Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ



Σχετικά έγγραφα
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

3. Κατανομές πιθανότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Στατιστική Συμπερασματολογία

ΟΡΙΑ ΕΛΕΓΧΟΥ ΜΕ ΒΑΣΗ ΤΗ ΓΕΩΜΕΤΡΙΚΗ ΚΑΤΑΝΟΜΗ ΣΤΟ ΣΤΑΤΙΣΤΙΚΟ ΠΟΙΟΤΙΚΟ ΕΛΕΓΧΟ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Ελληνικό Ανοικτό Πανεπιστήμιο

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή

Στατιστική. Εκτιμητική

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

Πανεπιστήμιο Πελοποννήσου

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών

Στατιστική Συμπερασματολογία

Θεωρητικές Κατανομές Πιθανότητας

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΒΕΛΤΙΩΜΕΝΑ R ΑΠΟ M ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ SHEWHART ΜΕ ΚΑΝΟΝΕΣ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗΣ ΠΟΥ ΒΑΣΙΖΟΝΤΑΙ ΣΤΗ ΘΕΩΡΙΑ ΡΟΩΝ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

Εισαγωγή στη θεωρία ακραίων τιμών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

1 x-μ - 2 σ. e σ 2π. f(x) =

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

X = = 81 9 = 9

Τυχαία μεταβλητή (τ.μ.)

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

Είδη Μεταβλητών. κλίµακα µέτρησης

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ


ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Εισαγωγή στη Στατιστική

Μέθοδος μέγιστης πιθανοφάνειας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

ΕΞEΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΜΑΡΤΙΟΣ 2003 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α


Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών

Δειγματικές Κατανομές

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές

Ενότητα 1: Πληθυσμός και δείγμα Είδη Μεταβλητών - Περιγραφική στατιστική

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ SHEWHART KAI KANONAΣ ΡΟΩΝ r / m

Κεφάλαιο 9. Έλεγχοι υποθέσεων

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics)

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

ΕΚΤΙΜΗΣΗ ΤΗΣ ΤΥΠΙΚΗΣ ΑΠΟΚΛΙΣΗΣ ΣΤΟ ΣΤΑΤΙΣΤΙΚΟ ΕΛΕΓΧΟ ΠΟΙΟΤΗΤΑΣ

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

Εισαγωγή στην Εκτιμητική

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )

Transcript:

Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 20 ου Πανελληνίου Συνεδρίου Στατιστικής (2007), σελ 249-258 Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ Μανώλης Μανατάκης Τμήμα Μηχανολόγων και Αεροναυπηγών Μηχανικών Πανεπιστήμιο Πατρών manata@mech.upatras.gr ΠΕΡΙΛΗΨΗ Στην παρούσα εργασία προτείνονται τα Q-διαγράμματα (δηλ. κατά προσέγγιση τυποποιημένα διαγράμματα ελέγχου), για τον έλεγχο μιας τυχαίας διωνυμικής μεταβλητής. Η μελέτη γίνεται για την παράμετρο p σε δύο περιπτώσεις: i) όταν είναι γνωστή όταν αρχίσει ο έλεγχος και ii) όταν είναι άγνωστη όταν αρχίσει ο έλεγχος. Τα διαγράμματα αυτά επιτρέπουν έλεγχο σε πραγματικό χρόνο από την αρχή της δειγματοληψίας και είναι χρήσιμα κυρίως στην περίπτωση, που η παράμετρος p είναι εκ των προτέρων άγνωστη. Για την περίπτωση που η παράμετρος p είναι γνωστή δίνεται ένας πίνακας όπου συγκρίνεται η εγγύτητα των πιθανοτήτων ελέγχου με τα Q-διαγράμματα σε σχέση με εκείνα της κατά προσέγγιση κανονικής κατανομής και με εκείνα που λαμβάνονται με τα κλασσικά 3-σ διαγράμματα. Τα αποτελέσματα δείχνουν ότι τα Q-διαγράμματα δίνουν καλύτερες προσεγγίσεις από τα p-διαγράμματα. 1. ΕΙΣΑΓΩΓΗ Τα τελευταία χρόνια τα Q-διαγράμματα, δηλ. τα κατά προσέγγιση τυποποιημένα διαγράμματα ελέγχου έχουν προταθεί για την παρακολούθηση μιας παραγωγικής διεργασίας. Στην παρούσα εργασία προτείνονται τα Q-διαγράμματα για τον έλεγχο της παραμέτρου p της διωνυμικής κατανομής σε μια παραγωγική διεργασία. Μελετούνται δύο περιπτώσεις, όταν το p είναι γνωστό και όταν είναι άγνωστο. Θα δείξουμε ότι τα διαγράμματα αυτά είναι χρήσιμα σε εφαρμογές και ιδιαίτερα στη μελέτη της ευστάθειας μιας παραγωγικής διεργασίας και στο να την φέρουμε σε έλεγχο με αναγνώριση και ελαχιστοποίηση συγκεκριμένων αιτίων σε ελάχιστο χρόνο αφού αυτά τα διαγράμματα μπορούν να χαραχθούν χωρίς την προηγούμενη γνώση των τιμών της παραμέτρου. Για την περίπτωση που η παράμετρος p της διωνυμικής κατανομής είναι γνωστή, τα διαγράμματα που προτείνονται εδώ θα αντικαταστήσουν τα τυποποιημένα p- διαγράμματα όπως αυτά συζητήθηκαν από τους Nelson (1989), Duncan(1986), και Montgomery (2001). Τα διαγράμματα ελέγχου συνήθως κατασκευάζονται για περιπτώσεις όπου το p είναι μικρό (π.χ. p=0.01, 0.05, 0.10, ) οπότε η διωνυμική κατανομή είναι λοξή και η κανονική κατανομή δεν δίνει ακριβείς προσεγγίσεις, ιδιαίτερα στα άκρα της κατανομής τα οποία είναι ιδιαίτερης σημασίας για τις εφαρμογές του ελέγχου των διαγραμμάτων. - 249 -

