύστηµα για τον υπολογισµό των εκετών της οµάδας και λύση M: b+c+d=0 a= L: a-3b-c+d+=0 b = t: -c-3d-=0 c = T: -d=0 d = 0 D ρ Π = = Re µ D, Αριµός Reynolds, συγκρίνει δυνάµεις αδράνειας µε δυνάµεις ιξώδους Π = D e ρ f µ g k h c p = (L) e (M L -3 ) f (M L - t - ) g (M L t -3 T - ) h (L t - T - ) M: f+g+h=0 e=0 L: e-3f-g+h+=0 f = 0 t: -g-3h-=0 g = T: -h-=0 h = µ cp Π = = k Pr, Αριµός Prandtl, συγκρίνει διαδικασίες µοριακής διάχυσης της ορµής (ιξώδες) και µοριακής διάχυσης της ερµότητας, ιδιότητα του ρευστού
4 Π 3 = D i ρ µ k k l h = (L) i (M L -3 ) (M L - t - ) k (M L t -3 T - ) l (M t -3 T - ) M: +k+l+=0 i= L: i-3-k+l=0 = 0 t: -k-3l-3=0 k = 0 T: -l-=0 l = hd Π 3 = = k N D, Αριµός Nsselt, Αδιάστατη µορφή του συντελεστή µεταφοράς ερµότητας. Π 4 = D m ρ n µ o k p T = (L) m (M L -3 ) n (M L - t - ) o (M L t -3 T - ) p (T) M: n+o+p=0 m= L: m-3n-o+p=0 n = t: -o-3p=0 o = 3 T: -p+=0 p = = D ρ k T 3 µ Π 4 ρ Π 4 3 ρ Re ρ D k cp T µ µ Br µ cp µ D k T D k T = = = = = µ Re Pr ( Ec) Br = k µ T, Αριµός Brinkman
5 Ec = c ( ) p T, Αριµός Eckert Σε προβλήµατα εξαναγκασµένης µεταφοράς ερµότητας ο προσδιορισµός τους αδιάστατου συντελεστή µεταφοράς ερµότητας α δίνεται από σχέσεις της µορφής N=f(Re, Pr, Br)=f'(Re, Pr, Ec) Στα περισσότερα προβλήµατα οι ταχύτητες είναι αρκετά µικρές για να υπάρχει σηµαντική µετατροπή της κινητικής ενέργειας σε ερµική λόγω ιξώδους και οι σχέσεις παίρνουν την µορφή N=f(Re, Pr)
6 Ελεύερη µεταφορά ερµότητας από κατακόρυφη πλάκα Ανωστική δύναµη (ρ-ρ e )g Με βάση τον συντελεστή διαστολής Ανωστική δύναµη β(t-t e ) -(ρ-ρ e )/ρ -(T-T e ) βg Μέγεος Μονάδες SI ιαστάσεις βg m s - K - L t - T - L m L ρ kg m -3 M L -3 µ kg m - s - M L - t - c p W s kg - K - = m s - K - L t - T - k W m - K - = kg m s -3 K - M L t -3 T - T K T h W m - K - = kg s -3 K - M t -3 T - βg L ρ µ c p k T h M 0 0 0 0 L -3-0 0 t - 0 0 - - -3 0-3 T - 0 0 0 - - - i = n r i = 8-4 = 4 Πυρήνας L, ρ, µ, k Π = L a ρ b µ c k d βg Π = L e ρ f µ g k h c p Π 3 = L i ρ µ k k l h Π 4 = L m ρ n µ o k p T
7 Π = Lµ βg k µc p Π = = Pr k h L Π 3 = = k N L Π 4 = L ρ k T 3 µ Από την εµπειρία φαίνεται ότι οι οµάδες Π και Π 4 εµφανίζονται συνήως µαζί στη µορφή 3 Lµβg L ρ k T L ρ βg T ΠΠ 4 = = 3 k µ µ = Gr L, Αριµός Grashof, συγκρίνει ανωστικές δυνάµεις µε δυνάµεις ιξώδους ή σε συνδυασµό και µε το Π ως 3 3 L βg T ν L βg T Ra = Gr Pr = =, ν α να Αριµός Rayleigh, συγκρίνει ανωστικές δυνάµεις µε διαδικασίες διάχυσης ορµής και ερµότητας. Σε προβλήµατα ελεύερης µεταφοράς ερµότητας ο προσδιορισµός τους αδιάστατου συντελεστή µεταφοράς ερµότητας α δίνεται από σχέσεις της µορφής N=f(Gr, Pr)=f'(Ra, Pr)
