ν ν ΘΕΜΑ Η πολυωνυµική συνάρτηση ν + ν + + + έχει όριο στο R κι ισχύει lim ν ν Έχουµε lim + + + lim ν ν ν ν lim ν + lim ν + ν ν ν lim + ν lim + + lim + lim ν ν ν + ν + + Εποµένως, lim ΘΕΜΑ Η ρητή συνάρτηση Πράγµτι έχουµε Εποµένως, f, όπου P, Q πολυώνυµ κι R µε Q, έχει όριο στο R κι ισχύει lim lim f lim lim lim, µε Q lim ΘΕΜΑ 3 ΘΕΩΡΗΜΑ ΕΝ ΙΑΜΕΣΗΣ ΤΙΜΗΣ Έστω µι συνάρτηση f, η οποί είνι ορισµένη σε έν κλειστό διάστηµ [, β] Αν η f είνι συνεχής στο [, β] κι f f β τότε, γι κάθε ριθµό η µετξύ των f κι f β υπάρχει έν, τουλάχιστον, τέτοιο, ώστε f η β Yποθέτουµε ότι f < f β Τότε θ ισχύει f < η< f β Θεωρούµε τη συνάρτηση g f η, [, β] Η συνάρτηση g είνι συνεχής στο [, β] g f η< g β f β η>, άρ g g β < Εποµένως, πό το θεώρηµ του Bolano, υπάρχει έν τουλάχιστον, β τέτοιο, ώστε g f η f η ΘΕΜΑ 4 Αν οι συνρτήσεις f, g είνι πργωγίσιµες στο, τότε η συνάρτηση f + g είνι πργωγίσιµη στο κι ισχύει f + g f + g Η f πργωγίσιµη στο, άρ υπάρχει η Η f πργωγίσιµη στο, άρ υπάρχει η f f f lim g g lim g R R ΜΑΓΚΛΑΡΑΣ ΘΕΟ ΤΑΣΟΣ - -
ΜΑΘΗΜΑΤΙΚΑ: ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ f + g f + g Τότε f + g lim f + g f g lim f f g g lim + f + g ηλδή f + g f + g Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 5 Αν µι συνάρτηση f είνι πργωγίσιµη σ έν σηµείο, τότε είνι κι συνεχής στο σηµείο υτό Η f είνι πργωγίσιµη στο f f υπάρχειη f lim Αρκεί ν ποδείξουµε ότι f f f f lim lim f f Πράγµτι lim f f lim f Εποµένως, lim f f, δηλδή η f είνι συνεχής στο ΘΕΜΑ 6 Η στθερή συνάρτηση f c, c Rείνι πργωγίσιµη στο Rκι ισχύει f, δηλδή c Έστω τυχίο R Τότε έχουµε: f f c c f lim lim Εποµένως, f, άρ f,γικάθε R, δηλδή c ΘΕΜΑ 7 Η συνάρτηση f είνι πργωγίσιµη στο R κι ισχύει f, δηλδή f f Έστω τυχίο R Τότε έχουµε f lim lim Εποµένως, f, άρ f,γικάθε R, δηλδή ΘΕΜΑ 8 Η συνάρτηση f ν, όπου ν N {,},είνι πργωγίσιµη στο R κι ισχύει ν f ν, δηλδή ν ν ν Έστω τυχίο R Τότε έχουµε: ν ν ν ν ν f f + + + f lim lim lim R ΜΑΓΚΛΑΡΑΣ ΘΕΟ ΤΑΣΟΣ - -
ΜΑΘΗΜΑΤΙΚΑ: ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ν ν ν lim + + + + + + ν ν ν ν ν Εποµένως, f ν ν, άρ ν ν,γικάθε R δηλδή f Γ ΛΥΚΕΙΟΥ ν ν ν ΘΕΜΑ 9 Η συνάρτηση f, [, + είνι πργωγίσιµη στο, + κι ισχύει f, δηλδή, > + Τότε έχουµε: Έστω τυχίο, f f f + lim lim lim + lim lim + + Εποµένως f Η f +, δηλ άρ f,γικάθε, δεν είνι πργωγίσιµη στο o Πράγµτι, έχουµε f f f f lim lim lim lim lim + + + + + + ΘΕΜΑ Η συνάρτηση f ηµ είνι πργωγίσιµη στο Rκι ισχύει f συν, δηλδή ηµ συν Πράγµτι, γι κάθε R έχουµε: f + h f ηµ + h ηµ ηµ συνh+ συν ηµ h ηµ f lim lim lim h h h h h h συνh ηµ h lim ηµ + συν h h h ηµ + συν συν Άρ f συν ηµ συν ΘΕΜΑ Η συνάρτηση f συν είνι πργωγίσιµη στο R κι ισχύει f ηµ, δηλδή συν ηµ Πράγµτι, γι κάθε R έχουµε: f + h f συν + h συν συν συνh ηµ ηµ h συν f lim lim lim h h h h h h συνh ηµ h lim συν ηµ h h h συν ηµ ηµ ηλδή, f ηµ συν ηµ ΜΑΓΚΛΑΡΑΣ ΘΕΟ ΤΑΣΟΣ - 3 -