Για να πετύχουμε καλύτερες προσεγγίσεις με την κανονική κατανομή θα πρέπει να θεωρήσουμε μη γραμμικούς μετασχηματισμούς. Στην παρούσα εργασία εισάγουμε ένα μη γραμμικό μετασχηματισμό, που δίνει βελτιωμένες κανονικές προσεγγίσεις όταν το p είναι γνωστό και επιπροσθέτως έχει το πλεονέκτημα ότι επιτρέπει τη γενίκευση στην περίπτωση που το p είναι άγνωστο, χρησιμοποιώντας μια εκτιμήτρια συνάρτηση με επαρκείς στατιστικές ιδιότητες. 2. ΑΚΡΙΒΗ ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΤΗΣ ΠΑΡΑΜΕΤΡΟΥ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ Για την προετοιμασία της εισαγωγής των Q-διαγραμμάτων, θεωρούμε κατ αρχήν τα βασικά διαγράμματα ελέγχου ιδιοτήτων του Shewhart. Θα εξηγήσουμε τη διαδικασία με διωνυμικές κατανομές. Ας θεωρήσουμε μια υπο-έλεγχο βιομηχανική διεργασία που έχει ποσοστό παραγομένων ελαττωματικών προϊόντων p=p 0 και έστω ότι θέλουμε να σχεδιάσουμε ένα διάγραμμα ελέγχου για το p. Για να φτιάξουμε διάγραμμα ελέγχου του Shewhart για τον αριθμό των μη συμμορφούμενων μονάδων για κάθε δείγμα, πρέπει να επιλέξουμε ένα κάτω όριο ελέγχου (ΚΟΕ), μια κεντρική γραμμή (ΚΓ), και ένα άνω όριο ελέγχου (ΑΟΕ). Αν Χ είναι ο αριθμός των μη συμμορφούμενων μονάδων στο δείγμα, και αν P(X>KOE)=a k, P(X<AOE)=a A τότε θεωρούμε αυτά τα όρια, (a k, a A ), ως πιθανοθεωρητικά όρια. Τα συνηθισμένα 3-σιγμα όρια δίνονται από τις σχέσεις: AOE = np0 + 3 np 0(1 p 0 ), KOE = np0 3 np 0(1 p 0 ), ΚΓ = np0 Παράδειγμα 1 Έστω ότι p 0 =0.1 (10% ελαττωματικό) και παίρνουμε δείγμα μεγέθους n=40. Το Σχ. 1 δείχνει το ραβδόγραμμα για την διωνυμική b(x, 40, 0.1). AOE = np0 + 3 np 0(1 p 0) = 40 0.1+ 3 40 0.1 0.9 = 9.69, ΚΓ= np0 = 4 KOE = np0 3 np 0(1 p 0) = 40 0.1 3 40 0.1 0.9 = 1.69 Έτσι για την περίπτωσή μας οι τύποι των 3-σιγμα ορίων δίνουν μη αποδεκτό ΚΟΕ και ΑΟΕ=9.69. Χρησιμοποιώντας αλγόριθμο για την συνάρτηση κατανομής, από 3 η στήλη του Πίν. 1, βρίσκουμε P(X<AOE=9.69)=1 Β(9, 40, 0.1)=1 0.00449=0.99551 Επίσης είναι: P(X>10)=1 0.99850=0.0015 Συνεπώς για να φτιάξουμε το διάγραμμα ελέγχου θα πρέπει να πάρουμε ΑΟΕ=10. Πρέπει να σημειώσουμε ότι για διαγράμματα ελέγχου για το p της διωνυμικής κατανομής, ο μικρότερος ακέραιος για το ΚΟΕ είναι ΚΟΕ=1, σύμφωνα με τη σχέση (Μανατάκης, (2006)): P(Χ=0)=(1-p) n, n=1, 2, - 250 -

