Στατιστική Ι Ασκήσεις 3

Σχετικά έγγραφα
Ενότητα: Περιγραφική Στατιστική 2: Αριθμητικά Μεγέθη

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ

Εισαγωγή στη Στατιστική

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών


ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

Κεφάλαιο 5 Δείκτες Διασποράς

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,,

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Ενότητα 2: Μέθοδοι δειγματοληψίας & Εισαγωγή στην Περιγραφική Στατιστική

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436

3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές

Βιοστατιστική ΒΙΟ-309

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

Περιγραφική Στατιστική

Βιοστατιστική ΒΙΟ-309

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Κεφάλαιο 4 Δείκτες Κεντρικής Τάσης

Βιοστατιστική ΒΙΟ-309

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

Mέτρα (παράμετροι) θέσεως

Έτος : Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.

ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

15, 11, 10, 10, 14, 16, 19, 18, 13, 17

Ελλιπή δεδομένα. Εδώ έχουμε Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE

Τάση συγκέντρωσης. Μέτρα Κεντρικής Τάσης και Θέσης. Μέτρα Διασποράς. Τάση διασποράς. Σχήμα της κατανομής

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ

3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές Διερευνητική Ανάλυση Δεδομένων

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

i Σύνολα w = = = i v v i=

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Στατιστική Ι-Μέτρα Διασποράς

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Υπολογισμοί Παραμέτρων Πληθυσμού και Στατιστικών Δείγματος

Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές. Διάλεξη

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΤΑΤΙΣΤΙΚΗ ,05 Σύνολο. x i v i f i % N i F i , Άθροισμα 40

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής

1. Τα έσοδα σε εκατομμύρια 100 επιχειρήσεων ενός ομίλου για μια ορισμένη χρονική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Περιγραφική Στατιστική

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Ι. Ενότητα 6: Kατανομή Poisson. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

f , Σύνολο 40 4) Να συμπληρώστε τον παρακάτω πίνακα f , , Σύνολο 5) Να συμπληρώστε τον παρακάτω πίνακα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η Ε Π Ι Χ Ε Ι Ρ Η Σ Ε Ω Ν ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3)

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 Ο

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. )

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική. Γενικές οδηγίες για την εργασία

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ

Κεφάλαιο 5. Οι δείκτες διασποράς

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

Στατιστική Ι (ΨΥΧ-1202) ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 B ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ / ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)

Transcript:

Διάλεξη 3: ΑΣΚΗΣΕΙΣ 1. Έστω το δείγμα μεγέθους n = 5 με παρατηρήσεις 10, 0, 1, 17 και 16. Υπολογίστε τον αριθμητικό μέσο και τη διάμεσο. Υπολογίστε το εύρος και το ενδοτεταρτημοριακό εύρος. Υπολογίστε την z-τιμή για κάθε μια από τις παρατηρήσεις. Υπολογίστε τη διακύμανση και την τυπική απόκλιση.. Έστω το δείγμα μεγέθους n = 6 με παρατηρήσεις 10, 0, 1, 17, 16 και 1. Υπολογίστε τον αριθμητικό μέσο και τη διάμεσο. 3. Έστω το δείγμα μεγέθους n = 8 με παρατηρήσεις 7, 5, 0, 15, 30, 34, 8 και 5. Υπολογίστε τα τρία τεταρτημόρια, Q1, Q, Q 3. Υπολογίστε το εύρος και το ενδοτεταρτημοριακό εύρος. Υπολογίστε τη διακύμανση και την τυπική απόκλιση. 4. Έστω το δείγμα παρατηρήσεων 53, 55, 70, 58, 64, 57, 53, 69, 57, 68 και 53. Υπολογίστε τον αριθμητικό μέσο, τη διάμεσο και την επικρατούσα τιμή. 5. Ο μέσος άνθρωπος ακούει μουσική περίπου 45 λεπτά την ημέρα (The Des Mones Regster, December 5, 1997). Τα παρακάτω στατιστικά δεδομένα πάρθηκαν από δείγμα 30 ατόμων και αφορούν τα λεπτά ακρόασης μουσικής σε μια ημέρα. 88.3 4.3 4.6 7.0 9. 0.0 99. 34.9 81.7 0.0 85.4 0.0 17.5 45.0 53.3 9.1 8.8 0.0 98.9 64.5 4.4 67.9 94. 7.6 56.6 5.9 145.6 70.4 65.1 63.6 α. Υπολογίστε τον αριθμητικό μέσο και την επικρατούσα τιμή. β. Σας φαίνονται συνεπή αυτά τα στατιστικά δεδομένα με τον αριθμητικό μέσο που αναφέρει η εφημερίδα; γ. Υπολογίστε τη διάμεσο. δ. Υπολογίστε το πρώτο και τρίτο τεταρτημόριο. 6. Δίνεται ο αριθμός x των απασχολουμένων σε τυχαίο δείγμα 5 βιοτεχνιών έτοιμου ενδύματος που παράγουν με το σύστημα «φασόν» 35 1 3 18 5 58 11 14 53 9 61 45 10 6 11 3 9 17 17 44 9 15 1 38 8 Να βρείτε τα τρία τεταρτημόρια της κατανομής των παρατηρήσεων της μεταβλητής Χ. 1

