(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

Σχετικά έγγραφα
Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

,,, και τα ενδεχόμενα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 20 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 20 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

P(A ) = 1 P(A). Μονάδες 7

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

Μαθηµατικά και στοιχεία Στατιστικής

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4

1) ( ) ω Α άρα έχουμε: P( ω ) ( ' ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 20 ΜΑΪΟΥ 2013

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

x. Αν ισχύει ( ) ( )

Λύσεις θεμάτων πανελληνίων εξετάσεων. Στο μάθημα: «Μαθηματικά και Στοιχεία Στατιστικής» Γ Λυκείου Γενικής Παιδείας. Δευτέρα, 20 Μαΐου 2013

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

P A B P(A) P(B) P(A. , όπου l 1

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

μιας παρατήρησης όπου λ. Αν για το πλήθος Ν(Ω) των σφαιρών που υπάρχουν στο κουτί ισχύει 64<Ν(Ω)<72, τότε λ

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

(t) x (t) t t. t 2 ή t S x( 2) x( 0) S x( 3) x( 2) 10 m

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

Λύσεις των θεμάτων ΤΕΤΑΡΤΗ 23 MAΪΟΥ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

Χρόνια υπηρεσίας [ - )

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

P(A ) = 1 P(A). Μονάδες 7

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

( ) ( ) ( ) ( ) Α2. Έστω μια συνάρτηση f με πεδίο ορισμού A. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό μέγιστο στο x1 Μονάδες 4.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος του Μανώλη Ψαρρά Άσκηση 1 η

Transcript:

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ () ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f ()= είναι f ()=, για κάθε R Μονάδες 7 Α. Έστω μια συνάρτηση f με πεδίο ορισμού Α. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό ελάχιστο στο 0 A. Α. Να δώσετε τον ορισμό της διαμέσου (δ) ενός δείγματος ν παρατηρήσεων. Μονάδες Μονάδες Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Για τη συνάρτηση f () =, 0 ισχύει ότι f () = (μονάδες ) β) Για το γινόμενο δύο παραγωγίσιμων συναρτήσεων f, g ισχύει ότι (f () g()) = f () g()+f () g () (μονάδες ) γ) Το ραβδόγραμμα χρησιμοποιείται για τη γραφική παράσταση των τιμών μιας ποσοτικής μεταβλητής. (μονάδες ) δ) Η διάμεσος είναι ένα μέτρο θέσης, το οποίο επηρεάζεται από τις ακραίες παρατηρήσεις. (μονάδες ) ε) Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω με Α Β, ισχύει ότι Ρ(Α) Ρ(Β). (μονάδες ) Μονάδες 0 ΘΕΜΑ Β Δίνεται ο δειγματικός χώρος Ω = { ω, ω, ω, ω, } και τα ενδεχόμενα Α = { ω, ω και Β = { ω, ω } Για τις πιθανότητες των απλών ενδεχομένων { ω } και { ω } του Ω ισχύει ότι: P( ω ) = lm H P( ω ) είναι ίση με το ρυθμό μεταβολής της f () ως προς, όταν =, όπου f () = ln, 0

Β. Να αποδείξετε ότι P( ω ) = και P( ω ) = Μονάδες 0 Β. Να αποδείξετε ότι Ρ(Α ), όπου Α το συμπληρωματικό του Α. Μονάδες 7 Β. Αν P(A ) =, τότε να βρείτε τις πιθανότητες P( ω ), P( ω ), P[(A B) (B A)] και P(Α -Β ), όπου Β το συμπληρωματικό του Β. Μονάδες 8 ΘΕΜΑ Γ Θεωρούμε ένα δείγμα ν παρατηρήσεων μιας συνεχούς ποσοτικής μεταβλητής X, τις οποίες ομαδοποιούμε σε ισοπλατείς κλάσεις. Δίνεται ότι: η μικρότερη παρατήρηση είναι 0 η κεντρική τιμή της τέταρτης κλάσης είναι = 8 η σχετική συχνότητα της τέταρτης κλάσης είναι διπλάσια της σχετικής συχνότητας της τρίτης κλάσης η διάμεσος των παρατηρήσεων του δείγματος είναι δ = 7 και η μέση τιμή των παρατηρήσεων του δείγματος είναι = 7 Γ. Να αποδείξετε ότι το πλάτος είναι c = 0 Μονάδες Γ. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα συμπληρωμένο σωστά Kλάσεις [, ) [, ) [, ) [, ) Σύνολο Κεντρικές Τιμές Γ. Δίνεται ότι f 0,, f 0,, f 0, και f 0, Σχετική Συχνότητα f Μονάδες 8