Η έκφραση αυτή μας δίνει πληροφορίες για τον υπολογισμό του ελάχιστου μεγέθους δείγματος n, που χρειάζεται για την ανίχνευση της βελτίωσης της διεργασίας για ποσοστό p, μη συμμορφούμενων μονάδων σε επίπεδο 1-α k, και είναι: ln( αk ) n > (1) ln(1 p) Έτσι για διεργασία με p=0.1 πρέπει να πάρουμε δείγμα n: n>ln(0.01525)/ln(0.9)=39.7 για να έχουμε την κανονική 3-σίγμα τιμή των 0.01525 με ΚΟΕ=1, δηλ. η τιμή n=40 είναι επαρκής. 3. Q-ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ ΜΕ ΓΝΩΣΤΟ p Θεωρούμε παρατηρήσεις από διωνυμική κατανομή και θα προσπαθήσουμε να δημιουργήσουμε τα τυποποιημένα κανονικά Q-διαγράμματα Έστω x i μια παρατήρηση μιας διωνυμικής τυχαίας μεταβλητής από ένα δείγμα μεγέθους n. Μετασχηματίζουμε τις παρατηρηθείσες τιμές στην Q στατιστική συνάρτηση ως εξής: u i =B(x i, n i, p), Q i =Φ -1 (u i ), i=1, 2, (2) όπου Φ η συνάρτηση κατανομής της τυποποιημένης κανονικής κατανομής. Οι τιμές αυτές Q 1, Q 2, μπορούν να σχεδιαστούν σ ένα Q-διάγραμμα με AOE=4, ΚΓ=0, ΚΟΕ=-4. Γενικότερα, ένα διάγραμμα με (α κ, α Α ) προσεγγιστικά πιθανοθεωρητικά όρια μπορεί να σχεδιαστεί θέτοντας ΚΟΕ = z ακ, ΚΓ=0 και ΑΟΕ = z αα. Θα δώσουμε παρακάτω αριθμητικά παραδείγματα που δίνουν την ακρίβεια της κανονικής προσέγγισης για την περίπτωση των 3-σίγμα ορίων και επιτρέπουν τη σύγκριση της λειτουργίας αυτών των διαγραμμάτων με άλλα αντίστοιχα διαγράμματα. Για να κατανοήσουμε τη φύση αυτού του μετασχηματισμού, ας θεωρήσουμε πάλι τη διωνυμική κατανομή b(x, 40, 0.1). Στο Σχ.1α φαίνεται η συνάρτηση πιθανότητάς της και στο Σχ. 1β η συνάρτηση κατανομής της μετασχηματισμένης της Q- διωνυμικής κατανομής. Η σχεδίαση της Q στατιστικής συνάρτησης σ ένα (α κ, α Α ) διάγραμμα ελέγχου, είναι δυνατόν να δώσει ένα σημείο κάτω από το ΚΟΕ αν ικανοποιείται η σχ. (1). Στον Πίν. 1 φαίνεται η κατανομή αυτής της Q-διωνυμικής κατανομής με n=40 και p=0.1. Παράδειγμα 2 Για να εξηγήσουμε τη χρήση των Q-διαγραμμάτων διωνυμικής κατανομής, για την περίπτωση που το p είναι γνωστό, θα σχεδιάσουμε 40 δείγματα από τις κατανομές b(x, 40, 0.1) και b(x, 40, 0.15). Οι τιμές φαίνονται στον Πίν. 2 και η σχεδίαση του Q-διαγράμματος για αυτά τα δεδομένα φαίνονται στο Σχ. 2α. Έχουν σχεδιαστεί οι γραμμές με ΚΟΕ=-3, ΑΟΕ=3 και ΚΓ=0. Βλέπουμε από τον Πίν. 1 ότι τα πιθανοθεωρητικά όρια πρακτικά είναι τα: (0.01478, 0.99551). - 251 -