7. Έστω οι παρακάτω παρατηρήσεις και οι αντίστοιχες σταθμίσεις x στάθμιση, w 3. 6.0 3.5 5.0 8 α. Υπολογίστε το σταθμισμένο μέσο για τα παραπάνω στατιστικά δεδομένα. β. Υπολογίστε τον αριθμητικό μέσο. 1 8. Αν x = x, για ποιες τιμές των x ισχύει ( ) 0 n x x = και για ποιες ισχύει ( x x) = 0; 9. Σε 1 φιαλίδια με διαλυτική ουσία μετρήσαμε τον όγκο του περιεχομένου και πήραμε τα ακόλουθα αποτελέσματα (σε ml): x : 0.75 1.0 1.30 1.75.5.55.60.80.95 3.05 3.05 3.10 α. Να υπολογιστεί ο αριθμητικός μέσος και η διακύμανση των παρατηρήσεων. β. Αν όλες οι παρατηρήσεις πολλαπλασιαστούν με μια σταθερά λ τι θα πάθει η μέση τιμή και η διακύμανση; γ. Αν κάθε παρατήρηση x αντικατασταθεί από την σταθερά, οι στατιστικές συναρτήσεις x και x s θα μεταβληθούν; + a, όπου a είναι μια 10. Στον Πίνακα που ακολουθεί δίνεται ο αριθμός φοιτητών και ο μέσος ετήσιος αριθμός μαθημάτων ανά φοιτητή σε 5 τμήματα μιας σχολής. Αριθμός φοιτητών, f : 450 310 135 11 97 Μέσος ετήσιος αριθμός μαθημάτων, x : 11 17.5 13 18 14 Ζητείται να υπολογιστεί ο μέσος ετήσιος αριθμός μαθημάτων ανά φοιτητή της σχολής. 11. Ο συγγραφέας ενός βιβλίου 50 σελίδων αναλαμβάνει για διόρθωση τις τυπωμένες σελίδες του. Τις διαβάζει προσεκτικά, κάνει τις διορθώσεις του και καταγράφει τον αριθμό Χ των λαθών που βρήκε σε κάθε σελίδα. Τα αποτελέσματα ομαδοποιούνται στην κατανομή συχνοτήτων που δίνεται στον ακόλουθο Πίνακα:

Αριθμός λαθών, x : 0 1 3 4 5 6 7 Αριθμός σελίδων, f : 57 71 64 3 1 7 4 3 Ζητείται να υπολογισθεί ο μέσος αριθμός λαθών ανά σελίδα, η διακύμανση, η επικρατούσα τιμή και η διάμεσός τους. 1. Σε τυχαίο δείγμα n = 45 πελατών ενός μεγάλου super-market μετρήσαμε το χρόνο αναμονής τους Χ στο ταμείο, το Σάββατο το πρωί μεταξύ των ωρών 1:00 και 13:00 και πήραμε την ακόλουθη κατανομή συχνοτήτων Χρόνος αναμονής (σε mn), x : 0 1 3 4 Πλήθος πελατών, f : 10 11 14 8 Ζητείται α. Να υπολογιστεί ο μέσος χρόνος αναμονής και η διακύμανση των 45 πελατών. β. Να υπολογιστεί ο επικρατέστερος χρόνος αναμονής και ο διάμεσος χρόνος αναμονής. γ. Αν σε αντίστοιχο τυχαίο δείγμα n = 100 πελατών που παρατηρήθηκε μεταξύ των ωρών 7:00 και 8:00 το βράδυ υπολογίσαμε x =. mn και s = 1.85 mn, σε ποια περίπτωση είναι μεγαλύτερη η διασπορά; 13. Δίνεται η εξέλιξη του Ακαθάριστου Εγχώριου Προϊόντος (ΑΕΠ) της Ελλάδας σε δισεκ. δρχ. τη χρονική περίοδο 1981-1986. Έτη: 1981 198 1983 1984 1985 1986 ΑΕΠ: 171.1 1718.9 175.8 1773. 186.3 1850.1 Ζητείται να υπολογιστεί η μέση ποσοστιαία μεταβολή του ΑΕΠ σε αυτό το χρονικό διάστημα. 14. Μια επιχείρηση έχει 3 εργοστάσια και στη διάρκεια της 10ετους λειτουργίας τους σημειώθηκε στο καθένα από αυτά αριθμός ατυχημάτων, αντίστοιχα ίσος με 40, 45 και 65, ενώ ο αντίστοιχος αριθμός των εργάσιμων ωρών ήταν 0, 30 και 60 χιλιάδες ώρες. Να υπολογιστεί ο μέσος αριθμός ατυχημάτων ανά χίλιες εργάσιμες ώρες για ολόκληρη την επιχείρηση. 3

15. Σε τυχαίο δείγμα n = 3 υπεραστικών κλήσεων από ορισμένο τηλεφωνικό κέντρο μετρήσαμε τη χρονική διάρκεια και πήραμε τα ακόλουθα αποτελέσματα (σε λεπτά της ώρας): 11.8 3.6 16.6 13.5 4.8 8.3 8.9 9.1 7.7.3 1.1 6.1 10. 8.0 11.4 6.8 9.6 19.5 4.3 1.3 8.5 15.9 18.7 11.7 6. 11. 10.4 7. 5.5 14.5 16.8 19.3 α. Να ομαδοποιηθούν τα δεδομένα σε μια κατανομή συχνοτήτων με k = 4 κλάσεις. β. Να υπολογιστούν η μέση τιμή και η διακύμανση των παρατηρήσεων, όχι από τα πρωτογενή δεδομένα, αλλά από την κατανομή των συχνοτήτων. γ. Λαμβάνοντας υπόψη την απάντηση που δώσατε στην άσκηση 8(β), χωρίς να κάνετε πράξεις, να πείτε ποια θα ήταν η μέση τιμή και η διακύμανση αν οι κλήσεις είχαν μετρηθεί σε δευτερόλεπτα. δ. Αν τα δεδομένα ήταν ομαδοποιημένα σε μια κατανομή συχνοτήτων με περισσότερες κλάσεις, τα στατιστικά που θα υπολογίζατε από την κατανομή θα ήταν πιο κοντά ή πιο μακριά στις αντίστοιχες τιμές που θα παίρνατε υπολογίζοντάς τα από τις πρωτογενείς (μη ομαδοποιημένες) παρατηρήσεις; 16. Δίνονται σε αύξουσα τάξη μεγέθους οι μετρήσεις της περιεκτικότητας σε ορισμένη δραστική ουσία 55 φιαλιδίων φαρμάκου (ml) στον πίνακα που ακολουθεί: 0.05 0.07 0.08 0.08 0.09 0.09 0.09 0.10 0.10 0.10 0.10 0.11 0.1 0.1 0.13 0.14 0.14 0.15 0.16 0.17 0.17 0.18 0.18 0.18 0.18 0.18 0.19 0.19 0.19 0.0 0.0 0.0 0.1 0. 0.3 0.3 0.3 0.4 0.4 0.6 0.7 0.8 0.9 0.9 0.9 0.31 0.3 0.3 0.33 0.34 0.35 0.38 0.38 0.39 0.39 α. Να ομαδοποιηθούν τα δεδομένα σε μια κατανομή συχνοτήτων με k = 7 κλάσεις β. Να υπολογιστεί από την κατανομή συχνοτήτων (και όχι από τα πρωτογενή μη ομαδοποιημένα- δεδομένα) ο αριθμητικός μέσος και η διακύμανση. Ασκήσεις από το βιβλίο: Δ. Χατζηνικολάου, Στατιστική για Οικονομολόγους, Β Έκδοση, Ιωάννινα 00.1. Υποθέσατε ότι σας ενδιαφέρει η μεταβλητή Χ = αριθμός αγοριών μίας οικογένειας με 5 παιδιά συνολικά και ότι ο πληθυσμός αποτελείται από 85 οικογένειες. (Για παράδειγμα, ας υποθέσουμε ότι σε μία κωμόπολη, όπου κατοικούν 1000 οικογένειες, οι 85 από αυτές έχουν 5 παιδιά συνολικά. Οι 85 αυτές οικογένειες αποτελούν τον υπό μελέτη πληθυσμό.) Έστω ότι f συμβολίζει τον αριθμό των οικογενειών που έχουν Χ αγόρια και ότι η κατανομή συχνότητας της μεταβλητής Χ είναι η ακόλουθη: 4