Να αποδείξετε ότι η μέση τιμή των παρατηρήσεων, που είναι μικρότερες του 80, είναι 00. Μονάδες 7 Γ. Επιλέγουμε κ παρατηρήσεις του αρχικού δείγματος με κ < ν, οι οποίες ακολουθούν κανονική κατανομή με το,% των παρατηρήσεων αυτών να είναι τουλάχιστον 7 το 6% των παρατηρήσεων αυτών να είναι το πολύ 68 Να βρείτε τη μέση τιμή και την τυπική απόκλιση των παρατηρήσεων αυτών καθώς και να εξετάσετε αν το δείγμα των παρατηρήσεων αυτών είναι ομοιογενές. Μονάδες 6 ΘΕΜΑ Δ Θεωρούμε τη συνάρτηση f() = ln + κ, > 0, όπου κ ακέραιος με κ > και την εφαπτομένη (ε) της γραφικής παράστασης της f στο σημείο (,f()), η οποία σχηματίζει με τους άξονες, τρίγωνο εμβαδού E, με E < Δ. Να αποδείξετε ότι κ = Μονάδες Δ. Έστω,, 0 οι τετμημένες 0 σημείων της (ε) των οποίων οι αντίστοιχες τεταγμένες τους έχουν μέση τιμή y = α) Να αποδείξετε ότι = 0 (μονάδες ) β) Για τις τετμημένες των παραπάνω σημείων θεωρούμε ότι : Κάθε μία από τις τετμημένες,, 0 αυξάνεται κατά, οι επόμενες τετμημένες παραμένουν σταθερές και κάθε μία από τις υπόλοιπες ελαττώνεται κατά λ R με λ > 0. Να βρείτε το λ, ώστε η νέα μέση τιμή των τετμημένων να είναι ίση με. (μονάδες ) Μονάδες 6 Δ. Αν α β γ με α β γ 7 α β γ, τότε να βρείτε το εύρος R και τη μέση τιμή των τιμών f(α), f(β), f(γ), f(), f, όπου f() = ln + Μονάδες 7 Δ. Θεωρούμε τον δειγματικό χώρο Ω {t n, n,,,...,0 : 0 t t... t0 t... t0 } με ισοπίθανα απλά ενδεχόμενα, καθώς και τα ενδεχόμενα Α={ t Ω: η εφαπτομένη της γραφικής παράστασης της f στο σημείο

(t,f(t)), να σχηματίζει με τον άξονα οξεία γωνία }, Β = { t Ω: f(t) > f (t)+}, όπου f(t) = t lnt + Να βρεθούν οι πιθανότητες: α) να πραγματοποιηθεί το ενδεχόμενο Α (μονάδες ) β) να πραγματοποιηθούν συγχρόνως τα ενδεχόμενα Α και Β (μονάδες ) Μονάδες 7 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία απόδειξη Σχολ. Βιβλίο σελ. 8 Α. Θεωρία Σχολ. Βιβλίο σελ. Α. Θεωρία Σχολ. Βιβλίο σελ. 87 Α. α) Λάθος β) Σωστό γ) Λάθος δ) Λάθος ε) Λάθος ΘΕΜΑ Β Β. lm lm ( ) ( ) lm. Άρα P(ω ). Για >0 Άρα f. Δηλαδή P(ω ). lm ln ln f (). ( ) Β. Aν A ω,ω τότε A ω,ω. Άρα PA P(ω ) P(ω ) P(A ) P(ω ) (). Παρατηρούμε ότι : P(ω ) 0 P(ω ) P(A ). Επειδή P(ω ) P(ω ) P(ω ) άρα P(ω ) P(ω ) P(A ). Δηλαδή P(A ). Β. Αφού P(A ) από τη σχέση () έχουμε P(ω ). Γνωρίζουμε ότι : P(A) P(A ) P(A).Άρα P(ω ) P(ω ) P(ω ) 0. Παρατηρούμε ότι : P A B B A PA B P A B P(ω ) P(ω ). Επειδή A ω,ω και B ω,ω τότε A B ω. Άρα PA B P(ω ).