Οι πιθανότητες αναφορικά με τις ζώνες που ορίζονται από τις γραμμές ± 1, ± 2 και ± 3 τυπικές αποκλίσεις μπορούν να προσδιοριστούν προσεγγιστικά από την τυποποιημένη κανονική κατανομή. Η προσαρμοστικότητα της προσέγγισης εξαρτάται από τα n και p και γενικά βελτιώνεται καθώς το np αυξάνει. Εδώ πρέπει να επισημανθεί ότι είναι δυνατή η δημιουργία ενός αλγορίθμου Η/Υ, για τον υπολογισμό σε πραγματικό χρόνο της συνάρτησης κατανομής Β(x,n,p) της διωνυμικής κατανομής και κατ ακολουθία των Q-διαγραμμάτων με αποτέλεσμα να υπερτερεί της διαδικασίας υπολογισμού των κλασσικών 3-σ, p,np διαγραμμάτων. 4. Q-ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗ ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ ΜΕ ΑΓΝΩΣΤΟ p Θεωρούμε μια ακολουθία τιμών (n i, x i ), i=1, 2, και όταν ληφθεί η i- παρατήρηση σχεδιάζουμε ένα σημείο στο Q-διάγραμμα. Έστω N i i = n, j1 = j t i i = xj j= 1 (3) Υπολογίζουμε την Q-στατιστική συνάρτηση με τη σχέση u = H(x,t,n,N 1 ), Q i =Φ -1 (u i ), i=2, 3, (4) i i i i i όπου Η είναι η συνάρτηση πυκνότητας πιθανότητας της υπεργεωμετρικής κατανομής. Σημειώνεται ότι ο μετασχηματισμός της σχ. (4) είναι αντίστοιχος εκείνου της σχ. (2) με τη διαφορά ότι εδώ χρησιμοποιούμε την υπεργεωμετρική κατανομή, εκεί όπου προηγούμενα χρησιμοποιήσαμε τη διωνυμική κατανομή. Η υπεργεωμετρική κατανομή είναι ένας αμερόληπτος εκτιμητής ομοιομόρφως ελαχίστης διασποράς (ΑΟΕΔ), σε κάθε σημείο x για τη συνάρτηση κατανομής Β(x,n,p) και συγκλίνει ομοιόμορφα στην εκτίμησή της και συμβολίζεται με B(x). Η συνάρτηση B(x) έχει εξαιρετικές ιδιότητες ως εκτιμητής της Β(x,n,p), έτσι είναι ένας αμερόληπτος εκτιμητής με ελάχιστη διασπορά σε κάθε σημείο x για την Β(x, n, p) και συγκλίνει ομοιόμορφα στην Β(x,n,p), με πιθανότητα 1 καθώς αυξάνει το μέγεθος του δείγματος n. Τέλος θα δούμε παρακάτω σε παραδείγματα ότι τα διαγράμματα ελέγχου που λαμβάνονται απ αυτόν το μετασχηματισμό συμφωνούν πολύ με εκείνα της περίπτωσης που το p είναι γνωστό, μετά από κάποια πρώτα σημεία. Από τις ιδιότητες αυτές συνάγεται ότι, όταν η διεργασία είναι εντός ελέγχου, δηλ. όταν τα X 1, X 2, είναι ανεξάρτητες διωνυμικές τυχαίες μεταβλητές με σταθερή παράμετρο p, τότε τα Q i είναι κατά προσέγγιση ανεξάρτητες τυχαίες μεταβλητές με διακριτή Q-κατανομή. Συνεπώς οι τιμές Q 1, Q 2, μπορούν να σχεδιαστούν σε ένα Q-διάγραμμα. Θα δούμε στο πιο κάτω παράδειγμα ότι για τα ίδια διωνυμικά δεδομένα που βρίσκονται εντός ελέγχου σε μια διεργασία, η απεικόνιση τους με τις σχέσεις (4) και (2) είναι παρόμοια. Εδώ πρέπει να σημειώσουμε ότι ο σχεδιασμός των διαγραμμάτων ελέγχου γίνεται από το β δείγμα των διωνυμικών δεδομένων και όχι από το α δείγμα, γιατί αυτό χρησιμοποιείται για την εκτίμηση της άγνωστης παραμέτρου p. - 252 -