ΜΑΘΗΜΑΤΙΚΑ: ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Η συνάρτηση ν f ν, ν N είνι πργωγίσιµη στο ν f ν ν, δηλδή ν Πράγµτι, γι κάθε R έχουµε: ν ν ν ν ν ν ν ν ν ν Γ ΛΥΚΕΙΟΥ R κι ισχύει π ΘΕΜΑ 3 Η συνάρτηση f εφ είνι πργωγίσιµη στο Α R { κπ+, κ Z} κι ισχύει f, δηλδή εφ συν συν Πράγµτι, γι κάθε Α έχουµε: εφ ηµ ηµ συν ηµ συν συνσυν + ηµηµ συν + ηµ συν συν συν συν συν ΘΕΜΑ 4 Η συνάρτηση f a, R Z είνι πργωγίσιµη στο, + κι ισχύει f a, δηλδή ln Πράγµτι, είνι f e, > Εποµένως, ΘΕΜΑ 5 Η συνάρτηση f e e a ln e a ln a ln ln f, > f ln, δηλδή ln ln Πράγµτι, είνι f e είνι πργωγίσιµη στο R κι ισχύει ln ln ln Εποµένως, f e e ln e ln ln ΘΕΜΑ 6 Η συνάρτηση f ln, Πράγµτι, ν >, είνι f ln ln, άρ ν <, είνι f ln ln ΜΑΓΚΛΑΡΑΣ ΘΕΟ ΤΑΣΟΣ R είνι πργωγίσιµη στο ln Εποµένως, f ln κι άρ ln - 4 - f ln ln R κι ισχύει
ΘΕΜΑ 7 Έστω µι συνάρτηση f ορισµένη σε έν διάστηµ Αν η f είνι συνεχής στο κι f γι κάθε ε σ ω τ ε ρ ι κ ό σηµείο του, τότε η f είνι στθερή σε όλο το διάστηµ, δηλ υπάρχει στθερά c R τέτοι ώστε f c, γι κάθε Αρκεί ν ποδείξουµε ότι γι οποιδήποτε, ισχύει f f Πράγµτι Αν, τότε προφνώς f f Αν <, τότε η συνάρτηση f είνι συνεχής στο διάστηµ [, ], ΜΑΓΚΛΑΡΑΣ ΘΕΟ ΤΑΣΟΣ πργωγίσιµη στο Από το ΘΜΤ υπάρχει έν τουλάχιστον ξ, τέτοιο, ώστε f f f ξ f f Όµως ξ,, άρ f ξ f f δηλ η f είνι στθερή στο >, τότε οµοίως ποδεικνύετι ότι f f Αν Σε όλες τις περιπτώσεις είνι f f - 5 - ΘΕΜΑ 8 Έστω δυο συνρτήσεις f, g ορισµένες σε έν διάστηµ Αν οι f, g είνι συνεχείς στο κι f g γι κάθε ε σ ω τ ε ρ ι κ ό σηµείο του, τότε υπάρχει στθερά c τέτοι, ώστε γι κάθε ν ισχύει: f g + c Η συνάρτηση h f g είνι συνεχής στο ως διφορά συνεχών συνρτήσεων κι γι κάθε εσωτερικό σηµείο ισχύει h f g f g h Εποµένως, η συνάρτηση h f g είνι στθερή στο Άρ, υπάρχει στθερά c τέτοι, ώστε ν ισχύει h c f g c f g + c γι κάθε ΘΕΜΑ 9 Έστω µι συνάρτηση f, η οποί είνι σ υ ν ε χ ή ς σε έν διάστηµ Αν f > σε κάθε ε σ ω τ ε ρ ι κ ό σηµείο του, τότε η f είνι γνησίως ύξουσ σε όλο το Αν f < σε κάθε ε σ ω τ ε ρ ι κ ό σηµείο του, τότε η f είνι γνησίως φθίνουσ σε όλο το Αποδεικνύουµε το θεώρηµ στην περίπτωση που είνι f > Θεωρούµε, µε < Θ ποδείξουµε ότι f < f Η συνάρτηση f είνι συνεχής στο διάστηµ, ], [ κι πργωγίσιµη στο f Από το ΘΜΤ υπάρχει έν τουλάχιστον ξ, τέτοιο, ώστε f ξ f f Όµως f ξ > > f f > f < f, διότι Άρ η f γνησίως ύξουσ στο > f