Χ 0 1 3 4 5 f 8 14 1 18 17 7 Να υπολογίσετε το διάμεσο αριθμό αγοριών του πληθυσμού, τα τρία τεταρτημόρια, την επικρατούσα τιμή, τον αριθμητικό μέσο, τη διακύμανση, την τυπική απόκλιση, το συντελεστή μεταβλητότητας, το συντελεστή ασυμμετρίας α 3 και το συντελεστή κυρτώσεως α 4..3. Έστω Χ = αριθμός αυτοκινήτων που έχει στην κατοχή της μία οικογένεια και ότι τα δεδομένα που πήραμε από ένα δείγμα 100 οικογενειών δίνονται στον παρακάτω πίνακα συχνοτήτων: Χ 0 1 Αριθμός οικογενειών 10 80 10 (α) Να κατασκευάσετε το ραβδόγραμμα. (β) Πόσα αυτοκίνητα έχει κατά μέσο όρο στην κατοχή της μία οικογένεια του δείγματος; (γ) Να υπολογίσετε τη διάμεσο, το πρώτο και το τρίτο τεταρτημόριο του δείγματος. (δ) Να υπολογίσετε την τυπική απόκλιση του δείγματος. (ε) Είναι η κατανομή μεσόκυρτη, λεπτόκυρτη ή πλατύκυρτη;.4. Σε μία τάξη είναι γραμμένοι 100 φοιτητές και παρακολουθούν όλοι το μάθημα. Στο τέλος του εξαμήνου, ο καθηγητής ζητά από τους φοιτητές να αξιολογήσουν τη διδασκαλία του μαθήματος, χρησιμοποιώντας ως βαθμούς τους 1 (εξαιρετικά κακή), (κακή), 3 (μέση), 4 (καλή) και 5 (εξαιρετικά καλή) και ως κριτήρια την οργανωτική ικανότητα του καθηγητή, τη μεταδοτικότητά του, το ενδιαφέρον του για τους φοιτητές, την ευκολία με την οποία προσεγγίζεται για ερωτήσεις, το κέντρισμα του ενδιαφέροντος των φοιτητών κ.λπ. Τα αποτελέσματα δίνονται στον παρακάτω πίνακα: Βαθμός 1 3 4 5 Αριθμός φοιτητών 0 5 10 65 0 (α) Τί βαθμό έδωσαν κατά μέσο όρο οι φοιτητές στον καθηγητή του μαθήματος; (β) Ποιά είναι η διάμεσος και ποιό το πρώτο τεταρτημόριο αυτής της κατανομής; (γ) Ποιά είναι η τυπική απόκλιση της κατανομής; 5