Παράδειγμα 3 Για να εξηγήσουμε τη χρήση των Q-διαγραμμάτων για τη διωνυμική κατανομή όταν η p είναι άγνωστη, ας θεωρήσουμε τα δεδομένα του Πίν. 3. Οι τιμές της Q υπολογίζονται με τη χρήση της σχ. (4) και δίνονται στην τελευταία γραμμή του Πίν. 2, ως Q i και ο σχεδιασμός τους φαίνεται στο Σχ. 2β. Υπενθυμίζεται ότι οι πρώτες 30 παρατηρήσεις σχεδιάστηκαν από την b(x, 40, 0.1) και οι επόμενες 30 από την b(x, 40, 0.15). Η σύγκριση των διαγραμμάτων των Σχ. 2α και 2β δείχνει μια ομοιομορφία των περιπτώσεων για p γνωστό και για p άγνωστο. Αυτό συμβαίνει ακόμη πιο έντονα όσο αυξάνει ο αριθμός του δείγματος n. Το σημαντικό είναι ότι τα Q-διαγράμματα που προκύπτουν από τις σχ. (2) και (4) μπορούν να δημιουργηθούν σε πραγματικό χρόνο, δηλ. όταν καταγραφεί κάθε διωνυμική παρατήρηση x i, οπότε το σημείο μπορεί να σχεδιαστεί αμέσως στο διάγραμμα. Τα σημεία, από τη σχ. (4), σχεδιάζονται για κάθε δείγμα, ξεκινώντας από τη β παρατήρηση. Αυτό γίνεται για τον προσδιορισμό της τιμής της p. 5. ΠΡΟΣΕΓΓΙΣΗ ΑΠΟ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ΚΑΙ ΣΥΓΚΡΙΣΕΙΣ ΜΕ ΑΛΛΑ ΔΙΑΓΡΑΜΜΑΤΑ - ΣΥΜΠΕΡΑΣΜΑΤΑ Στα προηγούμενα έχουμε δώσει τύπους, που μπορούν να μετασχηματίσουν παρατηρήσεις διωνυμικής κατανομής και να υπολογιστούν κατά προσέγγιση από τυποποιημένη κανονική κατανομή κι έτσι μπορούν να σχεδιαστούν σ ένα τυπικό παράδειγμα ελέγχου τύπου Shewhart. Στην περίπτωση που η p είναι γνωστή, τα Q-διαγράμματα χρησιμοποιούνται σήμερα πιο συχνά και σε αντικατάσταση των κλασσικών 3-σ, p, np ή τυποποιημένων p-διαγραμμάτων. Για το λόγο αυτό, θα ήταν χρήσιμο να μελετήσουμε την ακρίβεια της κανονικής προσέγγισης σ αυτά τα κλασσικά διαγράμματα. Το κλασσικό διάγραμμα που θα συγκριθεί με το Q-διάγραμμα είναι το τυποποιημένο np ή p διάγραμμα. Αν x είναι διωνυμική τ.μ. με σ.π.π. b(x, n, p) τότε η τυποποιημένη τ.μ. δίνεται από τη σχέση x np z = (5) np(1 p) Η προσέγγιση αυτή, γνωστή στη Στατιστική βιβλιογραφία για τ.μ., έχει προταθεί και για την περίπτωση του Στατιστικού Ποιοτικού Ελέγχου. (Duncan (1986), Nelson (1989)). Υπάρχουν κι άλλοι μη γραμμικοί μετασχηματισμοί που βελτιώνουν την κανονικότητα της διωνυμικής τ.μ. Για να συγκρίνουμε τα Q-διαγράμματα που προτείνονται εδώ με εκείνα της βιβλιογραφίας, ας θεωρήσουμε το μετασχηματισμό που προτείνεται από τους Johnson και Kotz (1980) και τον Ryan (1989). Ο μετασχηματισμός αυτός ονομάζεται arcsin-μετασχηματισμός και ορίζεται από τη σχέση: 1 x+ 3/8 1 y= 2 n sin sin ( p) (6) n+ 3/4-253 -