8 ΑΣΚΗΣΕΙΣ. Να βρεoύv oι αδιάστατoι αριµoί στις ακόλoυες περιπτώσεις: α. Re για = 0 m/sec, = 0.6 m, αέρας 5 o C, atm. β. Re D για m = 0.5 kgr/sec, D = 0 cm, vερό 40 o C. γ. Ν L για h = 0 W/m -K, L = m, αέρας 50 o C, atm. δ. Ν για h = 65 W/m -K, =. m, ατµός 7 atm, 00 o C. ε. Pr για µ =.040-5 kgr/m-sec, c p = 0.958 kj/kgr- o C, k = 0.063 W/m- o C. ΒΙΒΛΙΟΓΡΑΦΙΑ Heat transfer, Alan Chapman, Macmillan Pblishing Company, 984 Heat and mass transfer, Anthony F. Mills, Irwin, 995 A Heat Transfer Tetbook, J.H. Lienhard IV & J.H. Lienhard V, Phlogiston Press, 00. (διατίεται ελεύερα στο διαδίκτυο στη διεύυνση http://web.mit.ed/lienhard/www/ahtt.html) Introdction to heat transfer, F.P. Incropera & D.P. DeWitt, John Wiley & Sons, 996 Heat transfer: a practical approach, Y.A. Cengel, McGraw-Hill, 998 Heat transfer, James Scec, Simon and Schster, 975 Fndamental Principles of Heat Transfer, Stephen Whitaker, Pergamon Press, 977. Convection Heat and Mass Transfer, W. M. Kays, & M. E Crawford., McGraw Hill, 980. Transport Phenomena, R.B. Bird, W.E. Stewart, & E.N. Lightfoot, John Wiley & Sons, 960. Vectors, Tensors and the basic eqations of Flid Mechanics, R. Aris, Prentice-Hall, 96 Μετάδοση Θερµότητας ΙΙ,.. Παπαηλιού, Πανεπιστήµιο Πατρών, 996 Εφαρµοσµένη Ρευστοµηχανική,.Γ. Παπανίκας, Εκδόσεις Πανεπιστηµίου Πατρών, 000.
Εισαγωγή στην Ρευστοµηχανική, Α.Χ. Παγιατάκης, Εκδόσεις Πανεπιστηµίου Πατρών, 993. Εισαγωγή στα Φαινόµενα Μεταφοράς, Α.Χ. Παγιατάκης, Εκδόσεις Πανεπιστηµίου Πατρών, 993. Ανύσµατα και Τανυστές - Μαηµατική ανάλυση και φυσική ερµηνεία, Α.Θ. Παπαϊωάννου. 9
ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ ΕΦΑΡΜΟΓΗΣ ΓΙΑ ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Στο κεφάλαιο αυτό α παρουσιαστούν µερικές χρήσιµες σχέσεις που αναφέρονται στον υπολογισµό της εξαναγκασµένης µεταφοράς ερµότητας στα πλέον συνηισµένα προβλήµατα για Μηχανικούς. Από τις σχέσεις αυτές άλλες βασίζονται σε εωρητική αναλυτική προσέγγιση και άλλες αποτελούν αδιάστατες εµπειρικές συσχετίσεις πειραµατικών δεδοµένων. Οι περισσότερες σχέσεις αναφέρονται σε οριακή συνήκη σταερής ερµοκρασίας επιφάνειας σε αντιδιαστολή µε άλλες συνηισµένες οριακές συνήκες π.χ. σταερής ροής ερµότητας ή σταερής διαφοράς ερµοκρασίας. Η ανάλυση στα προβληµάτων µεταφοράς ερµότητας βασίζεται συνήως στη εώρηση ότι οι φυσικές ιδιότητες του ρευστού παραµένουν σταερές. Παρ' όλα αυτά στις περισσότερες περιπτώσεις η εξάρτηση των ιδιοτήτων από τη ερµοκρασία και στα αέρια η εξάρτηση της πυκνότητας από την πίεση είναι σηµαντική. Η επιλογή της ερµοκρασίας στην οποία α προσδιοριστούν οι ιδιότητες του ρευστού επηρεάζει σηµαντικά την ακρίβεια των αποτελεσµάτων των εωρητικών σχέσεων αλλά και των εµπειρικών συσχετίσεων. Στην περίπτωση εξαναγκασµένης µεταφοράς ερµότητας σε κλειστούς αγωγούς ή σωλήνες χρησιµοποιείται συνήως η µέση ερµοκρασία διατοµής b που ορίζεται από την εξίσωση
