ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Μετασχηματισμός Ζ (Ζ Transform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2
Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
Σκοποί ενότητας 1. Να κατανοήσετε τα στοιχεία που συνθέτουν το Μετασχηματισμό Ζ. 2. Να αναγνωρίζετε τις μεθοδολογίες του Μετασχηματισμού Ζ. 4
Περιεχόμενα ενότητας (1) ΕΙΣΑΓΩΓΗ ΑΠΟ ΤΟΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ LAPLACE ΣΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ Ζ ΣΥΓΚΡΙΣΗ ΤΩΝ ΕΠΙΠΕΔΩΝ KAI ΣΤΟ ΠΕΔΙΟ ΣΥΓΚΛΙΣΗΣ ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ Ζ ΧΡΟΝΙΚΗ ΜΕΤΑΤΟΠΙΣΗ ΓΡΑΜΜΙΚΟΤΗΤΑ ΑΝΤΙΣΤΡΟΦΗ ΧΡΟΝΟΥ ΣΥΝΕΛΙΞΗ 5
Περιεχόμενα ενότητας (2) ΠΑΡΑΓΩΓΙΣΗ ΣΤΟ ΠΕΔΙΟ Ζ ΘΕΩΡΗΜΑ ΑΡΧΙΚΗΣ ΚΑΙ ΤΕΛΙΚΗΣ ΤΙΜΗΣ Ο ΑΝΤΙΣΤΡΟΦΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z ΜΕΘΟΔΟΣ ΤΗΣ ΔΙΑΙΡΕΣΗΣ Η ΜΕΘΟΔΟΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΣΕ ΑΘΡΟΙΣΜΑ ΜΕΡΙΚΩΝ ΚΛΑΣΜΑΤΩΝ ΜΕΘΟΔΟΣ ΜΙΓΑΔΙΚΗΣ ΟΛΟΚΛΗΡΩΣΗΣ ΤΥΠΟΛΟΓΙΟ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 6
Γενικές έννοιες (1) Όπως τα αναλογικά συστήματα σχεδιάζονται και αναλύονται με την χρήση των Μετασχηματισμών Laplace, έτσι και στην περίπτωση των συστημάτων διακριτού χρόνου χρησιμοποιείται μια αντίστοιχη τεχνική που λέγεται Μετασχηματισμός Z. Όπως ο μετασχηματισμός Laplace μετατρέπει τις διαφορικές εξισώσεις σε αλγεβρικές ως προς s, ο μετασχηματισμός Z μετατρέπει τις εξισώσεις διαφορών σε αλγεβρικές ως προς z. Και οι δύο μετασχηματισμοί αντιστοιχίζουν στα σημεία μιας περιοχής του μιγαδικού επιπέδου μια μιγαδική ποσότητα. 7
Η χρήση του Μετασχηματισμού Z στην επίλυση Ε.Δ 8
Η χρησιμότητα του Μετασχηματισμού Z στην ανάλυση διακριτών ΓΧΑ συστημάτων. Παρέχει δυνατότητες για: Αποτελεσματικό υπολογισμό της απόκρισης ενός ΓΧΑ συστήματος (η συνέλιξη στο πεδίο του διακριτού χρόνου y(n) = x(n) h(n) υπολογίζεται ως γινόμενο στο πεδίο του μετασχηματισμού Z: Y(z)=X(z)H(z) οπότε y(n) = ΙΖΤ(Y(z)). Ανάλυση της ευστάθειας ενός ΓΧΑ συστήματος (μέσω του υπολογισμού της περιοχής σύγκλισης). Χαρακτηρισμό ενός ΓΧΑ σε σχέση με τη συμπεριφορά του στο πεδίο της συχνότητας (βαθυπερατό φίλτρο, ζωνοπερατό φίλτρο κλπ). 9
Σύγκριση επιπέδων s και z Το επίπεδο s είναι ορθογώνιο ενώ το επίπεδο z είναι πολικό. Ένα αιτιατό σύστημα διακριτού χρόνου είναι ευσταθές όταν οι πόλοι του βρίσκονται στο εσωτερικό του μοναδιαίου κύκλου. 10
COMPLEX Z - PLANE 11
Ιδιότητες του μετασχηματισμού Ζ (1) 12
Ιδιότητες του μετασχηματισμού Ζ (2) 13
Ιδιότητες του μετασχηματισμού Ζ (3) 14