Όταν έχουμε τη τ.μ. x με σ.π.π. b(x, n, p) η y ακολουθεί προσεγγιστικά την Ν(0, 1). Δίνουμε μερικά αποτελέσματα για τη σύγκριση των διαγραμμάτων που βασίζονται στις στατιστικές συναρτήσεις z, Q και y. Σχεδιάζουμε αυτά τα διαγράμματα ελέγχου με γραμμές στις τιμές 0, ± 1, ± 2 και ± 3. Χωρίζουμε τον κατακόρυφο άξονα σε 8 περιοχές ανάλογα με τις τιμές του Q, ως εξής: Περιοχή 1 2 3 4 5 6 Τιμές του Q [-3,-2) [-2,-1) [-1,0) [0,1) [1,2) [2,3) Για να μελετήσουμε την κανονική προσέγγιση σε κάθε μια περίπτωση υπολογίζουμε την πιθανότητα των τ.μ. z, Q και y που ανήκει σε κάθε μια περιοχή, για διάφορες τιμές των n και p. Τα αποτελέσματα φαίνονται στον Πίν. 3 όπου οι τιμές είναι υπολογισμένες για p=0.01, 0.05 και 0.10 και για διάφορες τιμές του n. Στον Πίν. 3 η κατώτερη τιμή είναι η τιμή της πιθανότητας ότι η στατιστική συνάρτηση θα ενταχθεί στην περιοχή 1, δηλ. κάτω από 3 και η ανώτερη τιμή είναι η τιμή της πιθανότητας ότι η στατιστική συνάρτηση θα περιέχεται στην περιοχή 8, δηλ. πάνω από 3. Η προσεκτική ανάγνωση του Πίν. 3 δείχνει ότι, μικρές αλλαγές στις μικρές τιμές του n δίνει σχετικά μεγάλες αλλαγές στις πιθανότητες των περιοχών για κάθε μια στατιστική συνάρτηση, όπως επίσης και για μεγάλες τιμές του διωνυμικού μέσου np. Τα διαγράμματα υπολογίστηκαν για μικρές τιμές της πιθανότητας p για να είναι συμβατά με την πραγματικότητα. Επίσης φαίνεται ότι τα κλασσικά p-διαγράμματα είναι κατώτερα και από τα δυο άλλα διαγράμματα. Χρειάζονται αρκετά μεγάλα μεγέθη δειγμάτων για να βρίσκουμε ελαττώσεις της πιθανότητας p. Για όλα τα αποτελέσματα οι πιθανότητες των Q-διαγραμμάτων για τις περιοχές 1 και 8 είναι ή τα ίδια με αυτά των p-διαγραμμάτων ή πολύ συχνά είναι μεταξύ της τιμής 0.00135 (που είναι η ονομαστική κανονική τιμή) και της τιμής των p- διαγραμμάτων. Για την περιοχή 1 τα p-διαγράμματα είναι πολύ μικρά, ενώ για την περιοχή 8 είναι πολύ μεγάλα. Είναι πολύ δύσκολο να ομαδοποιήσουμε τη σύγκριση των Q και των arcsin διαγραμμάτων. Ούτε μπορεί να έχει κανείς μια συνολική προσέγγιση, αλλά θα τολμήσουμε μερικές παρατηρήσεις. Το Q-διάγραμμα τείνει να δίνει τιμές στην περιοχή 8, γενικά στενότερες, αλλά κάπως ευρύτερες από την ονομαστική τιμή των 0.00142, από ότι δίνει το y-διάγραμμα, το οποίο τείνει να δίνει τιμές, που συχνά είναι αρκετά μικρότερες από την τιμή 0.00142 και συνεπώς το y-διάγραμμα δίνει μικρότερη προστασία στην ανίχνευση αυξήσεων της πιθανότητας p. Εξάλλου το Q- διάγραμμα τείνει να δίνει τιμές στην περιοχή 1, που είναι μικρότερες της τιμής 0.00142, ενώ το y-διάγραμμα τείνει να δίνει τιμές γενικά στενότερες, αλλά συχνά ευρύτερες από την τιμή των 0.00142. Έτσι συνάγεται ότι το y-διάγραμμα είναι πιο ευαίσθητο στην ανίχνευση μειώσεων της πιθανότητας p και κάνουν λιγότερους λανθασμένους συναγερμούς. Επίσης το y-διάγραμμα δίνει θετικές πιθανότητες στην περιοχή 1 και συνεπώς απαιτούνται μεγαλύτερες τιμές δειγμάτων για την ανίχνευση μειώσεων της πιθανότητας p. - 254 -