ΘΕΜΑ ΘΕΩΡΗΜΑ Fermat Έστω µι συνάρτηση f ορισµένη σ έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο ο κι είνι πργωγίσιµη στο σηµείο υτό, τότε: f Έστω η f προυσιάζει στο εσωτερικό σηµείο τοπικό µέγιστο Άρ υπάρχει δ > τέτοιο, ώστε δ, + δ κι f f, γι κάθε δ, + δ Επειδή, επιπλέον, η f είνι πργωγίσιµη στο, ισχύει f f f f f lim lim R + Τότε, f f f f ν δ,, πό την είνι, άρ f lim f f f f ν, + δ, πό την είνι, άρ f lim + Έτσι, έχουµε f f Οµοίως γι τοπικό ελάχιστο ΘΕΜΑ Έστω µι συνάρτηση f πργωγίσιµη σ έν διάστηµ, β, µε εξίρεση ίσως έν σηµείο του, στο οποίο όµως η f είνι συνεχής i Αν f >,, κι f <,, β, τότε το f είνι τοπικό µέγιστο της f ii Αν f <,, κι f >,, β, τότε το f είνι τοπικό ελάχιστο της f iii Aν η f διτηρεί πρόσηµο στο,, β, τότε το f δεν είνι τοπικό κρόττο κι η f είνι γνησίως µονότονη στο, β i Η f είνι συνεχής στο, ] κι f > γι κάθε, άρ είνι γνησίως ύξουσ στο, ] Γι, ] f f, γι κάθε, ] H f είνι συνεχής στο [, β κι f < γι κάθε, β η f είνι γνησίως φθίνουσ στο [, β Γι [, β f f, γι κάθε [, β Εποµένως, λόγω των κι, ισχύει f f, γι κάθε, β, άρ το f είνι µέγιστο της f στο, β κι άρ τοπικό µέγιστο υτής ii Εργζόµστε νλόγως iii Έστω ότι f >, γι κάθε,, β Η f είνι συνεχής στ, ] κι [, β άρ είνι γνησίως ύξουσ σε κάθε έν πό τ διστήµτ, ] κι [, β Γι < < ισχύει f < f < f Άρ το f δεν είνι τοπικό κρόττο της f Θ δείξουµε, τώρ, ότι η f είνι γνησίως ύξουσ στο, β Πράγµτι, έστω,, β µε < Αν,, ] < f < f, η f είνι γνησίως ύξουσ στο, ] Αν, [, β < f < f, η f είνι γνησίως ύξουσ στο [, β Τέλος, ν < <, τότε f < f < f ΜΑΓΚΛΑΡΑΣ ΘΕΟ ΤΑΣΟΣ - 6 -
Εποµένως, σε όλες τις περιπτώσεις ισχύει f < f, οπότε η f είνι γνησίως ύξουσ στο, β Οµοίως, ν f < γι κάθε,, ΜΑΓΚΛΑΡΑΣ ΘΕΟ ΤΑΣΟΣ β ΘΕΜΑ Έστω f µι συνάρτηση ορισµένη σε έν διάστηµ Αν F είνι µι πράγουσ της f στο, τότε όλες οι συνρτήσεις της µορφής G F + c, c R, είνι πράγουσες της f στο κι κάθε άλλη πράγουσ G της f στο πίρνει τη µορφή G F + c, c R Κάθε συνάρτηση της µορφής G F + c, όπου c R, είνι µι πράγουσ της f στο, φού έχουµε, G F + c F f, γι κάθε Έστω G είνι µι άλλη πράγουσ της f στο Τότε γι κάθε ισχύουν F f κι G f, οπότε G F, γι κάθε Άρ, υπάρχει στθερά c R τέτοι, ώστε G F + c, γι κάθε ΘΕΜΑ 3 Θεµελιώδες Θεώρηµ του Ολοκληρωτικού Λογισµού Έστω f µι συνεχής συνάρτηση σ έν διάστηµ [, β] Αν G είνι µι Η συνάρτηση πράγουσ της f στο [, β], τότε - 7 - β f t dt G β G F f t dt είνι µι πράγουσ της f στο [, β], άρ ισχύει F f, [, β ] Η G είνι µι πράγουσ της f στο [, β], άρ ισχύει G f, [, β ] Τότε G F, [, β ], άρ θ υπάρχει c R τέτοιο ώστε G F + c, [, β ] G f t dt+ c, [, β ] Γι, η γίνετι, G f t dt+ c c G Εποµένως, G f t dt+ G, [, β ] a Γι β, έχουµε G β f t dt+ G f t dt G β G ΘΕΜΑ 4 Αν a β β + βi κι γ+ δi, είνι δυο µιγδικοί ριθµοί, ν ποδείξετε ότι + + Έχουµε + + βi + γ + δ i + γ + β+ δ i + γ β + δ i βi + γ δ i +
ΘΕΜΑ 5 Γι κάθε µιγδικό ριθµό + βi,,β R, ν ποδείξετε ότι Έχουµε + βi + β βi + β + β βi + β + β Άρ ισχύει ΘΕΜΑ 6 Ν ποδείξετε ότι, γι κάθε, C Έχουµε Άρ ΜΑΓΚΛΑΡΑΣ ΘΕΟ ΤΑΣΟΣ - 8 -