Αντίστροφος μετασχηματισμός Ζ Ο αντίστροφος μετασχηματισμός Ζ δίνεται από τη σχέση: 1 x n Z z z z dz 2 j [ ] 1 n X( ) X( ) 1 (2) c Όπου c είναι μία κλειστή καμπύλη εντός της περιοχής σύγκλισης της που περικλείει την τομή του πραγματικού και του φανταστικού άξονα του μιγαδικού επιπέδου. 15
Υπολογισμός Αντίστροφου μετασχηματισμού z (1) Υπάρχουν τρεις μέθοδοι για τον υπολογισμό του αντίστροφου μετασχηματισμού μιας συνάρτησης X(z). α) Η μέθοδος της ανάπτυξης σε δυναμοσειρά. β) Η μέθοδος της ανάπτυξης σε άθροισμα μερικών κλασμάτων. γ) Η μέθοδος της Μιγαδικής ολοκλήρωσης (με χρήση του θεωρήματος των ολοκληρωτικών υπολοίπων - residue theorem). 16
Υπολογισμός Αντίστροφου μετασχηματισμού z (2) 1. ΜΕΘΟΔΟΣ ΤΗΣ ΔΙΑΙΡΕΣΗΣ Με αυτή τη μέθοδο υπολογίζονται δείγματα του αντίστροφου μετασχηματισμού z και όχι η αναλυτική του έκφραση. Διαιρώντας τον αριθμητή με τον παρανομαστή της συνάρτησης X(z) η X(z) παίρνει τη μορφή μιας σειράς ως προς z. 17
Υπολογισμός Αντίστροφου μετασχηματισμού z (3) 2. Η ΜΕΘΟΔΟΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΣΕ ΑΘΡΟΙΣΜΑ ΜΕΡΙΚΩΝ ΚΛΑΣΜΑΤΩΝ Η ανάπτυξη σε μερικά κλάσματα (partial fractions expantion) είναι μέθοδος ιδιαίτερα χρήσιμη για την ανάλυση και σχεδίαση συστημάτων, επειδή γίνεται εμφανής η επίδραση οποιασδήποτε χαρακτηριστικής ρίζας ή ιδιοτιμής. Βοηθάει να αναπτύσσεται σε μερικά κλάσματα όχι η συνάρτηση X(z) αλλά η X(z)/z. 18
1.Περίπτωση διακεκριμένων πραγματικών πόλων distrinct real poles 19
2.Περίπτωση μη διακεκριμένων πραγματικών πόλων Πόλοι με βαθμό πολλ/τητας n - multiple real poles. 20
3.Περίπτωση μιγαδικών πόλων (complex roots) Στην περίπτωση αυτή υπολογίζεται σύμφωνα με τους τύπους (4) ή (6) ο συντελεστής που είναι αριθμητής στη μία από τις μιγαδικές ρίζες. Άρα ο συντελεστής που είναι αριθμητής στον όρο που έχει παρονομαστή τη συζυγή ρίζα της προηγούμενης, θα είναι ο συζυγής του. 21
Υπολογισμός Αντίστροφου μετασχηματισμού z (1) 2. Η ΜΕΘΟΔΟΣ ΤΗΣ ΜΙΓΑΔΙΚΗΣ ΟΛΟΚΛΗΡΩΣΗΣ Η μέθοδος βασίζεται στην αξιοποίηση της σχέσης του ορισμού του αντίστροφου μετασχηματισμού Ζ. Η χρήση της εξίσωσης (2) απαιτεί εφαρμογή του θεωρήματος των υπολοίπων (residue theorem) που δίνεται από τη σχέση (τύπος του Cauchy): F z z dz j residues F z z n 1 n 1 ( ) 2 ( ) (7) 22
Υπολογισμός Αντίστροφου μετασχηματισμού z (2) 23
Τυπολόγιο (1) 24
Τυπολόγιο (2) 25
Τυπολόγιο (3) 26
Λυμένες ασκήσεις εξάσκησης Z Transform
Άσκηση 1 28
Άσκηση 2 29
Άσκηση 3 (1) 30
Άσκηση 3 (2) 31
Άσκηση 4 (1) 32
Άσκηση 4 (2) 33
Άσκηση 4 (3) 34
Άσκηση 4 (4) 35
Άσκηση 5 (1) 36
Άσκηση 5 (2) 37
Άσκηση 5 (3) 38
Άσκηση 5 (4) 39
Άσκηση 5 (5) 40
Άσκηση 5 (6) 41
Άσκηση 5 (7) 42
ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ Z Transform
Ασκήσεις για λύση (1) 44
Ασκήσεις για λύση (2) 45
Τέλος Ενότητας