Συστήματα Αυτόματου Ελέγχου

Σχετικά έγγραφα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

8 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος

9 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Σήματα και Συστήματα ΙΙ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Συστήματα Αυτόματου Ελέγχου

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης

Συστήματα Αυτόματου Ελέγχου

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΥΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΣΥΣΤΗΜΑΤΩΝ

Συστήματα Αυτόματου Ελέγχου

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου

4 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Σήματα και Συστήματα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

12 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

5 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

Ψηφιακή Επεξεργασία Σημάτων

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Συστήματα Αυτόματου Ελέγχου

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 5: Χρήση μετασχηματισμού Laplace για επίλυση ηλεκτρικών κυκλωμάτων Μέθοδοι εντάσεων βρόχων και τάσεων κόμβων

6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z

Συστήματα Αυτόματου Ελέγχου

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών

Θεωρία Πιθανοτήτων & Στατιστική

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος)

Κλασσική Θεωρία Ελέγχου

Συστήματα Αυτομάτου Ελέγχου II

3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα

Κεφάλαιο 5 Μετασχηματισμός z και Συνάρτηση μεταφοράς

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

5o Εργαστήριο Σ.Α.Ε Ενότητα : Ελεγκτές PID

HMY 220: Σήματα και Συστήματα Ι

Λογιστικές Εφαρμογές Εργαστήριο

Υπολογιστικά & Διακριτά Μαθηματικά

6 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Μετασχηµατισµός Ζ (z-tranform)

Συστήματα Αυτομάτου Ελέγχου II

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές)

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 7: Άλγεβρα βαθμίδων (μπλόκ) Ολική συνάρτηση μεταφοράς

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z

Κυκλώματα, Σήματα και Συστήματα

Μετασχηματισμοί Laplace

Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Σήματα και Συστήματα ΙΙ

Βιομηχανικοί Ελεγκτές

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

Μαθηματικά. Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Υδραυλικά & Πνευματικά ΣΑΕ

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Συστήματα Αυτόματου Ελέγχου

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. 8o Εργαστήριο Σ.Α.Ε. Ενότητα: Έλεγχος κινητήρα DC Ανοικτού Βρόχου

Θέματα Αρμονικής Ανάλυσης

Μηχανική Ι - Στατική

Μαθηματικά. Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ

Στατιστική Επιχειρήσεων

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #11: Ασαφής Αριθμητική. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

HMY 220: Σήματα και Συστήματα Ι

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

(είσοδος) (έξοδος) καθώς το τείνει στο.

Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις

Transcript:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Μετασχηματισμός Ζ (Ζ Transform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

Σκοποί ενότητας 1. Να κατανοήσετε τα στοιχεία που συνθέτουν το Μετασχηματισμό Ζ. 2. Να αναγνωρίζετε τις μεθοδολογίες του Μετασχηματισμού Ζ. 4

Περιεχόμενα ενότητας (1) ΕΙΣΑΓΩΓΗ ΑΠΟ ΤΟΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ LAPLACE ΣΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ Ζ ΣΥΓΚΡΙΣΗ ΤΩΝ ΕΠΙΠΕΔΩΝ KAI ΣΤΟ ΠΕΔΙΟ ΣΥΓΚΛΙΣΗΣ ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ Ζ ΧΡΟΝΙΚΗ ΜΕΤΑΤΟΠΙΣΗ ΓΡΑΜΜΙΚΟΤΗΤΑ ΑΝΤΙΣΤΡΟΦΗ ΧΡΟΝΟΥ ΣΥΝΕΛΙΞΗ 5

Περιεχόμενα ενότητας (2) ΠΑΡΑΓΩΓΙΣΗ ΣΤΟ ΠΕΔΙΟ Ζ ΘΕΩΡΗΜΑ ΑΡΧΙΚΗΣ ΚΑΙ ΤΕΛΙΚΗΣ ΤΙΜΗΣ Ο ΑΝΤΙΣΤΡΟΦΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z ΜΕΘΟΔΟΣ ΤΗΣ ΔΙΑΙΡΕΣΗΣ Η ΜΕΘΟΔΟΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΣΕ ΑΘΡΟΙΣΜΑ ΜΕΡΙΚΩΝ ΚΛΑΣΜΑΤΩΝ ΜΕΘΟΔΟΣ ΜΙΓΑΔΙΚΗΣ ΟΛΟΚΛΗΡΩΣΗΣ ΤΥΠΟΛΟΓΙΟ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 6

Γενικές έννοιες (1) Όπως τα αναλογικά συστήματα σχεδιάζονται και αναλύονται με την χρήση των Μετασχηματισμών Laplace, έτσι και στην περίπτωση των συστημάτων διακριτού χρόνου χρησιμοποιείται μια αντίστοιχη τεχνική που λέγεται Μετασχηματισμός Z. Όπως ο μετασχηματισμός Laplace μετατρέπει τις διαφορικές εξισώσεις σε αλγεβρικές ως προς s, ο μετασχηματισμός Z μετατρέπει τις εξισώσεις διαφορών σε αλγεβρικές ως προς z. Και οι δύο μετασχηματισμοί αντιστοιχίζουν στα σημεία μιας περιοχής του μιγαδικού επιπέδου μια μιγαδική ποσότητα. 7