Οι πίνακες που δίνονται εδώ είναι μόνο για διαγράμματα με γνωστό p. Το Q- διάγραμμα για άγνωστο p, συγκλίνει γρήγορα στο διάγραμμα με γνωστό p και η οριακή συμπεριφορά του είναι η ίδια με εκείνη του Q-διαγράμματος με άγνωστο p. Παραθέτουμε παρακάτω μερικές από τις ιδιότητες των Q-διαγραμμάτων. 6. ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΔΙΩΝΥΜΙΚΩΝ Q-ΔΙΑΓΡΑΜΜΑΤΩΝ Στην εργασία αυτή προτείνονται τα Q-διαγράμματα για τον έλεγχο της παραμέτρου p της διωνυμικής κατανομής, τα οποία συγκρίνονται με άλλα διαγράμματα βασισμένα σε μη γραμμικούς μετασχηματισμούς. Τη σημασία και τη χρησιμότητα των Q-διαγραμμάτων θα μπορούσαμε να τη συνοψίσουμε στις ακόλουθες ιδιότητες: 1. Τα διαγράμματα αυτά μπορούν να κατασκευαστούν σε πραγματικό χρόνο, ξεκινώντας είτε από την α διωνυμική παρατήρηση (όταν το p είναι γνωστό), είτε από την β παρατήρηση (όταν το p είναι άγνωστο). 2. Τα δείγματα δεν είναι απαραίτητο να έχουν σταθερό μέγεθος. 3. Επειδή η σχεδίασή τους γίνεται σε τυποποιημένη σταθερή κλίμακα η χρήση τους είναι πολύ απλή και έχει ως συνέπεια την άμεση εξαγωγή συμπερασμάτων. 4. Είναι δυνατή η σχεδίαση διαγραμμάτων διαφορετικών διωνυμικών μεταβλητών στο ίδιο διάγραμμα. Έτσι υπάρχει μεγαλύτερη ευελιξία στο σχεδιασμό των προγραμμάτων διαχείρισης και οι χρήστες έχουν περισσότερες επιλογές στη διάθεσή τους. 5. Η χρήση αυτών των μεθόδων απαιτεί για τους υπολογισμούς τη χρήση ενός μικρού Η/Υ και καταλλήλων αλγορίθμων. Αλγόριθμοι για τη διωνυμική και την υπεργεωμετρική κατανομή γράφονται εύκολα σε γλώσσα υπολογιστή και είναι διαθέσιμοι στα στατιστικά πακέτα. ABSTRACT Approximately normalized control charts, called Q charts, are proposed for charting a binomial random variable. Transformations are given for the two cases when the parameter p is known and unknown before charting is begun. These charts permit real-time charting and are plotted in a standard normal scale and permit a flexible chart management program. ΑΝΑΦΟΡΕΣ Duncan A.J. (1986). Quality Control and Industrial Statistics, Richard D. Irwin, Homewood, I.L. Johnson N.L., Kotz S. (1980). Distributions in Statistics: Discrete Distributions, Houghton Mifflin Company, Boston, M.A. Μανατάκης Ε.Κ. (2006). Στατιστικά Διαγράμματα Ελέγχου για Παραγωγικές Διεργασίες, 19 ο Πανελλήνιο Συνέδριο ΕΣΙ, Καστοριά, σελ.315-321. - 255 -

Montgomery D.C. (2001). Introduction to Statistical Quality Control, J.Wiley, New York, N.Y. Nelson L.S. (1989). Standardization of Shewhart Control Charts, Journal of Quality Technology, 21, pp 287-289. Ryan T.P. (1989). Statistical Methods for Quality Improvement, J.Wiley, New York, N.Y. Σχήμα 1α. Η διωνυμική σ.π. b(x,40,0.1) Σχήμα 1β. Η Q διωνυμική σ.π.qb(q,n,p) 0.22 0.20 0.18 0.16 0.14 0.22 0.20 0.18 0.16 0.14 b(x,40,0.1) 0.12 0.10 0.08 Qb(q,n,p) 0.12 0.10 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0.00-2 0 2 4 6 8 10 12 14 16 x 0.00-3 -2-1 0 1 2 3 4 5 q Πίνακας 1. Τιμές των σ.π.b, B, Q x b(x, 40, 0.1) B(x, 40, 0.1) Q 0 0.01478 0.01478-2.175 1 0.06569 0.08047-1.405 2 0.14233 0.22280-0.776 3 0.20032 0.42312-0.194 4 0.20588 0.62900 0.336 5 0.16471 0.79371 0.818 6 0.10675 0.90046 1.287 7 0.05761 0.95807 1.652 8 0.02641 0.98448 2.166 9 0.01043 0.99491 2.571 10 0.00359 0.99850 2.885 11 0.00108 0.99958 3.32 12 0.00029 0.99987 3.71 13 0.00007 0.99994 4.01 14 0.00005 0.99999 4.32 15 0.00001 1.00000 4.63-256 -