ΘΕΜΑ Γ Γ. Αφού η μικρότερη παρατήρηση είναι το 0 οι κλάσεις έχουν την μορφή: [0-0+C), [0+c,0+c), [0+c, 0+c) Επειδή 8 τότε 0 0 c c 8 70 00 7c c 0. Γ. Γνωρίζουμε ότι: f f () Επειδή δ=7 τότε το 0% των παρατηρήσεων είναι μεγαλύτερες ή ίσες του 7. Λόγω f ομοιόμορφης κατανομής των παρατηρήσεων f 0,. Από την () f f 0, f f 0,. Από την () f 0,. Γνωρίζουμε ότι: f f f f f f 0, άρα f 0, f () f f f f 7 (0, f ) 6f 70, 8 0, 7 f 6f 7 0f 0f f 0,. Από την () f 0,. Άρα ο πίνακας είναι: Kλάσεις [0-60) 0, [60-70) 6 0, [70-80) 7 0, [80-90) 8 0, Σύνολο,0 00 00 Γ. Στην Κλάση [0-60) το 0% μετατρέπεται σε 0 % 60 6 00 00 [60-70) το 0% μετατρέπεται σε 0 % 60 6 00 00 [70-80) το 0% μετατρέπεται σε 0 % 60 6 00 00 00 9 0 00 00 Άρα 6 7. 6 6 6 6 6 Γ. Αφού το,% είναι τουλάχιστον 7 τότε s 7 () το 6% είναι το πολύ 68 τότε s 68 () Άρα την λύση των () και () προκύπτει: s 6 s s Άρα 70. CV 0% άρα ομοιογενές. 70 f

ΘΕΜΑ Δ Δ. Η εξίσωση εφαπτομένης της C f στο σημείο,f () είναι : Για > 0, f () ln με f () και f () κ. Άρα y κ y κ (ε) Η ευθεία (ε) τέμνει τον άξονα στο σημείο A( κ,0) και τον άξονα y y στο σημείο B(0, κ ). Το εμβαδόν τον τριγώνου ΑΟΒ είναι (ΑΟΒ) = Ε = κ >. Επειδή Ε < (κ )( κ) (κ ), (κ ) κ. Επειδή κ > δεκτές τιμές : κ. Τέλος επειδή κ ακέραιος, δεκτή τιμή η κ =. Δ. α. Η εξίσωση εφαπτομένης γράφεται : y. Από εφαρμογή σχολικού βιβλίου y 0. Δ. Για > 0 f ln. f () 0 ln 0 0 t 0 λ ι β. Η νέα μέση τιμή Νεα 0 0 0 60 λ 0 λ λ.. Επειδή για 0 έχουμε f () 0 και για έχουμε f () 0, τότε η f είναι γνησίως αύξουσα για, και γνησίως φθίνουσα για 0, o παρουσιάζει ολικό ελάχιστο με τιμή f ( ) 0. Επίσης f () και f ( ) 0. Η μέση τιμή των a ln a β lnβ γ ln γ f (a),f (β),f (γ),f (),f ( ) είναι : a β γ ln a lnβ ln γ 8 a β γ ln(a β γ ) 8 7 ln( ) 8. Επειδή η f για είναι γνησίως αύξουσα τότε f(α)<f(β)<f(γ)<f(). Επίσης η ελάχιστη τιμή της f είναι η f ( ). Άρα f () f ( ). Συνεπώς f (a) 0 f ( ). Άρα R = t ma tmn f () f ( ). Δ. Για το ενδεχόμενο Α πρέπει f (t) 0 ln t t. Άρα A t, t,..., t0. Για το ενδεχόμενο Β έχουμε : f (t) f (t) t ln t ln t 0 ln t(t ) 0. Επειδή t 0 για τα t με,,,...9 τότε και lnt < 0 άρα t <. Συνεπώς 9 B t, t,..., t.

N(A) 0 α. P(A). N(Ω) 0 β. A B t, t,..., t. 9 N(A B) 9 P(A B) N(Ω) 0 ΚΡΙΤΙΚΗ Τα θέματα στα Μαθηματικά και Στοιχεία Στατιστικής ήταν πολλά και δύσκολα. Κάλυπταν το μεγαλύτερο μέρος της ύλης. Ήταν κλιμακούμενης δυσκολίας παρότι υπήρχαν δύσκολα υποερωτήματα και στο ΘΕΜΑ Β (Β.) και στο ΘΕΜΑ Γ (Γ.). Το ο θέμα ήταν σύνθετο με πολλά ζητούμενα απαιτούσε συνδυαστική σκέψη και γνώση ιδιοτήτων της λογαριθμικής συνάρτησης από την Β Λυκείου. Επιμέλεια ΧΡΗΣΤΟΣ Α. ΣΠΥΡΟΥ ΓΙΩΡΓΟΣ Σ. ΓΑΛΑΡΗΣ