Η χρήση του Μετασχηματισμού Z στην επίλυση Ε.Δ 8

Η χρησιμότητα του Μετασχηματισμού Z στην ανάλυση διακριτών ΓΧΑ συστημάτων. Παρέχει δυνατότητες για: Αποτελεσματικό υπολογισμό της απόκρισης ενός ΓΧΑ συστήματος (η συνέλιξη στο πεδίο του διακριτού χρόνου y(n) = x(n) h(n) υπολογίζεται ως γινόμενο στο πεδίο του μετασχηματισμού Z: Y(z)=X(z)H(z) οπότε y(n) = ΙΖΤ(Y(z)). Ανάλυση της ευστάθειας ενός ΓΧΑ συστήματος (μέσω του υπολογισμού της περιοχής σύγκλισης). Χαρακτηρισμό ενός ΓΧΑ σε σχέση με τη συμπεριφορά του στο πεδίο της συχνότητας (βαθυπερατό φίλτρο, ζωνοπερατό φίλτρο κλπ). 9

Σύγκριση επιπέδων s και z Το επίπεδο s είναι ορθογώνιο ενώ το επίπεδο z είναι πολικό. Ένα αιτιατό σύστημα διακριτού χρόνου είναι ευσταθές όταν οι πόλοι του βρίσκονται στο εσωτερικό του μοναδιαίου κύκλου. 10

COMPLEX Z - PLANE 11

Ιδιότητες του μετασχηματισμού Ζ (1) 12

Ιδιότητες του μετασχηματισμού Ζ (2) 13

Ιδιότητες του μετασχηματισμού Ζ (3) 14

Αντίστροφος μετασχηματισμός Ζ Ο αντίστροφος μετασχηματισμός Ζ δίνεται από τη σχέση: 1 x n Z z z z dz 2 j [ ] 1 n X( ) X( ) 1 (2) c Όπου c είναι μία κλειστή καμπύλη εντός της περιοχής σύγκλισης της που περικλείει την τομή του πραγματικού και του φανταστικού άξονα του μιγαδικού επιπέδου. 15

Υπολογισμός Αντίστροφου μετασχηματισμού z (1) Υπάρχουν τρεις μέθοδοι για τον υπολογισμό του αντίστροφου μετασχηματισμού μιας συνάρτησης X(z). α) Η μέθοδος της ανάπτυξης σε δυναμοσειρά. β) Η μέθοδος της ανάπτυξης σε άθροισμα μερικών κλασμάτων. γ) Η μέθοδος της Μιγαδικής ολοκλήρωσης (με χρήση του θεωρήματος των ολοκληρωτικών υπολοίπων - residue theorem). 16

Υπολογισμός Αντίστροφου μετασχηματισμού z (2) 1. ΜΕΘΟΔΟΣ ΤΗΣ ΔΙΑΙΡΕΣΗΣ Με αυτή τη μέθοδο υπολογίζονται δείγματα του αντίστροφου μετασχηματισμού z και όχι η αναλυτική του έκφραση. Διαιρώντας τον αριθμητή με τον παρανομαστή της συνάρτησης X(z) η X(z) παίρνει τη μορφή μιας σειράς ως προς z. 17

Υπολογισμός Αντίστροφου μετασχηματισμού z (3) 2. Η ΜΕΘΟΔΟΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΣΕ ΑΘΡΟΙΣΜΑ ΜΕΡΙΚΩΝ ΚΛΑΣΜΑΤΩΝ Η ανάπτυξη σε μερικά κλάσματα (partial fractions expantion) είναι μέθοδος ιδιαίτερα χρήσιμη για την ανάλυση και σχεδίαση συστημάτων, επειδή γίνεται εμφανής η επίδραση οποιασδήποτε χαρακτηριστικής ρίζας ή ιδιοτιμής. Βοηθάει να αναπτύσσεται σε μερικά κλάσματα όχι η συνάρτηση X(z) αλλά η X(z)/z. 18

1.Περίπτωση διακεκριμένων πραγματικών πόλων distrinct real poles 19

2.Περίπτωση μη διακεκριμένων πραγματικών πόλων Πόλοι με βαθμό πολλ/τητας n - multiple real poles. 20

3.Περίπτωση μιγαδικών πόλων (complex roots) Στην περίπτωση αυτή υπολογίζεται σύμφωνα με τους τύπους (4) ή (6) ο συντελεστής που είναι αριθμητής στη μία από τις μιγαδικές ρίζες. Άρα ο συντελεστής που είναι αριθμητής στον όρο που έχει παρονομαστή τη συζυγή ρίζα της προηγούμενης, θα είναι ο συζυγής του. 21

Υπολογισμός Αντίστροφου μετασχηματισμού z (1) 2. Η ΜΕΘΟΔΟΣ ΤΗΣ ΜΙΓΑΔΙΚΗΣ ΟΛΟΚΛΗΡΩΣΗΣ Η μέθοδος βασίζεται στην αξιοποίηση της σχέσης του ορισμού του αντίστροφου μετασχηματισμού Ζ. Η χρήση της εξίσωσης (2) απαιτεί εφαρμογή του θεωρήματος των υπολοίπων (residue theorem) που δίνεται από τη σχέση (τύπος του Cauchy): F z z dz j residues F z z n 1 n 1 ( ) 2 ( ) (7) 22

Υπολογισμός Αντίστροφου μετασχηματισμού z (2) 23

Τυπολόγιο (1) 24

Τυπολόγιο (2) 25

Τυπολόγιο (3) 26

Λυμένες ασκήσεις εξάσκησης Z Transform

Άσκηση 1 28

Άσκηση 2 29

Άσκηση 3 (1) 30

Άσκηση 3 (2) 31

Άσκηση 4 (1) 32

Άσκηση 4 (2) 33

Άσκηση 4 (3) 34

Άσκηση 4 (4) 35

Άσκηση 5 (1) 36

Άσκηση 5 (2) 37

Άσκηση 5 (3) 38

Άσκηση 5 (4) 39

Άσκηση 5 (5) 40

Άσκηση 5 (6) 41

Άσκηση 5 (7) 42

ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ Z Transform

Ασκήσεις για λύση (1) 44

Ασκήσεις για λύση (2) 45

Τέλος Ενότητας