Πίνακας 2. Δεδομένα και αποτελέσματα παραδειγμάτων 2 & 3 i 1 2 3 4 5 6 7 8 9 10 x i 4 3 2 4 5 8 8 11 5 7 Q i 0.34-0.19-0.77 0.34 0.82 2.17 2.17 2.82 0.82 1.65 Q i 0.22-1.28-0.75 0.99 0.94 1.47 0.93 3.12 0.94 1.65 i 11 12 13 14 15 16 17 18 19 20 x i 1 6 6 9 10 10 5 5 10 11 Q i -2.17 1.29 1.29 2.57 2.89 2.89 0.82 0.82 2.89 2.82 Q i -2.31 2.12 2.10 2.92 2.71 2.71 1.10 1.10 2.70 3.00 i 21 22 23 24 25 26 27 28 29 30 x i 7 3 2 4 5 8 6 11 5 7 Q i 0.59-1.30-2.15-0.74-0.26 0.96 0.18 1.70-0.25 0.59 Q i 0.54-1.33-2.13-0.78-2.64 1.37 0.20 1.84-0.28 0.74 i 31 32 33 34 35 36 37 38 39 40 x i 7 6 6 9 10 10 5 5 10 11 Q i 0.59 0.18 0.18 1.28 1.53 1.53-0.26-0.26 1.53 1.70 Q i 0.74 0.22 0.22 2.40 1.81 1.81-2.64 0.39 2.98 3.01 Σχήμα 2α. Q-διάγραμμα διωνυμικής με γνωστό p. Σχήμα 2β. Q-διάγραμμα διωνυμικής με άγνωστο p ΑΟΕ 3 ΑΟΕ 3 2 2 1 1 ΚΓ 0 0 10 20 30 40-1 ΚΓ 0 0 10 20 30 40-1 -2-2 ΚΟΕ -3 ΚΟΕ -3. - 257 -

Πίνακας 3. Τα p, Q Διαγράμματα & ο arcsin-μετασχηματισμός για διάφορες πιθανότητες P 0.01 0.05 0.10 n Κατώτερο Ανώτερο n Κατώτερο Ανώτερο n Κατώτερο Ανώτερο z 100 0.00000 0.01928 60 0.00000 0.00299 70 0.00000 0.00531 Q 0.00000 0.00360 0.00000 0.00300 0.00000 0.00154 y 0.00000 0.00055 0.00000 0.00078 0.00000 0.00399 z 200 0.00000 0.00452 100 0.00000 0.00448 100 0.00003 0.00208 Q 0.00000 0.00452 0.00000 0.00153 0.00034 0.00208 y 0.00000 0.00022 0.00622 0.00048 0.00204 0.00011 z 400 0.00000 0.00819 200 0.00004 0.00279 200 0.00050 0.00310 Q 0.00000 0.00281 0.00042 0.000280 0.00050 0.00162 y 0.00000 0.00089 0.00257 0.00122 0.00146 0.00082 z 600 0.00000 0.00362 500 0.00048 0.00283 300 0.00059 0.00254 Q 0.00000 0.00363 0.00119 0.00163 0.00133 0.00148 y 0.00253 0.00049 0.00274 0.00091 0.00133 0.00084 z 800 0.00000 0.00372 800 0.00599 0.00237 600 0.00061 0.00177 Q 0.00034 0.00157 0.00117 0.00150 0.00105 0.00177 y 0.00307 0.00063 0.00220 0.00093 0.00174 0.00117 z 1000 0.00004 0.00345 1000 0.00076 0.00245 1000 0.00090 0.00193 Q 0.00050 0.00157 0.00134 0.00162 0.00133 0.00193 y 0.00281 0.00068 0.00231 0.00106 0.00194 0.00141