3 b = R 0 R 0 ρ c π r d r p ρ c π r d r p () και αντιστοιχεί στην ερµοκρασία που α προέκυπτε αν το ρευστό σε µια διατοµή αναµιγνυόταν και έφτανε σε ερµική ισορροπία. Στις περιπτώσεις που απαιτείται µια ερµοκρασία που να αντιστοιχεί στην µέση τιµή στο οριακό στρώµα χρησιµοποιείται η µέση ερµοκρασία στρώµατος m που είναι η µέση τιµή µεταξύ της ερµοκρασίας επιφάνειας s και της ερµοκρασίας στην περιοχή της ελεύερης ροής f m = f + s Μερικές φορές σε εσωτερικές ροές απαιτείται η αντίστοιχη µέση ερµοκρασία οπότε στην έση της f χρησιµοποιείται η b. Πρέπει να σηµειωεί ότι η ακρίβεια των σχέσεων που α παρατεούν επηρεάζεται σηµαντικά από τον προσδιορισµό των ιδιοτήτων του ρευστού, από πειραµατικά σφάλµατα, γεωµετρικές αποκλίσεις, την τραχύτητα των επιφανειών, από φαινόµενα που δεν λαµβάνονται υπ' όψη κ.λ.π. Για τους παραπάνω λόγους αποκλίσεις 0% στους αριµούς Nsselt που υπολογίζονται είναι συνηισµένες σε προβλήµατα εξαναγκασµένης µεταφοράς και σε πιο πολύπλοκες καταστάσεις οι αποκλίσεις µπορεί να είναι ακόµη µεγαλύτερες. Οι σχέσεις που α παρατεούν λόγω του ότι αναφέρονται σε εξαναγκασµένη µεταφορά (χωρίς να λαµβάνονται υπ' όψη ανωστικά φαινόµενα) και δεν συµπεριλαµβάνουν φαινόµενα µετατροπής της µηχανικής ενέργειας λόγω τριβής είναι της µορφής: N = N(Re,Pr) ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΣΕ ΕΠΙΠΕ ΕΣ ΕΠΙΦΑΝΕΙΕΣ. Στρωτή ροή Για στρωτή ροή σε επίπεδες επιφάνειες αναλυτικές λύσεις για τον τοπικό και τον µέσο αριµό Nsselt έχουν επιβεβαιωεί πειραµατικά. N = 0.33 Re / Pr /3
33 N L = 0.664 Re L / Pr /3 0.6 Pr 50 Re < Re,c = 5 0 5 ιδιότητες σε m Η ελάχιστη τιµή του αριµού Prandtl 0.6 αντιστοιχεί στην ελάχιστη δυνατή για αέρια. Μικρότερες τιµές του αριµού Prandtl παρουσιάζονται σε περιπτώσεις υγρών µετάλλων λόγω της υψηλής ερµικής τους αγωγιµότητας και είναι της τάξης του 0.0. Σε αυτή την περίπτωση το ερµικό οριακό στρώµα είναι σηµαντικά πιο παχύ από το αντίστοιχο της ταχύτητας. Γενικά αυτό σηµαίνει ότι η ταχύτητα είναι σχεδόν σταερή στην ανεπηρέαστη από το όριο τιµή της, σε µεγάλο µέρος του ερµικού οριακού στρώµατος, µεταβάλλοντας σηµαντικά τις λύσεις της εξίσωσης της ενέργειας. Επί πλέον δεν ισχύει η βασική παραδοχή που οδηγεί στην παραπάνω εξίσωση που βασίζεται στην εώρηση ότι τα δυο οριακά στρώµατα είναι της ίδιας τάξης µεγέους. Για ρευστά µε χαµηλούς αριµούς Prandtl οι Kays και Crawfοrd προτείνουν τις σχέσεις: N = 0.565 (Re Pr) / N L =.30 (Re L Pr) / Pr < 0.05 Re < Re,c = 5 0 5 ιδιότητες σε m Για όλη την περιοχή αριµών Prandtl οι Chrchill και Ozoe προτείνουν τις ηµιεµπειρικές σχέσεις: N = N = L 0.3387 Re Pr [+(0.0468 / Pr ) ] 0.6774 Re Pr [+(0.0468 / Pr ) ] Re Pr > 00 ιδιότητες σε m / / 3 /3 /4 () / / 3 L /3 /4 (3)